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Abstract. We extend the classical coupon collector’s problem to one in which two collectors
are simultaneously and independently seeking collections of d coupons. We find, in finite terms, the
probability that the two collectors finish at the same trial, and we find, using the methods of Gessel–
Viennot, the probability that the game has the following “ballot-like” character: the two collectors
are tied with each other for some initial number of steps, and after that the player who first gains
the lead remains ahead throughout the game. As a by-product we obtain the evaluation in finite
terms of certain infinite series whose coefficients are powers and products of Stirling numbers of the
second kind.

We study the variant of the original coupon collector’s problem in which a single collector wants
to obtain at least h copies of each coupon. Here we give a simpler derivation of results of Newman
and Shepp and extend those results. Finally we obtain the distribution of the number of coupons that
have been obtained exactly once (“singletons”) at the conclusion of a successful coupon collecting
sequence.
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1. Introduction and results. The classical coupon collector’s problem is the
following. Suppose that a breakfast cereal manufacturer offers a souvenir (“coupon”)
hidden in each package of cereal, and there are d different kinds of souvenirs altogether.
The collector wants to have a complete collection of all d souvenirs. What is the
probability p(n, d) that exactly n boxes of cereal will have to be purchased in order to
obtain, for the first time, a complete collection of at least one of each of the d kinds
of souvenir coupons?
The answer to that question is well known (e.g., [5, p. 132]) to be

p(n, d) =
d!

dn

{
n− 1
d− 1

}
,(1.1)

where the
{
n
k

}
’s are the Stirling numbers of the second kind.

We study, in this paper, a number of other aspects of this problem as well as a
generalization of it to a two-player game.
First, suppose we have two coupon collectors, drawing coupons simultaneously,

and each seeking to obtain a complete collection of d coupons. We ask for the prob-
ability that the two games are completed at the same time. The answer is given by
(2.6) below. That answer is expressed in finite terms, owing to the closed form eval-
uation of the ordinary power series generating function for the squares of the Stirling
numbers of the second kind, contained in (2.5).
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Next, we consider the following two-person game. Again two coupon collectors
are simultaneously drawing coupons at random. This time we are interested in a
ballot-like problem: What is the probability that the player who first completed a
collection (the winner) was never behind (i.e., never had fewer distinct coupons) at
any intermediate stage of the play? Here we give a complete answer to a slightly
easier question, namely the following: What is the probability that, after an initial
segment of play in which the players are tied, one of them takes the lead and keeps
the lead strictly until the end. The answer is in (2.26) below and is obtained by the
Gessel–Viennot theory of nonintersecting lattice paths.
In each of these cases the answer can first be written as an infinite series whose

coefficients involve various products of Stirling numbers. What is interesting, though,
is that in all such cases we are able to express the answers in finite terms. Indeed,
one of our main results here is the observation that infinite series whose coefficients
involve various powers and products of Stirling numbers of the second kind can readily
be evaluated in finite terms.
In section 4 we return to the original collecting problem of obtaining at least

one copy of each coupon, but now we study the variant of the problem in which a
single collector wants to obtain at least h ≥ 1 copies of each coupon. We obtain the
generating function (4.5) for the probability that exactly n trials are needed, the exact
value of the average number of trials (4.10), and the asymptotic behavior (4.15) of
these quantities as n→∞.
Finally, in section 5 we study the number of coupons that have been collected

only once, at the end of a collection sequence. We find the distribution function (5.4)
for this number and show that the average number of these singletons is just the
harmonic number Hd = 1 + 1/2 + · · ·+ 1/d.

2. The two-person collecting competition.

2.1. Simultaneous completion. We find now the probability of simultaneous
completion of two independent coupon collecting sequences. Evidently this is∑

n≥0

p(n, d)2 =
∑
n≥0

d!2

d2n

{
n− 1
d− 1

}
2

,(2.1)

which expresses the answer as an infinite sum. We can rewrite this as a finite sum by
finding a finite expression for the generating function for the squares of the Stirling
numbers of the second kind,

Fk(x) =
def
∑
n≥k

{
n

k

}
2

xn,

analogously to the well-known generating function for these numbers themselves,∑
n≥k

{
n

k

}
xn =

xk

(1− x)(1− 2x) . . . (1− kx) .(2.2)

The easiest way to do this is via the standard explicit formula for these Stirling
numbers, viz. {

n

k

}
=
1

k!

k∑
r=1

(−1)k−r
(
k

r

)
rn (1 ≤ k ≤ n)(2.3)

=
def

k∑
r=1

Ak,rr
n−k,
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where we have written

Ak,r =
(−1)k−rrk

k!

(
k

r

)
.(2.4)

It follows that

Fk(x) =
def
∑
n≥k

{
n

k

}
2

xn =
∑
n≥k

xn
k∑

r,s=1

Ak,rAk,sr
n−ksn−k

= xk
k∑

r,s=1

Ak,rAk,s
∑
n≥k
(rsx)n−k

= xk
k∑

r,s=1

Ak,rAk,s
1− rsx

(
|x| < 1

k2

)
.(2.5)

Thus for the simultaneous completion probability we obtain, from (2.1),

∑
n≥0

p(n, d)2 =
d!2

d2d

d−1∑
r,s=1

Ad−1,rAd−1,s

1− rs
d2

(2.6)

by (2.5), where the A’s are given by (2.4). This sequence of probabilities, for d =
1, 2, . . . , begins as

1,
1

3
,
11

70
,
9

91
,
688877

9561123
,
358555

6330324
,
2730269557627901

58560931675094420
,
146271649897951

3695016639410525
, . . . ,

i.e., as

1, 0.33333 . . . , 0.15714 . . . , 0.098901 . . . , 0.072049 . . . ,

0.056640 . . . , 0.046622 . . . , 0.039586 . . . , . . . .

2.2. Neck-and-neck then always ahead. We encode a sequence of n draws
as a path ω with n vertices in the lattice L consisting of vertices (i, j) and edges
{(i, j), (i+1, j)}, {(i, j), (i+1, j +1)} for all i, j ≥ 0. The first coordinate of a vertex
in the path gives the number of draws, or steps, and the second coordinate gives the
number of distinct coupons the collector has at that step. Thus ω starts at (0, 0)
indicating the collector has 0 coupons at draw 0, proceeds to (1, 1) (the collector
has 1 coupon after 1 draw), and ends at (n, d), n ≥ d (the collector has a complete
collection at step n). We write ω = (0, 0)ω(n, d), where ω is a path from (1, 1) to
(n − 1, d − 1), to indicate that ω starts at the vertex (0, 0), continues with the first
vertex (1, 1) in ω, then follows ω through to (n− 1, d− 1), and finally ends with the
vertex (n, d).
We assign a weight of i/d to each horizontal edge {(i, j), (i+ 1, j)} in the lattice

L. This is the probability that at the (j + 1)st step, the collector draws one of the
i distinct coupons already collected at step j. We assign a weight of 1 − i/d to each
northeast edge {(i, j), (i + 1, j + 1)}. The probability that the collector draws the
particular sequence of coupons encoded by the path ω is given by the product of the
weights on the edges of ω. We let P (ω) denote this probability.
Suppose one collector, the winner, collects all d distinct coupons for the first time

at step n. (At step n − 1 the winner had d − 1 distinct coupons.) Let ω1 be the
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lattice path which encodes the winner’s sequence of draws. Let ω2 encode the other
collector’s draws. We compute the probability p(d) that ω1 and ω2 are identical until
some point at which the winner takes the lead and the other collector never catches
up.
To do this, we begin by supposing ω1 is identical to ω2 until step k, at which

point both collectors have d1 distinct coupons. The argument splits into two cases,
namely k ≤ n− 2 and k = n− 1. In both cases, at step k + 1 the winner collects one
additional distinct coupon while the other collector does not. After step k, the two
paths never intersect again. The winner collects all d distinct coupons for the first
time at step n. Suppose the other collector has d2 distinct coupons at this point. The
probability we seek is

p(d) =

∞∑
n=d

n−1∑
k=1

d−1∑
d1=1

d−1∑
d2=d1

∑
(ω1,ω2)

P (ω1)P (ω2),(2.7)

where the innermost sum ranges over all pairs (ω1, ω2) described above.

2.3. The case k ≤ n − 2. Write ω1 = αω1(n, d), where α denotes a lattice
path from (0, 0) to (k, d1), and ω1 denotes a path from (k+1, d1+1) to (n−1, d−1).
Similarly, set ω2 = αω2, where α is as above and ω2 is a path from (k + 1, d1) to
(n, d2). Note that ω1 and ω2 are nonintersecting paths in the lattice L. In terms of
these we have P (ω1) = P (α)(1 − d1/d)P (ω1)(1/d) and P (ω2) = P (α)(d1/d)P (ω2).
Hence from (2.7) we find for the combined probability of all pairs if k ≤ n− 2,

p(d)k≤n−2 =

∞∑
n=d

n−2∑
k=1

d−1∑
d1=1

d−1∑
d2=d1

∑
(ω1,ω2)

[
P (α)

(
1− d1

d

)
P (ω1)

(
1

d

)][
P (α)

(
d1
d

)
P (ω2)

]

=

∞∑
n=d

n−2∑
k=1

d−1∑
d1=1

d−1∑
d2=d1

(
1− d1

d

)(
1

d

)(
d1
d

)∑
α

P (α)2
∑

(ω1,ω2)

P (ω1)P (ω2).(2.8)

At this point we have translated a question about coupon collecting into a problem
involving nonintersecting paths in a lattice. We have set the stage for application of
the Gessel–Viennot theorem [3]. This result concerns pairs of nonintersecting lattice
paths with no constraints on vertices or edges in the paths. For this reason we have
written ω1 and ω2 in terms of ω1 and ω2.
The theorem refers to an arbitrary set L, which we will take to be the lattice

defined earlier, and a weight (or valuation) v, which we take to be P . The theorem
equates a sum of weights of paths with the determinant of a matrix (aij)1≤i,j≤l. The
entries of this matrix are defined by aij =

∑
ω v(ω), where ω ranges over all paths

from Ai to Bj .
The theorem requires that two given sequences, (A1, A2, . . . , Al) and (B1, B2, . . . ,

Bl), of vertices in L, the sets Ωij , 1 ≤ i, j ≤ l, of all paths in L between Ai and Bj ,
and the weight v satisfy both the finiteness and crossing conditions. The finiteness
condition requires the set of paths in Ωij with nonzero weight be finite. The crossing
condition requires that paths in Ωij′ and Ωi′j , i < i

′ and j < j′, with nonzero weight
share a common vertex. Both conditions hold for the paths we consider.

Theorem 2.1 (Gessel–Viennot). Suppose L, v, (A1, A2, . . . , Al), and (B1, B2,
. . . , Bl) satisfy both the finiteness and crossing conditions. Then the determinant
of the matrix (aij)1≤i,j≤l is the sum of the weights of all configurations of paths
(ω1, ω2, . . . , ωl) satisfying the following two conditions:
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(i) The paths ωk are pairwise nonintersecting, and
(ii) ωk is a path from Ak to Bk.

In other words,

det
(
{aij}li,j=1

)
=

∑
(ω1,ω2,...,ωl)

v(ω1)v(ω2) . . . v(ωl).

Application of this theorem to our problem requires the computation of only a
2× 2 determinant! Let A1 = (k+1, d1+1), A2 = (k+1, d1), B1 = (n− 1, d− 1), and
B2 = (n, d2). Then

∑
(ω1,ω2)

P (ω1)P (ω2) = det

[
a11 a12

a21 a22

]
,(2.9)

where aij is the sum
∑
ω P (ω) over all paths ω from Ai to Bj .

2.4. Paths from A to B. In this section we compute the probability P (ω) of an
arbitrary path ω from a vertex A = (a1, b1) to a vertex B = (a2, b2) as well as the sum
over all such paths. Such a path contains b2− b1 northeast edges {(i, j), (i+1, j+1)}
and (a2 − a1) − (b2 − b1) horizontal edges. The weights assigned to northeast edges
in order from left to right are 1− b1

d , 1− b1+1
d , . . . , 1− b2−1

d . The weight assigned to a
horizontal edge depends on its coordinates. Consider the edge {(i, j), (i+1, j)}. This
edge indicates the collector has j distinct coupons at step i and draws one of the same
j coupons at step i + 1. The probability of this (weight of the edge) is jd . Thus the
probability of a path ω from A to B is

P (ω) =

(
b1
d

)e1 (
1− b1

d

)(
b1 + 1

d

)e2 (
1− b1 + 1

d

)
. . .

(
1− b2 − 1

d

)(
b2
d

)eb2−b1+1

=
1

da2−a1

(d− b1)!
(d− b2)! (b1)

e1(b1 + 1)
e2 . . . (b2)

eb2−b1+1 ,

(2.10)

where e = (e1, e2, . . . , eb2−b1+1) is an ordered partition, a composition, of (a2 − a1)−
(b2− b1) into b2− b1+1 nonnegative integer parts. With this we compute the sum of
the probabilities of all paths from A to B.

∑
ω=A···B

P (ω) =
∑
e

(
b1
d

)e1 (
1− b1

d

)(
b1 + 1

d

)e2 (
1− b1 + 1

d

)

. . .

(
1− b2 − 1

d

)(
b2
d

)eb2−b1+1

=
1

da2−a1

(d− b1)!
(d− b2)!

∑
e

(b1)
e1(b1 + 1)

e2 . . . (b2)
eb2−b1+1 ,(2.11)

where the sum is over all compositions e = (e1, e2, . . . , db2−b1+1) of (a2−a1)−(b2−b1)
into b2 − b1 + 1 nonnegative integer parts. This is the coefficient of x(a2−a1)−(b2−b1)

in the series expansion of

1

(1− b1x)(1− (b1 + 1)x) . . . (1− b2x) ,
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so we can find a simpler formula for it by looking at the partial fraction expansion

1∏b
m=a(1−mx)

=

b∑
m=a

Bm
1−mx,(2.12)

where

Bm =
(−1)b−mmb−a

(b− a)!
(
b− a
m− a

)
.

From this and (2.11) we obtain

∑
ω=A···B

P (ω) =
1

da2−a1

(d− b1)!
(d− b2)! [x

(a2−a1)−(b2−b1)]

{
b2∑

m=b1

Bm
1−mx

}

=
1

da2−a1

(d− b1)!
(d− b2)!

b2∑
m=b1

Bmm
(a2−a1)−(b2−b1)

=
1

da2−a1

(d− b1)!
(d− b2)!

b2∑
m=b1

(−1)b2−mma2−a1

(b2 − b1)!
(
b2 − b1
m− b1

)
.(2.13)

2.5. Evaluating the determinant. We use the results of the previous section
to evaluate the determinant in (2.9). To compute a11, we substitute A = A1 =
(k + 1, d1 + 1) and B = B1 = (n− 1, d− 1) into (2.13). This yields

a11 =
1

dn−k−2
(d− d1 − 1)!

d−1∑
m=d1+1

(−1)d−m−1
mn−k−2

(d− d1 − 2)!
(
d− d1 − 2
m− d1 − 1

)
.(2.14)

In a similar manner we obtain

a12 =
1

dn−k−1

(d− d1 − 1)!
(d− d2)!

d2∑
m=d1+1

(−1)d2−mmn−k−1

(d2 − d1 − 1)!
(
d2 − d1 − 1
m− d1 − 1

)
,(2.15)

a21 =
1

dn−k−2
(d− d1)!

d−1∑
m=d1

(−1)d−m−1
mn−k−2

(d− d1 − 1)!
(
d− d1 − 1
m− d1

)
,(2.16)

a22 =
1

dn−k−1

(d− d1)!
(d− d2)!

d2∑
m=d1

(−1)d2−mmn−k−1

(d2 − d1)!
(
d2 − d1
m− d1

)
.(2.17)

Using (2.14)–(2.17) we compute the determinant of our 2× 2 matrix.

det

[
a11 a12

a21 a22

]
=
(d− d1)!(d− d1 − 1)!
d2n−2k−3(d− d2)!(2.18)

×
d∑

l=d1

d2∑
m=d1

m(lm)n−k−2(−1)d1+d2(l − d)(m2 − l2)
(d− d1 − 1)!(d2 − d1)!

(
d− d1 − 1
l − d1

)(
d2 − d1
m− d1

)

=
def
det(d, d1, d2, k, n).(2.19)

Substituting (2.19) in (2.9), we obtain∑
(ω1,ω2)

P (ω1)P (ω2) = det(d, d1, d2, k, n).(2.20)
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2.6. The initial common segment. In the previous section we evaluated the
determinant in (2.9). In this section we compute the sum

∑
α P (α)

2 in (2.8). Recall
α is a path from (0, 0) to (k, d1).

Equation (2.10) gives the probability of an arbitrary path from A to B. Substi-
tuting A = (0, 0) and B = (k, d1) gives the probability

P (α) =
d!

dk(d− d1)!1
e12e2 · · · d1ed1

of an arbitrary path α from (0, 0) to (k, d1). It follows that

∑
α=(0,0)···(k,d1)

P (α)2 =
d!2

d2k(d− d1)!2
∑

e1+···+ed1
=k−d1

12e122e2 . . . d
2ed1
1

=
d!2

d2k(d− d1)!2 [x
k−d1 ]

{
1

(1− 12x)(1− 22x) . . . (1− d21x)
}

=
d!2

d2k(d− d1)!2
d1∑
m=1

Cmm
2k−2d1 (as in (2.12))

=
2d!2

(d− d1)!2d2k(2d1)!
∑
m≥1

(−1)d1−m
(
2d1

d1 +m

)
m2k(2.21)

=
def
init(d, d1, k).(2.22)

2.7. The case k = n − 1. Suppose now that the two walks are identical up to
the point (n−1, d−1). Since step n is the finish, the next step for the winning player
will be to (n, d) and for the losing player to (n, d−1). These last steps have respective
probabilities 1/d and 1− 1/d. Hence the probability of the complete pair of walks in
this case is the probability of two identical walks from (0, 0) to (n− 1, d− 1) (which
is given by (2.21) with (k, d1) := (n− 1, d− 1)) multiplied by (d− 1)/d2.

2.8. Putting it together. We now substitute (2.19) and (2.22) into (2.8) to
obtain the probability of all pairs of paths that we are considering,

p(d) =
∞∑
n=d

n−2∑
k=1

d−1∑
d1=1

d−1∑
d2=d1

(
1− d1

d

)(
d1
d

)(
1

d

)
init(d, d1, k)det(d, d1, d2, k, n)

+
d− 1
d2

∞∑
n=d

init(d, d− 1, n− 1)(2.23)

=
def
Σ1 +Σ2.(2.24)

It turns out that the sums over the indices d2, n, k can all be carried out in explicit
closed form. Hence we can obtain an expression which is in finite terms for the total
probability.

First, the sum on d2 in Σ1 above can be done in closed form since

d−1∑
d2=d1

(−1)d2
(
d− d1
d− d2

)(
d2 − d1
t− d1

)
= (−1)d+1

(
d− d1
d− t

)
.
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Next, the remaining sum over the indices n and k in the first summation Σ1 is

ψ(d, r, s, t) =
def

∞∑
n=d

n−2∑
k=1

r2ktn−k−1sn−k−2

d2n
=



r2d(d3−2d2−r2d+3r2)
d2d−2(d2−r2)2s2t if r2 = st,

r4(st)d−1(r2−d2)+str2d(d2−st)
d2d−2(d2−st)(d2−r2)(r2−st)r2s otherwise.

(2.25)

The sum over n in Σ2 is trivial, and so there remain no infinite sums in our final
expression for the probability p(d), which is

d−1∑
d1=1

2d!2d1(d− d1)
(d− d1)!2(2d1)!

∑
r,s,t≥1

(−1)d1−r−s−t(s− t)
(
2d1
d1 + r

)
(
d− d1 − 1
s− d1

)(
d− d1
d− t

)
ψ(d, r, s, t)

+
4(d− 1)d!2
d2d−2(2d− 2)!

d−1∑
r=1

(−1)d−1−r
(
2d− 2
d− 1 + r

)
r2d−2

d2 − r2 + δd,1,(2.26)

where ψ is given by (2.25).
This is the probability that the game is of the type we described, namely where

the players are tied for some initial segment of trials and then the player who pulls
ahead remains ahead always, expressed as a finite sum (albeit a complicated one!).
More precisely, the values of p(d) can be calculated, as rational numbers, with O(d4)
evaluations of the above summand. The exact values of p(d) for d = 1, 2, 3, 4, 5, . . .
are {

1,
2

3
,
43

70
,
986

2275
,
5672893

1912246
, . . .

}
.

As decimals, the values of {p(d)}10d=1 are

{1.0, 0.66667, 0.61429, 0.43341, 0.29667, 0.21177, 0.16016, 0.12748, 0.10551, 0.08988} .
2.9. One collector never behind. In contrast to the problem of staying ahead

as soon as the tie is broken, which we have solved in the preceding sections, the
problem in which the ultimate winner has never been behind is unsolved.
Suppose the winner collects all d distinct coupons for the first time at step n, at

which point the other collector has d′ < d distinct coupons. We discuss the probability
b(d) the winner has never been behind. We use b for “ballot” since this version of the
problem has a distinct ballot-problem flavor (see, e.g., [1]).
Let w1 be the lattice path which encodes the winner’s sequence of draws. Let ω2

encode the other collector’s sequence of draws. Then b(d) is the probability that ω2

does not cross ω1. To say ω2 does not cross ω1 means, for each horizontal coordinate
i shared by vertices (i, j1) in ω1 and (i, j2) in ω2, we have j2 ≤ j1. In the case j2 = j1,
we say ω1 and ω2 intersect at (i, j1) = (i, j2). Thus we seek all pairs (ω1, ω2) such
that ω1 is a path from (0, 0) to (n, d) including the vertex (n− 1, d− 1), ω2 is a path
from (0, 0) to (n, d′) for 1 ≤ d′ ≤ d, and ω2 does not cross ω1. Such a pair (ω1, ω2)
is illustrated by Figure 2.1. Note that ω1 and ω2 may intersect several times. The
probability we seek is

b(d) =

∞∑
n=d

d−1∑
d′=1

∑
(ω1,ω2)

P (ω1)P (ω2),
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Fig. 2.1. The winner is never behind.
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Fig. 2.2. A kite.

where the innermost sum ranges over all pairs described above.

Look again at Figure 2.1. A pair (ω1, ω2) appears to form a chain of flying kites
anchored to the ground at (0, 0). The highest kite has two ribbons attached to its tip.
Their loose ends are at (n, d) and (n, d′).
Each kite consists of a frame together with a tail. See Figure 2.2. A frame from
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(i1, j1) to (i2, j2) consists of a pair of paths from (i1, j1), the lower tip of the frame,
to (i2, j2), the upper tip, which intersect only at the endpoints. A tail from (i1, j1) to
(i2, j2) consists of two identical paths between these endpoints. The length of a tail
is the number of vertices in the tail minus one, i.e., the number of edges.
A pair (ω1, ω2) such that ω2 does not cross ω1 forms an alternating sequence of

tails and frames, beginning with a tail. Note that tails may have length zero.
The upper tip of the final frame in this sequence is the common endpoint for

two paths which intersect only at this common endpoint (these are the “ribbons”
described above). One path ends at (n, d), this is the top ribbon, and the other ends
at (n, d′), the bottom ribbon.
Below we compute the probability of a frame from (i1, j1) to (i2, j2), a tail from

(i1, j1) to (i2, j2), and a pair of ribbons with common initial point (k, d
′′) and terminal

points at (n, d) and (n, d′), respectively.
Let f

(i2,j2)
(i1,j1)

(d) denote the probability of a frame from (i1, j1) to (i2, j2). Note for

f
(i2,j2)
(i1,j1)

(d) �= 0, we must have i2 ≥ i1+2, j2 > j1, and j2− j1 ≤ i2− i1− 1. Assuming
these conditions, we write

f
(i2,j2)
(i1,j1)

(d) =
∑
(α,β)

P (α)P (β),(2.27)

where (α, β) is a pair of paths from (i1, j1) to (i2, j2) intersecting only at the endpoints
such that β does not cross α. (That is, α forms the upper edge of the frame, and β
forms the lower edge.)
We convert the sum above into a determinant using the Gessel–Viennot theorem.

Evaluation of the determinant gives

f
(i2,j2)
(i1,j1)

(d) =
j1j2(d− j1)!2

d2(i2−i1)(j2 − j1)!2(d− j2)!2
j2∑

l,m=j1

(−1)l+m(lm)i2−i1−2(l − j1)(m− j2)
(
j2 − j1
m− j1

)(
j2 − j1
l − j1

)
.

We compute the probability t
(i2,j2)
(i1,j1)

(d) of a tail from (i1, j1) to (i2, j2) in a manner

analogous to the computation of
∑
α P (α)

2 in section 2.6. We obtain

t
(i2,j2)
(i1,j1)

(d) =
(d− j1)!2

d2(i2−i1)(2j2)!(d− j2)!2
j2∑
m=1

(−1)j2−j1m2(i2−i1)(2m)!
(
2j2

j2 +m

)(
m+ j1 − 1
j1 −m

)
.

Finally we compute the probability r(d, d′, d′′, k, n) of a pair of ribbons with com-
mon initial point (k, d′′) and terminal points (n, d′) and (n, d). The probability is
given by a determinant similar to the one in (2.9). In the present case, we have d′′ in
place of d1 and d

′ in place of d2. Thus

r(d, d′, d′′, k, n) = det(d, d′, d′′, k, n).

3. Winning margin. Now we look for the probability distribution of the num-
ber of distinct coupons that the second player has collected at the moment the first
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player completes the collection. Let g(d, d′) denote the probability that the second
player has collected exactly d′ distinct coupons at that moment. The probability that
the first player finishes after exactly n trials is p(n, d); see (1.1). The probability that
the second player has exactly d′ distinct coupons after n trials, given that the first
player has just completed the collection at that time, is(

d

d′

){
n

d′

}
d′!
dn

if 1 ≤ d′ < d. Thus for d′ < d our distribution g is given by

g(d, d′) =
∑
n≥d′

d!

dn

{
n− 1
d− 1

}(
d

d′

){
n

d′

}
d′!
dn

=
d!2

(d− d′)!
∑
n≥d′

{
n− 1
d− 1

}{
n

d′

}
1

d2n

=
d!2

(d− d′)!d2d′
d−1∑
r=1

rd
′−d

d′∑
s=1

Ad−1,rAd′,s
1− rs

d2
− δd′,1,

by (2.3). A table of the probabilities {g(6, j)}5j=1 is as follows:

.000003, .000793, .018444, .118454, .333986.

These do not sum to 1 because the second player might have completed a collection
at some time before the first player did.

4. The “double dixie cup problem,” of Newman and Shepp, revisited.
Here we consider a different generalization of the coupon collector’s problem. Let
integers h, d ≥ 1 be fixed. Again we are sampling with replacement from d kinds of
coupons, but now T is the epoch at which we have collected at least h copies of each
of the d coupons for the first time. (For example, my h− 1 siblings and I might each
want to have our own copy of every one of the available baseball cards.) We study
the expectation, the probability generating function, and the asymptotic behavior of
the expectation of this generalized problem.
These questions were investigated by Newman and Shepp [4] and the asymptotics

were refined by Erdős and Rényi [2]. It is interesting to note that this problem is
equivalent to one about the evolution of a random graph. Suppose we fix n vertices,
and then we begin to collect from among n kinds of coupons. If we collect a particular
sequence, say, {c1, c2, c3, . . . }, then we add the edges (c1, c2),(c3, c4) . . . . That is, we
add an edge each time we choose a new pair of coupons. Our problem about collecting
at least h copies of each kind of coupon is thereby equivalent to the question of
obtaining a minimum degree of at least h in an evolving random graph.1 In this
section we will not add anything new to the asymptotics of this problem. Instead we
claim only a derivation simpler than the original and an explicit generating function,
which gives a nice road to the asymptotics. We deal only with generating functions in
one variable, whereas in [4] multivariate generating functions were used. We obtain
not only the expectation of the time to reach a collection that has at least h copies
of each kind of coupon, but also the complete probability distribution of that time.

1Our thanks to Ed Bender and to a helpful referee for pointing this out.
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For n fixed, consider a sequence of n drawings of coupons that constitutes, for
the first time at the nth drawing, a complete collection of at least h copies of each of
the d kinds of coupons.

There are d possibilities for the coupon that completes the collection on the nth
drawing. There are

(
n−1
h−1

)
ways to choose the set of earlier drawings on which that

last coupon type occurred. On the remaining n− h drawings we can define, as usual,
an equivalence relation: two drawings i, j are equivalent if the same kind of coupon
was drawn at the ith and the jth drawings. The number of such equivalence relations
is equal to the number of ordered partitions of a set of n − h elements into d − 1
classes, each class containing at least h elements. We will denote this latter number
by (d− 1)!{n−hd−1

}
h
, where the

{
n
k

}
h
’s count the unordered partitions of an n-set into k

classes of at least h elements each.

The number of sequences of n drawings for which we achieve a complete collection
for the first time at the nth drawing is therefore

d

(
n− 1
h− 1

)
(d− 1)!

{
n− h
d− 1

}
h

.

Since there are dn possible drawing sequences of length n, the probability that T = n
is

pn =
d!

dn

(
n− 1
h− 1

){
n− h
d− 1

}
h

,(4.1)

and the probability generating function is

Ph(x) =
def
∑
n≥0

pnx
n =

∑
n≥0

d!

dn

(
n− 1
h− 1

){
n− h
d− 1

}
h

xn

= d!

(
xD − 1
h− 1

)∑
n≥0

{
n− h
d− 1

}
h

(x
d

)n
,(4.2)

where D = ∂/∂x.

It remains to find the ordinary power series generating function of the
{
n
k

}
h
’s.

The exponential formula immediately gives us their exponential generating function
as

∑
n≥0

{
n

k

}
h

xn

n!
=
1

k!

(
ex − 1− x− · · · − xh−1

(h− 1)!
)k
.(4.3)

We can convert this into an ordinary power series generating function by applying the
Laplace transform operator ∫ ∞

0

e−sx · · · dx

to both sides, which yields

∑
n≥0

{
n

k

}
h

1

sn+1
=
1

k!

∫ ∞

0

e−sx
(
ex − 1− x− · · · − xh−1

(h− 1)!
)k
dx,
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or finally

∑
n≥0

{
n

k

}
h

tn =
1

k!t

∫ ∞

0

e−x/t
(
ex − 1− x− · · · − xh−1

(h− 1)!
)k
dx.(4.4)

Now if we substitute (4.4) into (4.2) we obtain the probability generating function
of the generalized coupon collector’s problem in the form

Ph(x) =
1

dh−2

∫ ∞

0

{(
xD − 1
h− 1

)
xh−1e−td/x

}(
et − 1− t− · · · − th−1

(h− 1)!
)d−1

dt.

(4.5)

In the above,
(
xD−1
h−1

)
is the differential operator that is defined by

(
xD − 1
h− 1

)
f(x) =

1

(h− 1)!
(
x
d

dx
− 1
)(

x
d

dx
− 2
)
. . .

(
x
d

dx
− h
)
f(x).

However, it is easy to establish, by induction on h, the interesting fact that(
xD − 1
h− 1

)
xh−1e−td/x =

(td)h−1

(h− 1)!e
−td/x.(4.6)

Hence we have proved the following evaluation.
Theorem 4.1. The probability generating function for the coupon collecting prob-

lem in which at least h copies of each coupon are needed is given by

Ph(x) =
d

(h− 1)!
∫ ∞

0

th−1e−td/x
(
et − 1− t− · · · − th−1

(h− 1)!
)d−1

dt.(4.7)

4.1. Two examples. Let’s look at the cases h = 1, the classical case, and h = 2,
where we want to collect at least two specimens of each of the d kinds of coupons.
If h = 1, then (4.7) takes the form

P1(x) = d

∫ ∞

0

e−td/x(et − 1)d−1dt.

If we expand the power of (et − 1) by the binomial theorem and integrate termwise,
we obtain

P1(x) = xd

d−1∑
j=0

(
d− 1
j

)
(−1)d−1−j

d− jx ,

which is precisely the partial fraction expansion of the classical generating function
(2.2).
To see something new, let h = 2. Then

P2(x) = d

∫ ∞

0

te−td/x
(
et − 1− t)d−1

dt.(4.8)

Again, by termwise integration this can be made fairly explicit, but since the most
interest attaches to the expectation, let’s look at the average number of trials that
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are needed to collect at least two samples of each of d coupons. This is P ′
2(1), which

after some simplification takes the form

P ′
2(1) = d

2

∫ ∞

0

(
t2

et − 1− t
)
(1− (1 + t)e−t)ddt.(4.9)

From this we can go in either of two directions: an exact evaluation or an asymp-
totic approximation. By termwise integration it is easy to obtain the following exact
formula, which is a finite sum, for 〈T 〉2, the average number of trials needed to collect
at least two of each of the d kinds of coupons:

〈T 〉2 = d2
∑
m,j

(−1)m
(
d− 1
m

)(
m

j

)
(j + 2)!

(m+ 1)j+3
.(4.10)

For d = 2, 3, 4, 5 these are 2, 11/2, 347/36, 12259/864. To facilitate comparison with
the classical (h = 1) case, we show below, for 1 ≤ d ≤ 10, a table of the expected
numbers of trials needed when h = 1, 2.

d : 1 2 3 4 5 6 7 8 9 10
〈T 〉1 : 1.0000 3.0000 5.5000 8.3333 11.417 14.700 18.150 21.743 25.460 29.290
〈T 〉2 : 2.0000 5.5000 9.6389 14.189 19.041 24.134 29.425 34.885 40.492 46.230

4.2. Asymptotics. Now we investigate the asymptotic behavior of (4.9), for
large d, to compare it with the d log d behavior of the classical case where h = 1.

Theorem 4.2. If there are d different kinds of coupons, and if at each step
we sample one of the d kinds with uniform probability, let 〈T 〉h denote the average
number of samples that we must take until, for the first time, we have collected at
least h specimens of each of the d kinds of coupons. Then for every h ≥ 1, we have
〈T 〉h ∼ d log d (d→∞).
Consider first the case h = 2. In (4.9) we make the substitution

e−u = 1− (1 + t)e−t,(4.11)

where u is a new variable of integration. We then find that

P ′
2(1) = d

2

∫ ∞

0

t(u)e−uddu,(4.12)

where t(u) is the inverse function of the substitution (4.11), which is well defined since
the right side of (4.11) increases steadily from 0 to 1 as t increases from 0 to ∞.
The main contribution to P ′

2(1) comes from values of u near u = 0, and when u
is near 0 we have

t(u) = − log u+O(log log u).
Following the arguments in [6, sect. 2.2], we see that P ′

2(1) of (4.12) has the same
asymptotic behavior as

d2
∫ c

0

(− log u)e−uddu (0 < c < 1),

and in [6] this is shown to be

∼ d2 · log d
d
= d log d.
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Now we consider the asymptotic behavior of the expected number of trials for
general values of h. From (4.7) we see that this expected number of trials can be
written in the form

d2

(h− 1)!
∫ ∞

0

{
th

et − 1− t− · · · − th−1

(h−1)!

}{
1−

(
1 + t+

t2

2
+ · · ·+ th−1

(h− 1)!
)
e−t
}d
dt.

(4.13)

Again we make the change of variable

e−u = 1−
(
1 + t+

t2

2
+ · · ·+ th−1

(h− 1)!
)
e−t(4.14)

in the integral, and it takes the remarkably simple form (compare (4.12))

P ′
h(1) = d

2

∫ ∞

0

t(u)e−uddu,

where t(u) is the inverse function of the substitution (4.14). Again the main contri-
bution to the integral comes from small values of u, and when u is small and positive
we have

t(u) = − log u+ (h− 1) log (− log u) + · · · .
Using the method of section II.2 of [6] once more, we find that

〈T 〉h = d log d+ (h− 1)d loglog d(1 + o(1)) (d→∞).(4.15)

We remark that in the case of d = 200 coupons, the correct expected number of trials
to obtain two of each coupon is 1614 trials, the approximation d log d is 1175, and the
approximation d log d+ (h− 1)d loglog d is 1393, each rounded to the nearest integer.

5. The number of singletons. In view of the asymptotics in the preceding
section we realize that at the moment when a coupon collector sequence terminates
with a complete collection, “most” coupons will have been collected more than once,
and only “a few” will have been collected just once. We call a coupon that has been
seen just once a singleton. We will now look at the distribution of singletons.
In more detail, let j be the number of singletons in a collecting sequence that

terminates successfully at the nth step. We first want the joint distribution f(n, j) of
n and j, i.e., the probability that a collecting sequence halts successfully at the nth
step and has exactly j singletons at that moment. We claim that

f(n, j) =
d!

dn

(
n− 1
j − 1

){
n− j
d− j

}
2

.(5.1)

Indeed, the last coupon to be collected can be chosen in d ways; the other j − 1
singleton coupons can be chosen in

(
d−1
j−1

)
ways and can be presented in an ordered

sequence in (j−1)!(d−1
j−1

)
ways. This ordered sequence can appear among the first n−1

trials in
(
n−1
j−1

)
ways, and the remaining n− j trials constitute an ordered partition of

n− j elements into d− j classes, no class having fewer than two elements, which can
be chosen in (d− j)!{n−jd−j

}
2
ways. If we multiply these together and divide by dn, the

number of n-sequences, we obtain the result (5.1) claimed above.
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Next we compute the probability that a completed collecting sequence contains
exactly j singletons, whatever the length of the sequence may be. That is, we find
F (j) =

∑
n f(n, j), where f is given by (5.1). We have, after using the generating

function (4.4),

F (j) =
∑
n

d!

dn

(
n− 1
j − 1

){
n− j
d− j

}
2

(5.2)

=
d!

(d− j)!dj
{∫ ∞

0

{(
t ∂∂t + j − 1
j − 1

)(
e−xt

t

)}
(ex − 1− x)d−jdx

}
t→1/d

.(5.3)

But using the fact that, analogously to (4.6), we have(
t ∂∂t + j − 1
j − 1

)(
e−xt

t

)
=

xj−1

(j − 1)!tj e
−x/t,

we can simplify the expression for F (j) to

F (j) = j

(
d

j

)∫ ∞

0

xj−1(ex − 1− x)d−je−xddx (j = 1, 2, 3, . . . ),(5.4)

which is the desired distribution of the number of singletons in a successfully termi-
nated coupon collecting sequence.
Now if we multiply by j and sum over j, we’ll get the average number of singletons

that appear in a completed collection of d coupons. This is, after some termwise
integration,

j̄(d) = d
∑
m

(−1)m
(
d− 2
m

)
d(m+ 1) + 1

(m+ 2)2(m+ 1)
.

If we expand the summand in partial fractions, viz.

j̄(d) = d
∑
m

(−1)m
(
d− 2
m

)(
1

m+ 1
− 1

m+ 2
+

d− 1
(m+ 2)2

)
,

then each of the three sums indicated can be expressed in closed form, in two cases
by using the identity

∑
k

(−1)k
(
n

k

)
1

x+ k
=

1

x
(
x+n
n

) ,(5.5)

directly, with x = 1 and x = 2, and in the third case by differentiating (5.5) w.r.t. x
and using the result with x = 2. The identity (5.5) is itself certified, after multiplying
by the denominator on the right, by the WZ proof certificate R(n, k) = k(x+k)/((n+
1)(k − n− 1)).
What results is that j̄(d) = Hd, the dth harmonic number. That is, the average

number of singleton coupons in a completed collection sequence of d coupons is the
harmonic number Hd.
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Abstract. In most domains of the Internet network, the traffic demands are routed on a single-
path defined as the shortest one according to a set of administrative weights. Most of the time, the
values set by the administrator (or the default ones) are such that there are many paths of the same
length between the extremities of some demands. However, if the shortest paths are not unique, it
might become difficult for an Internet domain administrator to predict and control the traffic flows
in the network. Moreover, the sequence order of packets can be changed when many paths are used
leading to some end-to-end delays. It is hence an important issue to ensure that each shortest path
is unique according to a given set of administrative weights. We show that it is possible to determine
a set of small integer weights (smaller than 6 times the radius of the network) such that all links
are used and every demand is routed on a unique shortest path. Above and beyond this uniqueness
requirement, network administrators wishing to exploit the available resources would like to control
the whole routing pattern. The problem they face consists of determining a set of weights enforcing
a given routing policy. We formulate this problem using linear programs, and we show how integer
weights can be computed by heuristics with guaranteed worst-case performances. Some conditions on
the given routing, necessary for the existence of a solution, are derived. Both necessary and sufficient
conditions are also provided, together with some other useful properties, in the case of particular
graphs such as cycles and cacti.

Key words. Internet network, shortest path routing, graph topology
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1. Introduction. During the last few years, Internet usage has grown rapidly
and there are huge bandwidth requirements for most telecommunication services.
Many telecommunication companies are even building their own Internet backbone
network designed for large traffic volumes.

The routing of the flows of traffic in an Internet network is completely determined
by the choice of a routing protocol and the setting of its parameters. This latter
task is devoted to a so-called network administrator or supervisor. The network
administrator will usually set or try to set these routing parameters in order to achieve
several goals: the first and most obvious one is to optimize the performances of the
network. Although this criterion can be interpreted in many different ways, it most
often reduces to avoid congestion and therefore to the ability to direct flow where
network resources are available. However, this is not the only goal of the network
administrator. One of his main duties is indeed to administrate, that is, to know
exactly what is going on in the network and to know how to react when something
goes wrong. Therefore, the natural trend is to keep things as simple as possible and
to avoid the use of too many parameters.

From a pure optimization point of view, there is no doubt that the most efficient
way to avoid congestion, for instance, by keeping the maximum load as low as possible,
would be to split the traffic freely over all the network. However, it is a maybe not so
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well-known result that an optimal solution of a multicommodity flow problem with
known capacities (at least if obtained by a simplex based method, which is most

often the case) will use a mean number of paths per demand between 1 and 1 + |E|
|K| ,

where |K| is the number of demands and |E| is the number of edges (see, e.g., [5]).
For most real communication networks, the number of edges is about 2n (two times
the number of vertices) and the number of demands is n(n − 1)/2. It follows that
|E|
|K| is usually very small (from 0.2 for a 20 node network up to 0.05 for an 80 node

network) and almost all the demands are hence routed on a single-path. Of course, it
is possible to build examples for which the difference between multipath routing and
single-path routing is very large (see, e.g., [27, 5]), but this situation seldom occurs
in practical instances. Another important result related to routing is given in [13]. It
was shown in this paper that any single-source multipath routing can be transformed
into a single-path routing with an increase in terms of link loads bounded by the
value of the maximum demand. Moreover, when the network is a ring, an optimal
multisource multipath routing can be transformed into a single-path routing with an
increase in terms of link loads bounded by 3/2 times the maximum demand [35].

From a practical point of view, the optimal routing pattern obtained as a result
of an optimization process must be implemented in practice and therefore must be
compatible with a given Internet routing protocol. Most of the backbone Internet
networks still use some classical Internet routing protocols such as open shortest path
first (OSPF), RIP, or IS-IS [23, 24, 30, 32, 34] to route the demands. These protocols
are based on shortest path routing. Path length is defined as the sum of weights
associated with the links of the path. These weights, often called administrative
weights, are managed by the network administrator. Ideally, the administrator would
like to modify some of the current routing paths in order to better exploit the available
resources. In practice, the administrator can only manipulate link weights (and not
complete end-to-end routing paths) and the goal is therefore difficult to achieve. That
is why the link weights are very often set to some default values such as 1, or the
inverse of the link capacity. More advanced versions of OSPF allow indeed to split the
traffic on several shortest paths (load balancing) but the practical implementation of
these mechanisms is complicated. For instance, in the ECMP (equal cost multipath)
mechanism, the load balancing can only be even (same proportion of traffic on each
path) and it can only be realized on shortest paths (i.e., equal length paths which
length is also the shortest). In order to set up efficiently such a mechanism, the
administrator must set the weights in order that the all paths he has chosen be
shortest path. Besides, in the optimization process, he must take into account the
fact that the traffic can only be evenly splitted. Such an optimization problem is very
difficult to solve (NP-hard) [17, 19]. There are other difficulties implied by the traffic
splitting. Indeed, if the splitting is done on a packet per packet basis, the resequencing
of packets must be handled at some point, in order for the network to support in-order
packet delivery. On the other hand, if many paths are used for the same commodity,
the size of the routing tables will also increase significantly. Even if the Internet
routing devices seem to become more and more efficient, the congestion of modern
communication networks is still very often due to congestions occurring in the nodes
rather than on the links. In fact, the transmission rates based on optical technologies
(wavelength division multiplexing) increased considerably during the last few years,
as compared to the evolution of node processors speed. Finally, the new routing
paradigm based on the explicit definition of end-to-end tunnels (multiprotocol label
switching (MPLS), tag switching, . . .) seem very promising in the sense that they allow
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much more flexibility in the management of the routing pattern. However, up to now,
there does not seem to exist a consensus on the way to use these new protocols, which
are nonetheless still based to some extent on shortest path routing. Indeed, the huge
number of control parameters offered in MPLS (ways to define the LSPs, constrained
based routing, use of colored edges, . . .) is rather introducing a new complexity than
easing the day-to-day network management problems. In this context, it is hence very
reasonable to consider that some network administrators will prefer to rely on simple
routing mechanisms based on existing and well-known protocols, which, if wisely used,
can still achieve very good performances.

In this paper, we consider problems in which the demands are routed on unique
shortest paths. This uniqueness requirement allows the network administrators to
avoid all the technical difficulties related with the management of load balancing.
The family of problems addressed in this paper are the ones a network administrator
might encounter, such as trying not to waste available resources and, at the same
time, to impose some predefined routing strategy. For instance, one result that is
difficult to achieve consists of determining weights such that each routing path is the
unique shortest path according to these weights.

Several results related to this domain are already available in the literature. A
general multipath routing was also studied in [37, 5]. An optimal multipath routing
is computed by linear programming, and weights are deduced by duality in [37]. A
more general model computing weights for any multipath routing and integrating
any set of practical linear constraints related to weights is given in [5]. It is also
shown in [5] how a unique shortest path routing can be transformed into an optimal
multipath routing by adding a minimal number of paths (MPLS tunnels). Several
papers propose methods to modify the link weights when the network state changes.
The weights can depend on link loads, physical link lengths, costs, service classes,
etc. [11, 24, 26, 34, 36, 40]. Some heuristics were proposed in [17, 19] to compute
weights minimizing, in a certain sense, the network load. The routing here is based
on the equal cost splitting capability of OSPF: the traffic is evenly splitted between
equal cost paths. The problem of finding an optimal even split of traffic was shown to
be difficult [17, 19]. Single-path routing, without weight consideration, has also been
studied by many authors. Some solution methods based on cutting plane algorithms
are presented in [1, 20, 33]. Approximation algorithms are given in [13].

A comparison between different routing strategies in terms of congestion is done
in [27]. A capacitated version of the problems addressed in this paper, where one has
to determine simultaneously the weights on the links and the capacities required to
route all traffic demands, has already been studied [3, 4]. In these papers, heuristics,
meta-heuristics, and even exact methods have been proposed to solve the problem,
and the resulting algorithms have been applied on some real network designs. In
the papers cited above, the weight of each edge is supposed to belong to a finite and
small set of real values. The meta-heuristic moves consist in changing the weights and
computing the routing and the capacities that have to be installed on links. The exact
method is based on a cutting plane algorithm that considers many families of valid
inequalities. Finally, the topology of many kinds of survivable networks, including
Internet networks, have been studied in [2]. More general models for Internet topology
were proposed in [9, 38, 15].

This paper is devoted to uncapacitated problems, which involve determining an
optimal set of administrative weights to achieve some predefined requirements on the
usage of the network resources or on the paths used to route the demands. More
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precisely, two problems will be addressed in this paper. In the first one, in order to
conform to some Internet routing protocols, the weights on the links must be small
integer values. In this problem, we assume that there is a traffic demand for each pair
of nodes in the network. The aim is to compute link weights such that

1. the weights are integers and are as small as possible;
2. the shortest path between each pair of nodes is unique;
3. all the network links are used.

We show that it is possible to find weights satisfying these constraints, which are
strictly lower than 6 times the radius of the graph associated with the network.

The second problem is defined as follows: given a set of predefined routing paths
between some node pairs, we wish to compute weights which are compatible with this
set of routing paths. In other words, the computed weights must be such that the
unique shortest path for each demand is, indeed, the one chosen in advance. The given
set of routing paths must satisfy some conditions to guarantee the existence of a com-
patible set of weights. Three necessary conditions are provided. In the general case,
linear mathematical programming formulations of the problem are proposed. We also
show how integer weights can be easily computed using a polynomial heuristic with
worst-case guaranteed performance. In the case of some particular graphs (cycle, cac-
tus, clique,. . .), simple necessary and sufficient conditions for existence of compatible
weights are given, and methods to explicitly derive these weights are presented.

The paper is organized as follows: the first problem is addressed in section 2, and
section 3 is devoted to the second problem. Computational results are discussed in
section 4, and conclusions and perspectives are exposed in section 5.

2. How to get small integer weights and use all links.

2.1. Definitions and notation. Let G = (V,E) denote an undirected graph
associated with the Internet network considered, where V is the set of nodes (or
vertices) and E the set of links (or edges). The number of nodes is denoted n. The
graph G is assumed to be connected. Let R be the radius of G and C the set of
central vertices of G.

Recall that a central vertex v is such that the greatest distance from v to any other
vertex, called eccentricity of v, is the lowest one. The eccentricity of a central vertex
is exactly equal to the radius of the graph [6, 12]. Note that the word “distance” is
used to express the number of edges on a path, whereas the word “length” represents
the sum of weights along the path. The formal definitions of these terms will be given
below.

Assume one particular central vertex has been chosen. Let T0 = (V,E0) be
a rooted spanning tree of G obtained by a breadth-first search starting from that
central vertex. Assume the central vertex is indexed by 0. The remaining vertices
of G are then ordered from 1 to n − 1 according to their marking order during the
breadth-first building process of T0. In what follows, the order of a vertex refers to its
order in this building sequence. Figure 1 shows a tree T0 where the edges belonging
to the tree are plotted in continuous lines and the other edges of G are plotted in
dotted lines. The order of the vertices are displayed in the figure.

Definition 2.1 (levels). We say that a vertex v is located at level i if the distance
between v and 0 is equal to i. The level of a vertex i is denoted level(i).

The levels are illustrated at the left of the figure. As 0 is a central vertex, the
number of levels is equal to the radius R. The unique path linking two vertices a and
b in the rooted tree T0 is denoted P0(a, b).
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Fig. 1. Tree T0 obtained by breadth-first search.

Definition 2.2 (monotonous path). Given any vertices a and b of V , the path
P0(a, b) is said to be monotonous if it does not contain two vertices located on the
same level.

This is equivalent to saying that P0(a, 0) ⊂ P0(b, 0) or P0(b, 0) ⊂ P0(a, 0).
Definition 2.3 (turning path). A nonmonotonous path is called a turning path.
Thus, a turning path P0(a, b) is made of two monotonous paths P0(a, d) and

P0(b, d) where d is the vertex of P0(a, b) having the lowest level. This is due to the
fact that, for any vertex v whose level is i ≥ 1, there is exactly one edge of E0 linking
v to the set of vertices whose level is i− 1.

Definition 2.4 (turning vertex). The vertex of lowest level in a turning path is
called the turning vertex.

Definition 2.5 (distance on a path). The number of edges of any path P (a, b) in
G is called the distance between the vertices a and b and is denoted δ(P (a, b)). Since
a path P0(a, b) in the tree T0 is unique, its distance is denoted δ0(a, b).

Definition 2.6 (length of a path). Assume a weight we is associated with each
edge e ∈ E. The length of a path P (a, b), denoted �(P (a, b)), is the sum of the weights
on its edges:

�(a, b) =
∑

e∈P (a,b)

we.

Again, since a path P0(a, b) is unique and there is no ambiguity in its definition, its
length is denoted �0(a, b). Note that if all weights are equal to 1, the distance and the
length of a path are equal.

Definition 2.7 (shortcuts). An edge of E \ E0 linking two vertices of P0(a, b)
is called a shortcut of P0(a, b). The set of all shortcuts for a path P0(a, b) is denoted
S0(a, b). The number of shortcuts is denoted k0(a, b) = |S0(a, b)|. As will be estab-
lished, if k0(a, b) > 0, there is no ambiguity in defining a “highest” shortcut as the
shortcut with end-points at the highest level.

The main result of this section consists of deriving a set of small integer weights
satisfying some particular constraints. This result is based on properties of breadth-
first search trees.
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Fig. 2. A turning path P0(a, b).

2.2. Properties of breadth-first search trees.

Lemma 2.8. If a and b are two adjacent vertices of G such that ab ∈ E \ E0,
then the levels of a and b are equal or consecutive.

Proof. Without loss of generality, suppose that the level of b is not higher than
the level of a. As a and b are adjacent, any path from n0 to b can be completed by
the edge ab to obtain a path from n0 to a. This clearly means that the level of a is
at most equal to 1 plus the level of b.

Lemma 2.9. Let a and b be two vertices of G. For any vertex c of P0(a, b), there
are at most 2 edges in G \ T0 linking c to the other vertices of P0(a, b).

Proof. If P0(a, b) is monotonous, then we can deduce by Lemma 2.8 that there
is no edge in G \ T0 linking c to the other vertices of P0(a, b). Let us now assume
that P0(a, b) is a turning path, and let d be the turning vertex of P0(a, b). We denote
s0, s1, . . . , sp the successive vertices of the path P0(a, d) starting from d (i.e., d = s0

and a = sp). Similarly, we denote t0, t1, . . . , tq the successive vertices of the path
P0(b, d) starting from d (see Figure 2). Obviously, for all i = 0, . . . ,min{p, q}, the
two vertices si and ti are at the same level. Without loss of generality, let us suppose
that the order of s1 is smaller than that of t1 (i.e., it has been encountered first in
the breadth-first process). Using a simple induction, we can deduce that for any two
vertices si and ti, the order of si is smaller than that of ti.

Consider a vertex c of the path P0(a, b). First, we assume that c belongs to the
monotonous subpath P0(a, d). According to our notation, vertex c corresponds to a
certain si. As P0(a, d) is monotonous, there is no edge of G \T0 linking c to the other
vertices of P0(a, d). By Lemma 2.8, c = si can only be adjacent to vertices on the
levels i − 1, i, and i + 1. Assume that q ≥ i + 1 (otherwise, the result is obtained),
i.e., the path P0(b, d) includes all vertices at least up to ti+1. Hence the vertex c = si
is at most linked to ti−1, ti,s and ti+1. Suppose that si is adjacent to ti+1. As the
order of si is lower than the order of ti, the tree T0 should contain the edge siti+1 and
not titi+1. Consequently, c is not adjacent to ti+1. Thus, c = si is at most linked to
ti−1and ti.

The case where c ∈ P0(b, d) can be treated in the same way.

Lemma 2.10. Consider a turning path P0(a, b) between two vertices a and b of
G. Let d be the turning vertex of P0(a, b). Denote by si (resp., ti) the ith vertex in
the subpath P0(a, d) (resp., P0(b, d) starting from vertex d). For all i such that the
vertices si+1 and ti+1 exist, the graph G cannot contain at the same time the edges
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siti+1 and tisi+1.
Proof. Suppose that the edge tisi+1 exists. By definition of T0, this means that

the order of si is lower than the order of ti. In this case, it is clear that we cannot
have an edge siti+1 (again by definition of T0).

Lemma 2.11. For all a and b in V such that a 	= b, we have k0(a, b) ≤ δ0(a, b)−1.
Proof. If P0(a, b) is monotonous, then k0(a, b) = 0 and the inequality is satisfied.

Let us focus on the case where P0(a, b) is a turning path. Let d be the turning vertex
of P0(a, b). There is no edge in G \ T0 linking any two vertices of P0(a, d) or any two
vertices of P0(b, d) since these paths are monotonous. Thus, k0(a, b) is given by the
number of edges in G \ T0 between the two subpaths, excluding the turning vertex d.

First, we assume that δ0(a, d) < δ0(b, d). Applying Lemma 2.9 to all vertices of
P0(a, d)\{d} leads to k0(a, b) ≤ 2 × δ0(a, d). But 2 × δ0(a, d) < δ0(a, d) + δ0(b, d) =
δ0(a, b), which means that k0(a, b) ≤ δ0(a, b)−1. By symmetry, the result is also valid
when δ0(a, d) > δ0(b, d).

Let us treat the case δ0(a, d) = δ0(b, d). The vertices a and b have the same level.
It is easy to see that the one having the highest order cannot be linked to more than
1 vertex of P0(a, b). Consequently, k0(a, b) ≤ 2 × δ0(b, d) − 1 = 2 × δ0(a, d) − 1 =
δ0(a, b)− 1. Thus, the inequality of the lemma is still valid.

Definition 2.12. Let a, b, and c be three vertices of G such that c ∈ P0(a, b). We
define k0(a, c, b) as the number of edges of G \ T0 linking the vertices of P0(a, c)\{c}
and the vertices of P0(a, b).

Note that any edge linking c to a vertex of P0(a, c) is taken into account in the
definition of k0(a, c, b). On the other hand, the edges linking c to any vertex of P0(c, b)
are not considered.

Lemma 2.13. If a, b, and c are three vertices of G such that c ∈ P0(a, b), then
k0(a, c, b) ≤ 2× δ0(a, c).

Proof. This is shown by applying Lemma 2.9 to all the vertices of P0(a, c).
Lemma 2.14. If a, b, and c are three vertices of G such that c ∈ P0(a, b), then

k0(a, b) = k0(a, c) + k0(b, c, a) and k0(a, c) + k0(c, b) ≤ k0(a, b).
Proof. Any edge of G \ T0 between two vertices of P0(a, b) is linking either two

vertices of P0(a, c) or a vertex of P0(b, c)\{c} to any vertex of P0(a, b). This immedi-
ately gives the equality k0(a, b) = k0(a, c) + k0(b, c, a). Combining this equality with
the inequality k0(b, c, a) ≥ k0(b, c) leads to k0(a, c) + k0(c, b) ≤ k0(a, b).

Any path between two vertices a and b in the tree T0 visiting n vertices v1, . . . , vn
is obviously at least as long as the direct path P0(a, b). This result is formalized in
the two following propositions.

Proposition 2.15. Consider three vertices a, b, and c in T0.
(i) Vertex c belongs to the path P0(a, b) if and only if δ0(a, c) + δ0(c, b) = δ0(a, b).
(ii) Otherwise, δ0(a, c) + δ0(c, b) − δ0(a, b) = 2 δ0(i, c), where i is the last vertex

of P0(a, b) also belonging to P0(a, c) (see Figure 3).
Proof. The first assertion is obvious. In the case where c does not belong to

the path P0(a, b), then there is a vertex i where the path P0(a, c) departs from the
path P0(a, b). (In other words, i is the last vertex common to the two paths.) Hence
P0(a, c) = P0(a, v)∪P0(v, c). Similarly, since T0 is a tree, we have P0(c, b) = P0(c, v)∪
P0(v, b). When counting all the edges from a to b going through c, the edges of P0(v, c)
are counted twice:

δ0(a, c) + δ0(c, b) = δ0(a, i) + δ0(i, c) + δ0(c, i) + δ0(i, b) = δ0(a, b) + 2 δ0(i, c).

Note that in the second case, we could have simply stated that the quantity
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Fig. 3. A path departing from P0(a, b).

δ0(a, c) + δ0(c, b)− δ0(a, b) is even, i.e., equal to 2p with a certain positive integer p.
This result easily generalizes to n intermediate vertices.

Corollary 2.16. Consider n+2 vertices of V, a = v0, v1, . . . , vn, vn+1 = b (not
necessarily all different).

(i) All the vertices v1, v2, . . . , vq belong to the path P0(a, b) and are encountered in
that precise order when going from a to b if and only if

∑n
i=0 δ0(vi, vi+1) = δ0(a, b).

(ii) Otherwise, there is a positive integer p such that
∑n
i=0 δ0(vi, vi+1)−δ0(a, b) =

2 p.
Proof. This result is easily obtained by induction using the previous

proposition.

2.3. Deriving admissible weights. In the problem considered here, it is as-
sumed that the network topology is given (for instance, as a result of an optimization
process, or simply to reflect an existing network). We assume that a traffic demand
is defined between each pair of nodes. Although this seems rather restrictive, such a
requirement is always satisfied in practice on backbone networks, where each demand
is in fact the aggregation of a huge number of individual traffic demands. Indeed,
the problems considered in this paper are essentially relevant for such backbone net-
works. The problem then consists of determining a set of link weights satisfying some
constraints.

As explained in the introduction, for consistency and manageability reasons, the
shortest path between each pair of nodes must be unique. Second, each network
link must belong to at least one shortest path. In other terms, all the network links
are necessarily used to carry traffic. This requirement avoids leaving some resources
unused. Additionally, it means that the traffic must be distributed over the all net-
work, which is highly advisable for reliability reasons. Finally, we want the computed
weights to be integers and be as small as possible. This is simply for technical reasons,
since many routing protocols such as RIP, IS-IS, or even PNNI in the context of asyn-
chronous transfer mode (ATM) networks [18] require the weights to have bounded
integer values ([0,15] for RIP, [0,63] for IS-IS, and [0,65535] for PNNI).

We now focus on two of the main contributions of the paper, namely, the con-
struction scheme to derive a set of integer weights satisfying all the constraints such
that all weights are strictly lower than 6 times the radius of the graph and the theorem
on which this construction scheme is based.

Construction scheme.
1. Compute a central vertex v (indexed by 0) of the graph G. (Recall that a

central vertex is a vertex such that the maximum distance from it to any
other vertex is minimal.)

2. Using a breadth-first search starting from v, build a tree T0.
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3. Associate a weight w0 ≥ 3 with each edge of T0.
4. Associate a weight we = w0×δ0(i, j)−k0(i, j) with each edge e = ij ∈ E \E0.

Using this polynomial construction scheme and taking w0 = 3, we obtain a
weighted graph such that all desired properties are satisfied.

Theorem 2.17. Let G be a connected graph and R its radius. The weights
associated with each edge according to the above construction scheme are such that

- the weight of every link is a positive integer ≤ 6R− 1,
- every link of G belongs to at least one shortest path in the sense of these weights,
- there is exactly one shortest path between any pair of vertices.
The proof of Theorem 2.17 is rather technical. It is provided at the end of the

section as the natural consequence of a series of preliminary results.
Note that the value of 6R− 1 is often low, even for large-size telecommunication

networks. We also know (see [7], for example) that if we consider random graphs
where an edge exists with a constant probability p, then almost all the graphs have
a radius equal to 2. Thus, Theorem 2.17 gives us a set of weights which satisfy the
Internet routing constraints and which are lower than 11 in almost all cases. This
is valid for random graphs, but if we consider any deterministic graph, we can use
the fact that the radius is lower than half the number of vertices. This leads to the
obvious corollary.

Corollary 2.18. For any connected graph G, there exist a set of weights which
satisfy Internet routing constraints (those of Theorem 2.17) and which are lower than
3N − 1.

From now on, we assume that G is a weighted graph and that the weights asso-
ciated with the edges are defined according to the above construction scheme.

Proposition 2.19. Consider three vertices a, b, and c in T0. We then have

�0(a, c) + �0(c, b)− �0(a, b) ≥ k0(a, c) + k0(c, b)− k0(a, b).

Moreover, if c /∈ P0(a, b), then

�0(a, c) + �0(c, b)− �0(a, b) ≥ k0(a, c) + k0(c, b)− k0(a, b) + 2.

Proof. If c ∈ P0(a, b), then the left-hand side is equal to zero, and according to
the second part of Lemma 2.14, k0(a, c) + k0(c, b) − k0(a, b) is nonpositive. Thus, in
this case, the result holds. Assume now that c /∈ P0(a, b). This means that there is
a vertex i ∈ P0(a, b) at which the path P0(a, c) departs from the path P0(a, b) (see
Figure 3). Applying the first part of Lemma 2.14, we derive the following expression:

k0(a, c) + k0(c, b)− k0(a, b) = k0(a, i) + k0(c, i, a) + k0(b, i) + k0(c, i, b)− k0(a, b).

On one hand, according to Lemma 2.14, we have k0(a, i) + k0(b, i) ≤ k0(a, b). On the
other hand, according to Lemma 2.13, we have k0(c, i, a) ≤ 2 δ0(c, i) and k0(c, i, b) ≤
2 δ0(c, i). We obtain

k0(a, c) + k0(c, b)− k0(a, b) ≤ 4 δ0(c, i).

Finally, according to Proposition 2.15, we have

�0(a, c) + �0(c, b)− �0(a, b) = 2 w0 δ0(c, i) ≥ 6 δ0(c, i) ≥ 4δ0(c, i) + 2.

The last inequality is valid since δ0(c, i) ≥ 1. Hence, in the case where c /∈ P0(a, b),
the second part of the proposition is established and the first part follows.
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Again, this result can easily be generalized by induction.
Corollary 2.20. Consider n+2 vertices of V, a = v0, v1, . . . , vn, vn+1 = b (not

necessarily all different). We then have

n∑
i=0

�0(vi, vi+1)− �0(a, b) ≥
n∑
i=0

k0(vi, vi+1)− k0(a, b).

Moreover, if one vertex vi does not belong to P0(a, b), or if the vertices v1, . . . , vn are
not encountered in this order when going from a to b, then

n∑
i=0

�0(vi, vi+1)− �0(a, b) ≥
n∑
i=0

k0(vi, vi+1)− k0(a, b) + 2.

Proof. The first part of the corollary is easy to establish by induction on the
number of vertices, using arguments similar to the proof of the second part.

We now provide the proof for the second part of the corollary. First, observe
that, according to Proposition 2.19, the result is true for n = 1. Assume the result
is true for any set of at most n + 1 vertices. Consider n + 2 vertices of V , a =
v0, v1, . . . , vn, vn+1 = b, and assume the assertion “all vertices v1, . . . , vn belong to
the path P0(a, b) and are ranked in that same order along the path” is false. This is
equivalent to saying that either one or both the following two assertions are also false:

(i) “all vertices v1, . . . , vn−1 belong to the path P0(a, vn) and are encountered in
this order when going from a to vn”;

(ii) “vn belongs to P0(a, b)”.
We will now compute the quantity

∆ =

n∑
i=0

�0(vi, vi+1)− �0(a, b) =

n−1∑
i=0

�0(vi, vi+1) + �0(vn, b)− �0(a, b)

in both cases.
Assume assertion (i) is wrong. Then, according to the induction hypothesis, we

have

n−1∑
i=0

�0(vi, vi+1)− �0(a, vn) ≥
n−1∑
i=0

k0(vi, vi+1)− k0(a, vn) + 2.

It follows that

∆ ≥ �0(a, vn) + �0(vn, b)− �0(a, b) +

n−1∑
i=0

k0(vi, vi+1)− k0(a, vn) + 2.

Applying the first inequality of Proposition 2.19, the result follows immediately.
Assuming assertion (ii) is wrong, we apply the first inequality of the corollary to

obtain

∆ ≥ �0(a, vn) + �0(vn, b)− �0(a, b) +

n−1∑
i=0

k0(vi, vi+1)− k0(a, vn).

As vn does not belong to P0(a, b), we can now apply the second inequality of Propo-
sition 2.19, and again, the result follows.
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Fig. 4. Unique shortest path between a and b.

In order to derive the main result, we now characterize the shortest paths in graph
G, according to the weights we.

Lemma 2.21. For any pair of vertices a and b, if path P0(a, b) is monotonous,
then it is the unique shortest path between a and b.

Proof. First observe that, according to Lemma 2.8, the edges of E connect only
vertices at consecutive levels or at the same level. Hence any path from a to b must
at least cross |level(a)− level(b)| = δ0(a, b) levels. As all the weights are nonnegative,
any path using an edge outside the bounds defined by level(a) and level(b) is longer
than P0(a, b). Consider an edge e = ij ∈ E \ E0. According to Lemma 2.11, we have
k0(i, j) < w0 k0(i, j) ≤ w0 δ0(i, j)− w0, and hence

we = w0 δ0(i, j)− k0(i, j) > w0.

It follows that any path between a and b using such an edge is necessarily longer than
P0(a, b).

Corollary 2.22. Consider the family of paths between the vertices a and b using
edges of T0 and any shortcut of P0(a, b). The unique shortest path among all these
paths is

(i) P0(a, b) if k0(a, b) = 0,
(ii) P0(a, c)∪cd∪P0(d, b), where cd is the highest shortcut for P0(a, b), if k0(a, b) >

0.
Proof. First note that, if k0(a, b) = 0, then P0(a, b) is the unique path between a

and b among the ones considered. Assume now that k0(a, b) > 0. Consider a shortcut
cd ∈ S0(a, b) such that P0(a, c) and P0(d, b) are monotonous (see Figure 4). According
to the previous lemma, the unique shortest paths between a and c on one hand and
between d and b, on the other hand are, respectively, P0(a, c) and P0(d, b). Hence the
length of the shortest among all paths using the shortcut cd is

w0 δ0(a, c) + (w0 δ0(c, d)− k0(c, d)) + w0 δ0(d, b) = w0 δ0(a, b)− k0(c, d).

The minimum of all such values is achieved using the highest possible value of k0(c, d)
for all shortcuts of P0(a, b), that is, k0(a, b). This value is only achieved by the path
using the highest shortcut.
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Proposition 2.23. A shortest path in the whole graph G between two vertices a
and b cannot contain an edge e = cd /∈ T0 such that c or d (or both) do not belong to
P0(a, b).

Proof. We will establish this result by induction on the number k of edges of any
path P (a, b) using such an edge e = cd. The result is obviously true when k = 1.
Assume it is true for all paths up to k − 1 edges. Consider a shortest path P (a, b)
having k edges. Assume it contains an edge e = cd as described in the proposition.
Without loss of generality, we can assume that the vertex c is encountered before d
in the path P (a, b). Both the subpaths of P (a, b) going from a to c and from d to b
have fewer than k edges. Applying the induction hypothesis, these subpaths can only
be shortest if they do not contain edges other than shortcuts and edges of the tree
T0. Hence, according to Corollary 2.22, the length of these subpaths is, respectively,
w0δ0(a, c) − k0(a, c) and w0δ0(d, b) − k0(d, b). (Note that, for instance, if there is
no shortcut between a and c, then we have k0(a, c) = 0 and the subpath is simply
P0(a, c).) Consequently, the length of the shortest path P (a, b) is

�0(a, c) + �0(c, d) + �0(d, b)− k0(a, c)− k0(c, d)− k0(d, b) ≥ �0(a, b)− k0(a, b) + 2.

The inequality is obtained thanks to Corollary 2.20. Besides, �0(a, b)− k0(a, b) is the
length of a valid path from a to b, which is shorter than P (a, b). This shows that
the shortest path P (a, b) cannot contain an edge e = cd which is not a shortcut of
P0(a, b).

We have proved that a shortest path can contain only shortcuts or edges of the
tree T0. The result of Corollary 2.22 can hence be extended to all paths from a to b.
It follows that there is exactly one shortest path between any pair of vertices. Besides,
each edge ab ∈ E0 is a shortest path P0(a, b). Finally, if we take w0 = 3, then all
weights are obviously positive and strictly lower than 6R, and proof of Theorem 2.17
is hence established.

Observe that the shortest paths defined in Corollary 2.22 (see Figure 4) and based
on the weights of the construction scheme do not depend on the exact value of w0.
They are the same for any value of w0 which is higher than 3. In other terms, the
vector whose components are the δ0(x, y) is a sort of neutral element for the routing
paths of Theorem 2.17. In fact, we will see in the next section that, for a given set of
routing paths, the set of weights compatible with them is a polyhedron.

3. Achieving weights compatible with a set of routing paths. In this
section, we are concerned with the problem where all routing paths are given, but
the weights to put on the edges such that each of the given routing paths is a unique
shortest path are unknown. Moreover, it is not even known if such weights exist.

Such a problem arises naturally in the context where the routing paths are pro-
vided by a dimensioning process (such as, for instance, the one presented in [4]) or
in many practical situations where some paths are imposed due to technical reasons
(such as transmission delays, link loads, costs, etc.). If we assume that these given
routing paths have to be realized by means of a classical Internet routing protocol,
then each given path has to be a shortest path according to a set of edge weights. In
order to avoid ambiguity in the choice of the path effectively used, we also require
that each shortest path be unique. We use the term “compatibility” to characterize
a set of edge weights realizing a set of given routing paths.

Definition 3.1 (compatibility). A set of edge weights is said to be compatible
with a set of routing paths if each routing path is the unique shortest path between its
extremities according to the set of weights.
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Fig. 5. Suboptimality condition.

We are thus concerned with the problem of determining a set of weights com-
patible with a set of routing paths, if such a set exists, or confirming that no such
set exists. A similar problem was studied in [8] in the context of seismography. The
uniqueness constraint on the shortest path was not considered in [8], and the problem
was formulated as a quadratic problem. Another problem closer to ours was men-
tioned in [16]. The authors assumed that the given routing paths are those defined
as the shortest in terms of the number of hops, and the aim was to determine a set of
weights which is compatible with these paths (i.e., with the uniqueness guarantee).

In the rest of this section, some necessary conditions for the existence of com-
patible weights are derived. The problem of determining compatible weights is then
formulated as a linear mathematical program possibly involving integer variables.
Finally, some particular cases of graphs are studied in more detail.

3.1. Necessary conditions. Let G = (V,E) denote the graph associated with
the network. Denote by K the set of demands for which the routing paths are given.
In our case, each demand is simply defined as a pair of nodes (a, b). If (a, b) ∈ K,
then φ(a, b) denotes the routing path which is required to be the unique shortest path
between a and b. The set of all routing paths is denoted by Φ. We assume that the
set E of G is exactly the set of edges that are contained in at least one of the required
routing paths.

The first necessary condition uses the so-called concept of suboptimality.

Definition 3.2 (suboptimality). A set of routing paths K satisfies the subopti-
mality condition if, for all pairs of demands (a, b) and (c, d) in K having two vertices
e and f in common, then φ(a, b) and φ(c, d) share the same subpath between e and
f .

The suboptimality condition for two paths is illustrated in Figure 5.

Proposition 3.3 (first necessary condition). If a set of weights is compatible
with a given set of routing paths, then the set of paths satisfies the suboptimality
condition.

Proof. If the suboptimality condition is not satisfied for a pair of routing paths
φ(a, b) and φ(c, d), then it is clear that they cannot both be unique shortest
paths.
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In the rest of this section, we assume that the suboptimality condition is satisfied.
Note that, if x and y are two vertices of φ(a, b), the shortest path between x and y
must be the subpath of φ(a, b) linking x and y. Thus, we assume that φ(x, y) is also
given and that there is a demand between x and y.

Unfortunately, the suboptimality condition is not sufficient to guarantee the exis-
tence of a compatible set of weights. A more elaborate condition can be derived using
the notion of cyclic compatibility.

Definition 3.4 (cyclic compatibility). A set of routing paths K is said to satisfy
the cyclic compatibility condition if each edge e, which is not a bridge, is contained in
at least one cycle C such that all demands (a, b) ∈ K having both end-points in C are
routed exclusively on edges of C, i.e., φ(a, b) ⊂ C.

In other words, the edge e belongs to at least one cycle which routes all the
demands between its vertices. This condition is necessary for a set of weights to be
compatible with a set of routing paths.

Theorem 3.5 (second necessary condition). If a set of weights is compatible
with a given set of routing paths, then the set of paths satisfies the cyclic compatibility
condition.

Proof. Let e be an edge which is not a bridge. e exists only if the graph is not
a forest. Note that if the graph is a forest, then there is obviously a set of weights
compatible with the routing paths.

Suppose that there is a set of weights which is compatible with the set of routing
paths. Let C be a shortest cycle (in the sense of these weights) containing the edge e.
Suppose that a and b are two vertices of C such that (a, b) ∈ K. Let P1(a, b) (resp.,
P2(a, b)) denote the subpath of C between a and b containing (resp., not containing)
e. First, assume that φ(a, b) contains e. If φ(a, b) 	= P1(a, b), then by uniqueness
of shortest paths the length of P1(a, b) is strictly higher than the length of φ(a, b).
Thus, we can replace P1(a, b) by φ(a, b) to obtain a new cycle containing e whose
length is lower than the length of C. As this is impossible by the definition of C, we
can deduce that φ(a, b) = P1(a, b) if e ∈ φ(a, b). In the same way, we can show that
φ(a, b) = P2(a, b) if e /∈ φ(a, b).

Figure 6 shows a graph and some routing paths satisfying the suboptimality
condition. However, the cyclic compatibility is violated by edge 56. Indeed, any cycle
C containing the edge 56 should contain only one of the two vertices 1 and 2. Suppose
that C includes the vertex 1. If C satisfies the property of Definition 3.4, then it must
include the vertex 4 because 4 ∈ φ(1, 5). As 2 ∈ φ(6, 4), then the vertex 2 is also in C.
This is impossible because C cannot contain at the same time 1 and 2. By symmetry,
we can show that C does not include the vertex 2. In other words, there is no cycle
C containing 56 and satisfying the property of cyclic compatibility.

In fact, even if the two previous conditions are satisfied, the existence of a set
of weights which is compatible with the routing paths is not guaranteed. The graph
of Figure 7, obtained from the previous one by insertion of a vertex 7 between the
vertices 5 and 6 and adding an edge 73, satisfies the two conditions. However, there is
no set of weights satisfying the requirements. Another condition which is an extension
of cyclic compatibility is violated here.

Definition 3.6 (generalized cyclic compatibility). A set of routing paths K is
said to satisfy the generalized cyclic compatibility condition if, for every pair of vertices
(a, b) and every subset of edges E′ ⊂ E such that a and b are connected in G \ E′,
there is at least one path p in G\E′ between a and b satisfying the following property:
if c ∈ p, d ∈ p, and (c, d) ∈ K, then either φ(c, d) ⊂ p or φ(c, d) ∩ E′ 	= ∅.



32 WALID BEN-AMEUR AND ERIC GOURDIN

1

5

6

2

5-6

2-3-5
1-4-5

4-2-6
3-1-6

34

Fig. 6. Cyclic compatibility violated by edge 56.
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Fig. 7. Generalized cyclic compatibility is violated (E′ = {57, 76} and (a, b) = (5, 6)).

Theorem 3.7 (third necessary condition). If a set of weights is compatible
with a given set of routing paths, then the set of paths satisfies the generalized cyclic
compatibility condition.

Proof. Let (a, b) be a pair of vertices and E′ ⊂ E a set of edges such that a and
b are connected in G \ E′. Assume that there is a set of weights which is compatible
with the set of routing paths. Let p be a shortest path in G \ E′ linking a and b.
Let c and d be any two vertices of p such that (c, d) ∈ K. If φ(c, d) ∩ E′ = ∅, then
φ(c, d) ⊂ p, otherwise p can be replaced by another path which is strictly shorter by
uniqueness of shortest paths. Thus, we can deduce that φ(c, d) ⊂ p or φ(c, d) ∩ E′

	= ∅.



INTERNET ROUTING AND RELATED TOPOLOGY ISSUES 33

1-3-4

2-1-3
2-4-5

2-4-6
3-1-5
3-4-6
5-1-6

1 2

4

5

6

3

Fig. 8. No possible compatible weights.

It is easy to see that the generalized cyclic compatibility is violated by the routing
paths of Figure 7. If we take (a, b) = (5, 6) and E′ = {57, 76}, then there is no path
p between 5 and 6 satisfying the property given in Definition 3.6.

In fact, even if the three necessary conditions are satisfied, the existence of a set
of weights is not guaranteed. The graph of Figure 8 satisfies the three conditions.
However, there is no set of weights compatible with the routing paths. This is shown
by solving the linear programs presented in the next section.

3.2. Linear programs to compute the weights. We define S(a, b) as the set
of elementary paths P between a and b other than φ(a, b). A variable yab gives the
weight of φ(a, b). In the following two sections, we first focus on real weights, then we
give methods to obtain integer weights. Throughout this paper, we assume that the
weights are ≥ 1.

3.2.1. Real weights. The problem of computing a set of weights which is com-
patible with the routing paths φ can be formulated in a natural way as a linear
program.

LP 1 =




Find (we)e∈E
subject to∑

e∈φ(a,b) we = yab ∀(a, b) ∈ K,∑
e∈P we≥ 1 + yab ∀(a, b) ∈ K,∀P ∈ S(a, b),

we≥ 1 ∀e ∈ E; yab ≥ 0 ∀(a, b) ∈ K.

(3.1)

By definition, we have
∑
e∈φ(a,b) we = yab. The inequalities

∑
e∈P we ≥ 1+yab

express the fact that the weight of any path P is higher than the weight of φ(a, b). As
the number of constraints of LP1 can be very high, we use a polynomial algorithm to
generate the “useful” constraints. Thus, at each iteration, we add new constraints and
we solve the new augmented linear program (see, for example, [29, 31] for a general
description of this kind of algorithm). When all the constraints are satisfied (even
those that were not generated), we obtain a set of weights that is compatible with
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the routing paths. In some cases, for example, when the necessary conditions of the
previous section are not satisfied, LP1 has no solution.

For a set of weights given by solving the linear program at any iteration, we check
if there is a violated constraint for a pair of vertices (a, b) ∈ K. This is achieved
by computing the two shortest elementary paths between a and b, in the sense of
weights (we)e∈E . We can use the Yen algorithm [21, 39], whose complexity is O(n3)
or the algorithm of [25], whose complexity is lower than min

[
O(n2), O(m log(n))

]
,

where m is the number of edges and n the number of vertices. We can generate the
constraints for all the pairs of vertices by applying one of the two algorithms to every
pair of vertices. Another solution consists of using the algorithm of Dreyfus [14],
which computes the two shortest paths (not necessarily elementary) between all the
pair of vertices in fewer than O(n3) operations. Let us see exactly how can we generate
a violated constraint by computing two shortest paths (not necessarily elementary)
between two vertices a and b.

Proposition 3.8. For any set of weights, if there are violated constraints in the
form of

∑
e∈P we ≥ 1 + yab, then we can generate one of them by computing the two

shortest paths (not necessarily elementary) between a and b.
Proof. Let T (a, b)be the shortest path between a and b in the sense of the weights

given by solving the linear program of the current iteration. As the weights are strictly
positive, T (a, b) is elementary. If T (a, b) 	= φ(a, b), then the constraint

∑
e∈T (a,b) we ≥

1+ yab is violated and can be added to the current linear program. Next assume that
T (a, b) = φ(a, b).

In this case, let T ′(a, b) be the second shortest path between a and b. If T ′(a, b)
is elementary, then two cases have to be considered. If

∑
e∈T ′(a,b) we ≥ 1 + yab, then

we are sure that all the constraints
∑
e∈P we ≥ 1+yab are satisfied. Otherwise, the

inequality
∑
e∈T ′(a,b) we ≥ 1 + yab is violated and can be added to the current linear

program.
Now, let us suppose that T ′(a, b) is not elementary, and let T ′′(a, b) be the path

obtained from T ′(a, b) by eliminating the cycles. If T ′′(a, b) 	= φ(a, b), then the weight
of T ′′(a, b) is strictly lower than the weight of T ′(a, b), which leads to a contradiction
with the assumption that T ′(a, b) is a the second shortest path. Otherwise, T ′′(a, b) =
φ(a, b), which means that T ′(a, b) contains at least two more edges in addition to those
of φ(a, b). As the weights are higher than 1, the constraint

∑
e∈T ′(a,b) we ≥ 1 + yab is

satisfied. Consequently, all the constraints
∑
e∈P we ≥ 1+yab are also satisfied.

As the separation problem is polynomial, the linear program LP 1 can be solved
in polynomial time using the ellipsoid algorithm [22]. Even if this remark has only a
theoretical interest, the number of constraints that are added by constraint generation
is generally not very large when the problem size is moderate (see the computational
results section).

Since the problem LP1 does not necessarily have a solution, it can be more inter-
esting to solve the problem LP2 defined below.

LP 2 =




Maximize
∑

(a,b)∈K dab × εab
subject to∑

e∈φ(a,b) we = yab ∀(a, b) ∈ K,∑
e∈P we≥ εab + yab; ∀(a, b) ∈ K ∀P ∈ S(a, b),
0 ≤ εab≤ 1 ∀(a, b) ∈ K,

we ≥ 0 ∀e ∈ E, yab≥ 0 ∀(a, b) ∈ K.

(3.2)

For every pair of vertices (a, b) ∈ K, a factor dab expresses the importance to
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satisfy the constraints regarding the routing of (a, b). A variable 0 ≤ εab ≤ 1 indicates
if the constraints are satisfied. Thus,

∑
(a,b)∈K dab× εab gives the amount of the total

satisfaction of the constraints. Obviously, if LP1 has a solution, then LP2 also has a
solution where all the variables εab are equal to 1. Note that in LP 2 formulation we do
not require the weights to be greater than 1. Some protocols can handle weights equal
to 0. It is, however, possible to add to LP2 the constraints we ≥ 1 or any other linear
constraints related to weights. A nice and important property of LP 2 (as formulated
above), is that one can get an optimal solution by linear programming containing
only 0/1 variables εab. Said another way, a demand will be either completely satisfied
(εab = 1) or not satisfied (εab = 0). The proof of this property is straightforward.

In [16], another linear formulation of the problem was given. This formulation
contains O(n2) variables and O(n3) (n = |V |) constraints and is equivalent to LP1.
Next, we give a formulation using the same variables as those of [16] but slightly fewer
constraints.

If the suboptimality condition is not satisfied, we know by Proposition 3.3 that
there is no set of weights which is compatible with the routing paths. This con-
dition can be checked in a polynomial time. Henceforth, we will assume that the
suboptimality condition is satisfied.

A variable yab is associated with each pair of vertices of G, even if (a, b) /∈ K.

We define K = {(a, b) ∈ V × V such that ∃(c, d) ∈ K / {a, b} ⊂ φ(c, d)}. Note
that {a, b} ⊂ φ(c, d) means here that both vertices a and b are in the path φ(c, d).
We have clearly K ⊂ K. In other terms, K is the set of pairs for which the routing
path is given in advance or can be directly deduced by suboptimality conditions from
other given paths. In both cases, we will continue to use φ(a, b) to denote the routing
path for (a, b) ∈ K.

The new linear problem is given below.

LP 3 =




Find (we)e∈E , (yab)(a,b)∈K
subject to∑

e∈φ(a,b) we = yab ∀(a, b) ∈ K,

yab + 1≤ wac + ycb ∀(a, b) ∈ K, ∀c /∈ φ(a, b), ac ∈ E,
yab≤ wac + ycb ∀(a, b) /∈ K, ∀c ∈ V, ac ∈ E,

we ≥ 1 ∀e ∈ E, yab ≥ 0 ∀(a 	= b), yaa = 0 ∀a ∈ V.

(3.3)

Recall that the demands are undirected. However, we consider the constraints
yab+1 ≤ wac+ycb in both directions. In other terms, the constraints yba+1 ≤ wbd+yda
(where bd ∈ E and d /∈ φ(a, b)) are also considered in LP 3.

One can easily see that the number of constraints of the linear program is O(|E||V |).
Proposition 3.9. The number of variables of LP 3 is O(|V |2) and the number

of constraints is O(|V ||E|).
Note that LP 1 can be seen as the projection of LP 3 onto a smaller subspace.

The number of facets of LP 1 seems to be difficult to estimate, but the number of
facets of LP 3 is polynomial. In fact, there are many examples of polyhedrons with
exponentially many facets which can be represented as a projection of polyhedrons in
higher dimensions but with a polynomial number of facets.

If the suboptimality condition is not satisfied, we know by Proposition 3.3 that
there is no set of weights which is compatible with the routing paths. This con-
dition can be checked in a polynomial time. Henceforth, we will assume that the
suboptimality condition is satisfied.
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Theorem 3.10. When the suboptimality condition is satisfied, LP 1 and LP3 are
equivalent.

Proof. Consider a solution of LP 1 and let us build a solution of LP 3. If (a, b) ∈ K,
then yab is directly given by the value of the LP 1 solution. Otherwise, yab is defined
as the weight of the shortest path between a and b in the sense of the weights of
(LP1). Recall that G = (V,E) is supposed to be connected so yab is well defined. Let
us see if the constraints of (LP3) are satisfied. If (a, b) ∈ K, ac ∈ E, and c /∈ φ(a, b),
then wac + ycb is the weight of a path between a and b other than φ(a, b). As the
weights are a solution of (LP 1), wac + ycb is necessarily higher than 1 + yab. When
(a, b) /∈ K, the inequalities yab ≤ wac + ycb are satisfied by definition of the variables
y. Thus, we built a solution of (LP3) using a solution of (LP1).

Now, let us consider a solution of LP 3. We will show that it induces a solution
of LP 1. In other words, we want to prove that

∑
e∈P we ≥ 1 + yab for any pair

(a, b) ∈ K and any path P ∈ S(a, b). This property will be shown by induction. More
precisely, we consider the following property: for any path P containing at most i
edges and linking a and b, if (a, b) ∈ K and P 	= φ(a, b), then

∑
e∈P we ≥ 1 + yab =

1 +
∑
e∈φ(a,b) we, otherwise

∑
e∈P we ≥ yab.

Let us begin with i = 1. If (a, b) ∈ K and the length of P is 1, then P =
ab = φ(a, b) (by suboptimality and the definition of E). Thus, there is not any path
P 	= φ(a, b) of length 1. If (a, b) /∈ K and the length of P is 1, then P = ab and the
inequality wab ≥ yab is satisfied because it is one of the constraints of LP3.

Now, suppose that the property is valid for i− 1 and let us show it for i. Let P
be a path containing exactly i edges, if there is any. First, focus on the pairs (a, b)
of K. If P 	= φ(a, b) contains only vertices from φ(a, b), then we can deduce by the
suboptimality condition that P contains in fact all the edges of φ(a, b) and is cyclic.
As the weights are higher than 1, we have immediately

∑
e∈P we ≥ 1 + yab. On the

other hand, if P contains at least one vertex that is not in φ(a, b), then we define
c as the first vertex not in φ(a, b) encountered when we go through p from a to b.
Let d be the predecessor of c in P . Obviously, we have d ∈ φ(a, b). We can write
that P = P1 ∪ dc ∪ P2, where P1 is the subpath going from a to d and P2 is a path
going from c to b. Both P1 and P2 contain fewer than i − 1 edges. By induction,
in all the cases we have

∑
e∈P1

we ≥ yad and
∑
e∈P2

we ≥ ycb. Adding up these two
inequalities leads to

∑
e∈P we ≥ yad + wdc + ycb. Since the weights are a solution of

LP3, wdc + ycb ≥ ydb + 1. Consequently,
∑
e∈P we ≥ yad + ydb + 1. Moreover, we

know that d ∈ φ(a, b). This implies that both (a, d) and (d, b) are in K. In other
words, yad + ydb = yab. Combining this equality with the previous inequality leads to∑
e∈P we ≥ yab + 1.

Finally, suppose that (a, b) /∈ K and let c be the last vertex of P encountered
before b. If c = a, then a and b are adjacent and P contains this edge. This means
that

∑
e∈P we ≥ wab ≥ yab. Otherwise, let P ′ be the subpath of P linking a and

c. This path has exactly i − 1 edges, so by the induction hypothesis we can deduce
that

∑
e∈P ′ we ≥ yac. This implies that

∑
e∈P we ≥ yac + wcb. On the other hand,

the weights are a solution of LP3, which leads toyba ≤ wbc + yca. Consequently, the
inequality

∑
e∈P we ≥ yab is again valid.

Thus, the property is proved and every solution of LP3 induces a solution of
LP1.

Note that even if the number of constraints and variables of LP3 is polynomial,
solving LP3 can be more time consuming than solving LP1.
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Remarks. Some of the linear programs presented in this section (LP 1 and LP 2)
can easily be extended to integrate many other technical constraints.

• Traffic demands can be routed using many paths to improve the use of network
capacities. Thus, we can assume that n paths are given (instead of one path)
for every demand and must be the n shortest paths between the extremities of
the traffic demand. This requirement can be expressed very easily by adding
linear constraints (such as those of LP 1), which are determined by solving
some n-shortest path problems.
• Sometimes, due to transmission delay limitations and the cost of the routing

function, the paths having more than a given number of hops are eliminated.
Thus, the constraints of LP 1 (

∑
e∈P we ≥ 1 + yab) are needed only for paths

having a limited number of hops. The violated constraints can again be
determined by solving the 2-shortest path problem, but we need to slightly
modify Yen’s or Dreyfus’s algorithms to integrate the hop constraint.
• The routing paths can be the output of a dimensioning procedure [4]. If we

consider survivability, we can also have imposed paths when there is an edge
or a node failure. The same kind of linear constraints are added to satisfy this
requirement. We only have to delete the failing edge (or the edges incident
to a failing node) and to apply the same algorithms on the new graph.
• We assumed that E is the set of edges belonging to at least one of the given

routing paths. In fact, it is possible to consider some other edges. This can
be done in LP 1 by adding variables we corresponding to edges that are not
in E. We can also solve LP 3 and fix the weight we of an edge e = ab /∈ E as
we = yab + 1.
• The set of weights that are compatible with the routing path of a demand is

a nonempty polyhedron. Moreover, a polyhedron is a convex set.
Let us recall the well-known theorem of Helly. This theorem states that if
Ω is a finite family of convex sets in R

d such that any d + 1 or fewer of the
sets of Ω intersect, then ∩Ω 	= ∅. This theorem can be applied here where
d = |E|, Ω is the set of polyhedrons associated with each demand. By Helly’s
theorem, we can deduce that we can find a set of weights compatible with all
the traffic demands if and only if there exists a solution for any |E| + 1 or
fewer traffic demands. In other words, the compatibility of all sets containing
|E| + 1 or fewer demands implies the existence of a set of weights which is
compatible with all demands.
A stronger result can be obtained by considering another family of convex sets.
For any demand (a, b) ∈ K and any path P ∈ S(a, b), we define γ(a, b, P ) as
the set of weights such that

∑
e∈P we ≥ 1 +

∑
e∈φ(a,b) we and we ≥ 1 for all

edges. The sets γ(a, b, P ) are convex sets. Helly’s theorem implies that the
compatibility problem has a solution if and only if any |E|+1 or fewer of the
sets γ(a, b, P ) intersect. It is also possible to add lower and upper bounds for
the weights without breaking the convexity of the sets γ(a, b, P ). Then, the
property described above is still valid.

3.2.2. Integer weights. An important constraint that is imposed by some pro-
tocols is the integrality of weights. In this section, we will focus on methods that can
be used to find small integer weights. The set of integers is denoted N. An obvious way
to obtain this kind of weights consists in solving the following integer program IP 4.
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IP 4 =




Minimize wmax
subject to∑

e∈φ(a,b) we = yab ∀(a, b) ∈ K,∑
e∈P we≥ 1 + yab ∀(a, b) ∈ K,∀P ∈ S(a, b),
1 ≤ we≤ wmax ∀e ∈ E,

we ∈ N ∀e ∈ E, yab ≥ 0 ∀(a, b) ∈ K.

(3.4)

It is also possible to provide another integer model by adding the integrality
constraint to LP 3 instead of LP 1. Let I be the value of the objective function of IP 4.
Let LP 4 be the continuous relaxation of IP 4. We also define C as the value of the
objective function when LP 4 is solved.

We obviously have �C� ≤ I. Thus, a lower bound for I is easily obtained by
solving LP 4. Moreover, an upper bound can also be deduced from this relaxation.
Indeed, if B is the basis matrix used at an optimum when LP 4 is considered, then
it is clear that we can multiply the weights by det(B) (determinant of B) to obtain
integer weights. These weights can be reduced by dividing them by the greatest
common divider which can be computed using the Euclidean algorithm. This method
is easy and gives an upper bound of I. However, the determinant can be high and
the quality of the bound is not always good.

Below we give another simple algorithm to compute integer weights. We will use
again the set K defined in the previous section as the set of pairs for which the routing
path is given in advance or can be directly deduced by suboptimality conditions from
other given paths. Let D(a, b) be the set of paths between a and b which are edge
disjoint with φ(a, b). The set of real numbers is denoted R.

A new linear program LP 5 is defined below.

LP 5 =




Minimize wmax
subject to∑

e∈φ(a,b) we = yab ∀(a, b) ∈ K,∑
e∈P we≥ yab + |P |+|φ(a,b)|

2 ∀(a, b) ∈ K,∀P ∈ D(a, b),
0.51 ≤ we≤ wmax ∀e ∈ E,

we ∈ R ∀e ∈ E yab ≥ 0, ∀(a, b) ∈ K.

(3.5)

We used in LP 5 the notation |P | to designate the number of edges of a path P .
To obtain integer weights, we propose the following simple heuristic.

Upper bound heuristic.
1. Solve LP 5.
2. Every edge weight is rounded to the nearest integer. If there is an ambiguity,

it is rounded to the lowest integer.
Before showing how LP 5 can be solved, we have to prove the correctness of this

algorithm.
Proposition 3.11. The solution given by the upper bound heuristic is a feasible

solution of IP 4.
Proof. Let (we)e∈E be an optimal solution of LP 5 and (w′

e)e∈E the final solution
obtained after the rounding procedure.

Let us consider a pair of vertices (a, b) ∈ K and a path P ∈ D(a, b). By LP 5

constraints, we have
∑
e∈P we −

∑
e∈φ(a,b) we ≥ |P |+|φ(a,b)|

2 . As |we − w′
e| ≤ 0.5 for

every edge e ∈ E, we can deduce that
∑
e∈P w′

e −
∑
e∈φ(a,b) w

′
e ≥ 0. Moreover, if∑

e∈P w′
e−
∑
e∈φ(a,b) w

′
e = 0, then we necessarily have w′

e = we+0.5 when e ∈ φ(a, b)

and w′
e = we−0.5 when e ∈ P . But we have decided to round the weights to the lower
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integer when there is an ambiguity. Thus we cannot have
∑
e∈P w′

e−
∑
e∈φ(a,b) w

′
e = 0,

which implies that
∑
e∈P w′

e −
∑
e∈φ(a,b) w

′
e ≥ 1. This is valid for any (a, b) ∈ K and

any path P ∈ D(a, b). We can easily see that this leads to
∑
e∈P w′

e−
∑
e∈φ(a,b) w

′
e ≥ 1

for any (a, b) ∈ K and any P ∈ S(a, b).

The weights (w′
e)e∈E are clearly higher than 1. All the constraints of IP 4 are

satisfied and the correctness is proved.

Let U be the value of the highest weight given by the upper bound heuris-
tic. We clearly have �C� ≤ I ≤ U . The next proposition gives a guarantee on
the worst case performance of our heuristic. We define φmax as follows: φmax =
max(a,b)∈K |φ(a, b)| = max(a,b)∈K |φ(a, b)|. We also use N to denote the number of

nodes.

Theorem 3.12. U ≤ �C�min(N2 , φmax) ≤ I.min(N2 , φmax).

Proof. Let U5 be the maximum weight of the optimal solution of LP 5. Therefore,
we have U < U5+0.5. Moreover, using the fact that P and φ(a, b) are edge disjoint, we

can deduce that |P |+|φ(a,b)|
2 ≤ N

2 . This implies that any solution of LP 4 (continuous

relaxation of IP 4) multiplied by N
2 becomes a feasible solution of LP 5. Consequently,

we necessarily have U5 ≤ N
2 C which leads to U < N

2 C + 0.5 ≤ N
2 �C�+ 0.5. As U is

an integer, we can deduce that U ≤ N
2 �C�.

Let LP 6 be the linear program presented below:

LP 6 =




Minimize wmax
subject to∑

e∈φ(a,b) we = yab ∀(a, b) ∈ K,∑
e∈P we≥ yab + |φ(a, b)| ∀(a, b) ∈ K ∀P ∈ D(a, b),

0.01 ≤ we≤ wmax ∀e ∈ E,
we ∈ R ∀e ∈ E, yab ≥ 0 ∀(a, b) ∈ K.

(3.6)

This program can be obtained from LP 5 by changing we to we + 0.5. Let U6 be
the maximum weight of the optimal solution of LP 6. We clearly have U5 = U6 + 0.5.
Moreover, any solution of LP 4 multiplied by φmax becomes a feasible solution of
LP 6. Consequently, U6 ≤ φmaxC. This leads to U5 ≤ φmax�C�+0.5. Combining the
previous inequality with the inequality U < U5 + 0.5 implies that U < φmax�C�+ 1.
As U is an integer, we can deduce that U ≤ φmax�C�.

Note that the worst-case guarantee of the previous theorem can be reached in
some cases. This occurs, for example, when the graph is a Hamilton cycle with an
odd number of vertices and the routing paths are the shortest paths in sense of number
of hops. Indeed, we have I = 1 and U = �N2 � = I.min(N2 , φmax).

However, it is sometimes possible to improve the results of the upper bound
heuristic. To do this, we only have to decrease by 1 all the highest weights until
some constraints of IP 4 become violated. In the case of the Hamilton cycle described
above, we obtain weights equal to 1 if we proceed in this way.

Now, we have to show how LP 5 can be solved. In fact, it seems to be easier to
first solve LP 6 and then to change the weights we to we + 0.5. LP 6 can clearly be
solved by constraint generation. We first compute the shortest path P between a and
b for every pair of vertices (a, b) ∈ K. If the shortest path P is different from φ(a, b),
then we add the constraint

∑
e∈P we ≥ yab+ |φ(a, b)|. If not, we compute the shortest

path P ′ in the graph obtained by eliminating the edges of φ(a, b). The constraint∑
e∈P ′ we ≥ yab + |φ(a, b)| is added if it is violated.
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In the next section, we will give some important particular graphs for which
the suboptimality condition is sufficient to find a set of weights compatible with the
routing paths.

3.3. Particular graphs. First, recall that the set of edges E of the graph G is
exactly the set of edges that are contained in at least one routing path of a demand
of K. We assume that the suboptimality condition (Proposition 3.3) is satisfied, and
we focus on particular kinds of graphs.

Lemma 3.13. If G = (V,E) is a cycle and the suboptimality condition is satisfied,
then for any pair of vertices (a, b) which is not in K, it is possible to find a path between
a and b not violating the suboptimality condition.

Proof. As the graph is a cycle, there are only two simple paths between a and
b. If one of them violates the suboptimality condition, then it necessarily contains
a pair of nodes (c, d) of K such that a ∈ φ(c, d) and b ∈ φ(c, d). Consequently, the
other path between a and b is a subpath of φ(c, d). As the suboptimality condition is
satisfied by the routing paths of K, we can choose this path between a and b without
violating the condition.

Using the previous lemma, we can assume that K includes all the pair of vertices
of G. Even if this is not necessary, we can define a routing path between every pair
of vertices. Any set of weights that is compatible with all the routing paths is also
compatible with any subset of these routing paths.

Proposition 3.14. Let G = (V,E) be a cycle. The routing paths are assumed to
satisfy the suboptimality condition. Suppose that for any edge ab, there exists at least
one vertex x such that φ(x, a) ∩ φ(x, b) = ∅. Then, the number of vertices n is odd
and all the demands are routed on the minimum hop paths.

Proof. Let y be any vertex of G. The cycle is clockwise oriented.
Let y′ (resp., y”) be the first vertex that precedes (resp., follows) y. Let z be

the first vertex encountered when going through the cycle (starting from y) such that
y′ /∈ φ(y, z). This vertex exists because y′ /∈ φ(y, y′′) = yy′′. We also define z′′ as the
vertex that precedes. Clearly, we have φ(y, z) ∩φ(y, z′′) = ∅. In other words, for any
vertex y, there exists an edge zz” such that φ(y, z) ∩φ(y, z′′) = ∅. This edge is unique
by virtue of the suboptimality condition.

On the other hand, we know by the proposition hypothesis that for any edge ab,
there is at least one vertex x such that φ(x, a) ∩ φ(x, b) = ∅. Using the fact that the
number of edges and the number of vertices are equal and combining the previous
remarks leads to the fact that for any edge ab, there exists exactly one vertex x such
that φ(x, a) ∩ φ(x, b) = ∅. This vertex is denoted xab.

Without loss of generality, assume that a, b, and xab are located on the cycle as
shown on Figure 9 (clockwise). Let c (resp., y) be the vertex which follows b (resp.,
xab). By definition of xab, we have c ∈ φ(xab, b) and c /∈ φ(y, b). As we know that
there exists a unique vertex xbc such that φ(xbc, b) ∩ φ(xbc, c) = ∅, we can deduce
that xbc = y. Consequently, the relative locations of a, b, and xab do not change by
rotation.

Let d be the number of edges between xab and a (see Figure 9). Using the previous
remark, this number does not depend on the identity of edge ab. Thus, the number
of edges between b and xab is given by n − d − 1. If d ≥ n − 1 − d + 1, then there
exists an edge ab and an edge ef such that e, f , and xef are in φ(xab, a). But this is
clearly impossible according to the suboptimality assumption. Thus, we necessarily
have 2d ≤ n−1. Similarly we can show that it is impossible to have n−1−d ≥ d+1,
which means that 2d ≥ n − 1. In other words, n is odd and d = n−1

2 . Using the
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Fig. 9. Cycle of Proposition 3.14.

definition of xab and d, we can deduce that all the demands are routed on the shortest
path in sense of the number of edges.

Before giving the main theorem of this section, we need to provide some defini-
tions. If G = (V,E) is a cycle, we define δ0(G,φ) as the number of edges ab such
that φ(x, a) ∩ φ(x, b) 	= ∅ for any vertex x 	= a, b. For any set of weights (we)e∈E and
any pair of vertices (x, y), w (φ(x, y)) denotes the weight of φ(x, y) and w(φ̄(x, y)) the
weight of the complementary path. Recall that K is the set of all pairs of vertices of
V .

Theorem 3.15. Let G = (V,E) be a cycle. If the routing paths satisfy the
suboptimality condition, then it is possible to determine a set of weights which is
compatible with these routing paths. Moreover, an example of such a set of weights is
given as follows: wab = 1 if φ(x, a)∩φ(x, b) 	= ∅ for any vertex x 	= a, b and wab = w0

else, where w0 is a constant number such that w0 ≥ δ0(G,φ)+1. Using these weights,
we have the following property: min(x,y)∈K

(
w
(
φ̄(x, y)

)− w (φ(x, y))
) ≥ w0−δ0(G,φ).

Proof. We will show by induction on δ0(G,φ) that the weights given as
described in the theorem satisfy the property min(x,y)∈K

(
w
(
φ̄(x, y)

)− w (φ(x, y))
)

≥ w0 − δ0(G,φ) ≥ 1. First, if δ0(G,φ) = 0, then we know by Proposition 3.14
that the demands are routed through the minimum hops path. This means that
min(x,y)∈K

(
w
(
φ̄(x, y)

)− w (φ(x, y))
) ≥ w0. Suppose that the property is satisfied

when δ0(G,φ) ≤ l0 − 1, and let us show it is also satisfied for δ0(G,φ) = l0 > 1. Let
ab be an edge of G such that φ(x, a) ∩ φ(x, b) 	= ∅ for any vertex x 	= a, b. This is
equivalent to saying that φ(x, a) ⊂ φ(x, b) or φ(x, b) ⊂ φ(x, a). Let a′ and b′ be the
other neighbors of a and b (Figure 10). Let G′ = (V ′, E′) be the cycle obtained by
contracting the edge ab into a vertex c. We will build a new set of routing paths φ′ in
G′ based on the initial set of routing paths φ. For any vertices x, y 	= c of V ′, φ′(x, y)
is exactly the same as φ(x, y) but taking into account the contraction of edge ab. Let
x 	= c be any vertex of G′. We take φ′(x, c) = φ(x, a′) ∪ a′c if φ(x, a) ⊂ φ(x, b) and
φ′(x, c) = φ(x, b′)∪ b′c otherwise. The suboptimality condition is satisfied by the new
set of routing paths φ′. We obviously have δ0(G

′, φ′) = δ0(G,φ) − 1. Let w0 be any
constant number such that w0 ≥ δ0(G,φ) + 1, and let us consider a set of weights of
G exactly as defined in the theorem. In the new graph G′, we take the same weights
as those of G for the edges xy when x, y 	= c. Otherwise, wa′c = wa′a and wb′c = wb′b.
As w0 ≥ δ0(G,φ) + 1 ≥ l′(G′, φ′) + 1, we can deduce by induction hypothesis that
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Fig. 10. Contraction of edge ab.

min(x,y)∈V ′×V ′
(
w
(
φ̄′(x, y)

)− w (φ′(x, y))
) ≥ w0 − l′(G′, φ′). As the weight of edge

ab is 1, the previous inequality leads to min(x,y)∈V×V
(
w
(
φ̄(x, y)

)− w (φ(x, y))
) ≥

w0 − l′(G′, φ′)− 1 = w0 − δ0(G,φ).
To prove the above theorem, we contracted an edge ab for which φ(x, a)∩φ(x, b) 	=

∅ for any vertex x 	= a, b. The number of edges ef for which there exists x such that
φ(x, e)∩ φ(x, f) = ∅ does not change by contracting ab. Thus, if we contract all such
edges we will obtain a cycle similar to those of Proposition 3.14. We can deduce that
the number of edges ef for which there exists x such that φ(x, e)∩φ(x, f) = ∅ is an odd
number. Recall that all the cycle edges belong to at least one routing path. As any
cycle having three vertices cannot contain any edge ab for which φ(x, a)∩ φ(x, b) 	= ∅
for every vertex x 	= a, b, we can deduce that the number of edges ef for which there
exists x such that φ(x, e) ∩ φ(x, f) = ∅ is at least equal to 3. These remarks are
brought together in the following corollary.

Recall that we assumed that a routing path is given for every pair of vertices of
the cycle.

Corollary 3.16. Let G = (V,E) be a cycle. If a routing path φ(a, b) is given
for any pair of vertices of the cycle and if the suboptimality condition is satisfied, then
the number of edges ef for which there exists x such that φ(x, e) ∩ φ(x, f) = ∅, given
by n− δ0(G,φ), is an odd number at least equal to 3.

The suboptimality of the routing paths is sufficient to find a set of compatible
weights for many other particular graphs. Some of them are defined below.

Definition 3.17. We define a hat-cycle as a graph which consists of an elemen-
tary cycle C and some vertices such that

- every vertex x which is not in the cycle has exactly two neighbors; moreover,
these two neighbors constitute an edge of C;

- for any edge ab of C, there is at most one vertex x /∈ C which is adjacent to
both a and b.

An example of a hat-cycle is shown in Figure 11.
Proposition 3.18. Let G = (V,E) be a hat-cycle. If the routing paths satisfy

the suboptimality condition, then there exists a set of weights which is compatible with
these routing paths.

Proof. We will show the proposition by induction on the number of vertices that
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Fig. 11. A hat-cycle.

are not in C. If this number is nought, then the graph is a cycle and the result is given
by Theorem 3.15. Suppose that the proposition is proved if this number is lower than
n0− 1, and let us show it when this number is equal to n0. Note that by definition of
a hat-cycle, n0 cannot be higher than the number of vertices of C. Let x be one of the
vertices of G\C and y, z its two neighbors. By suboptimality, the routing path φ(y, z)
is made up of the edge yz. Let G′ be the graph obtained by eliminating the edge yz.
We also define a new set of routing paths φ′ in G′ using the initial routing paths and
replacing yz by yx ∪ xz. Suboptimality is still satisfied. By induction hypothesis,
we can find a set of weights (we) e∈E which is compatible with the routing paths φ′.
Now, if we go back to our initial graph G, we can take for the edge yz a weight which
is slightly lower than wyx +wxz. For the other edges, we choose the weights given by
induction. All the constraints are satisfied and the proposition is shown.

Proposition 3.19. If G = (V,E) is a tree or a clique, then the suboptimality
condition is sufficient to guarantee the existence of a set of compatible weights.

Proof. In both cases, we can take a weight equal to 1 for all the graph links.

This property is still satisfied even by some incomplete cliques as shown below.

Proposition 3.20. If G = (V,E) is a graph of n vertices where the degree of
any vertex is at least n− 2, then the suboptimality condition is sufficient to guarantee
the existence of a set of compatible weights.

Proof. Let (a, b) be any pair of vertices of G. If a and b are adjacent, then by
suboptimality φ(a, b) = ab. In the other case, both a and b are adjacent to all the
other vertices of the graph. This is due to the fact that all the degrees are higher
than n− 2. Using this remark and the suboptimality condition implies that φ(a, b) is
made up of exactly two links ax and xb, where x is a vertex of G. In other words,
all the routing paths of φ include either one link or two links. Let us define a set of
weights as follows: if an edge xy does not belong to any two-link routing path, then
wxy = 1, else wxy = 2

3 . If a and b are adjacent, then it is clear that the shortest
path between them in the sense of these weights is unique and is given by the edge
ab. Next assume that a and b are not adjacent. As said before, φ(a, b) = ax ∪ xb.
The weights of both ax and xb are equal to 2

3 . Note that the weight of φ(a, b) is given
by 4

3 and there is clearly no other path between a and b which has a strictly lower
weight. Thus, we have to show that there are no paths other than φ(a, b) having
a weight equal to 4

3 . Let us prove this property by contradiction. Any other path
between a and b whose weight is 4

3 is necessarily made up two links ay and yb where
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y 	= x. This implies that both ay and by are contained in some two-link routing paths
of φ. Moreover, any two-link routing path containing ay has necessarily the form of
some φ(a, z) or φ(z, y). As a and b are not adjacent, a is adjacent to all the other
vertices. Thus, ay cannot be contained in any φ(a, z). Let us assume that φ(z, y)
includes ay. This clearly means that z and y are not adjacent and y is adjacent to
all the other vertices. We also know that b is adjacent to all the vertices other than
a and φ(a, b) does not include by. Combining these two remarks implies that there
is not any two-link routing path containing by. This contradicts the assumption that
wby = 2

3 . Thus, the shortest path between any two vertices a and b is always unique
and is nothing other than the routing path φ(a, b). This proves the proposition and
gives, by the way, an example of compatible weights.

In fact, even if the graph is, in a certain sense, made up of some of the particular
graphs described in this section, then it still satisfies the same property. This is
established in the next theorem.

Recall that E is the set of edges used by at least one routing path φ(a, b) where
(a, b) ∈ K. We will use in the next theorem the notion of a “block,” which is defined
as a bridge or a maximal (in sense of inclusion) two-connected induced subgraph of
G [6, 12].

Theorem 3.21. If the suboptimality condition is satisfied, then it is possible
to determine a set of compatible weights if every block of G belongs to one of the
following graph classes: bridges, cycles, hat-cycles, cliques, and incomplete cliques
(those of Proposition 3.20).

Proof. This theorem is, in fact, a direct consequence of the propositions of this
section and the definition of blocks. If G is not connected, then the result can be
deduced by applying the theorem to all the connected components of G. If the graph
is connected, then its block graph is a tree. We also know by definition that any two
blocks have at most one common vertex [6, 12]. Using these remarks and what was
shown in this section gives us the proof of the theorem.

A sample graph similar to those described in the previous theorem is presented in
Figure 12. Finally, note that the graphs called cactus [6] and defined as the connected
graphs all of whose blocks are elementary cycles or bridges satisfy the condition of
the previous theorem.

4. Computational results. The construction scheme proposed in section 2 was
coded in C and run on a Sun Enterprize 450 with four 250 MAZE CPUs and 1 gigabyte
of RAM. Some of the linear programs of section 3 were solved using a CPLEX Linear
Optimizer 6.0 [10]. Random graphs with n vertices were obtained by generating either
a given number m of edges or a given number of edges corresponding to a given graph
density d. Note that density is often defined as the ratio m

n(n−1)/2 . However, as we

focus here on connected graphs, we use the following definition:

m = n− 1 + d ∗ (n(n− 1)/2− (n− 1)) .

Hence, a density of 0% corresponds to a tree, and a graph with a density 100% is
a complete graph. In all cases, we make sure that the graph generated is connected
(either by first generating a tree for the low density graphs or by using repeatedly the
LEDA graph generator [28] until the connectivity requirement is satisfied).

The common objective of all the algorithms proposed in this paper is to obtain
a set of weights such that all demands are routed on a single shortest path. In a first
step, we used the construction scheme proposed in section 2 to build a breadth search
tree and deduce the corresponding weights. As a byproduct, we also obtain a routing
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Fig. 12. Suboptimality is sufficient to find compatible weights here.

path (defined as the single shortest path) between each pair of nodes. One of the
aims of the construction scheme is to obtain low value weights. In order to evaluate
how well this aim is reached, we then use some of the linear programs of section 3 in
which the objective is precisely, given a set of routing paths, to minimize the value
of the maximum weight. Note that, in practice, it would be necessary to check if
the solution set is not empty, i.e., if there exists a set of weights compatible with the
routing paths. In the case of our experimental study, we already have a compatible
set of weights. In our computational experiment, three mathematical programs are
solved for each instance:

IP4 is solved to obtain the reference optimal value I;
LP4 is the continuous relaxation of IP4 that gives a lower bound �C�;
LP6 is solved to give the upper bound U (section 3.2.2).

Note that each run is limited to one hour of computing time. 10 instances are
generated for each graph size n and each density d. When some instances could not
be solved in this limited time, only the successful instances are taken into account to
calculate the average values, and these values are reported in brackets in Tables 1 and
2. The missing entries in these tables correspond to cases in which no instance could
be solved in the required time limit. When the number of successful instances is lower
than 10, this number is reported in Table 3 below, instead of the regular entry.

In the first batch of computational experiments, 15 series of 10 instances were
generated. Each series is defined by a number of vertices (n = 10, 30, 50) and a
density (d = 0, 25, 50, 75, 100). For each problem, the radius of the graph is computed,
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Table 1
Dense graphs (average results over 10 instances).

n Density m Radius Maximum weight
6× radius− 1 Tree �C� I U

10 0 % 9 2.8 15.8 3.0 1.0 1.0 1.0
10 25 % 18 2.0 11.0 9.9 3.3 3.5 6.3
10 50 % 27 1.7 9.2 7.6 2.7 3.5 4.3
10 75 % 36 1.2 6.2 5.6 2.2 3.0 3.3
10 100 % 45 1.0 5.0 5.0 1.0 1.0 1.0
30 0 % 29 4.9 28.4 3.0 1.0 1.0 1.0
30 25 % 130 2.0 11.0 11.0 5.4 (6.0) 10.4
30 50 % 232 2.0 11.0 10.9 4.8 (5.0) 7.6
30 75 % 333 1.4 7.4 6.8 2.8 (3.7) 4.1
30 100 % 435 1.0 5.0 5.0 1.0 1.0 1.0
50 0 % 49 5.7 33.2 3.0 1.0 1.0 1.0
50 25 % 343 2.0 11.0 11.0 6.1 - 11.3
50 50 % 637 2.0 11.0 11.0 5.3 - (8.5)
50 75 % 931 1.8 9.8 8.6 (3.8) - -
50 100 % 1225 1.0 5.0 5.0 1.0 1.0 1.0

Table 2
Sparse graphs (average results over 10 instances).

n Density m Radius Maximum weight
6× radius− 1 Tree �C� I U

10 0 % 9 2.8 15.8 3.0 1.0 1.0 1.0
10 16 % 15 2.1 11.6 9.4 3.2 3.3 5.5
10 30 % 20 2.0 11.0 9.9 3.5 3.5 5.7
10 58 % 30 1.3 6.8 6.1 2.3 3.2 3.5
30 0 % 29 4.9 28.4 3.0 1.0 1.0 1.0
30 3 % 45 3.6 20.6 19.3 6.3 6.5 14.4
30 7 % 60 3.0 17.0 16.2 5.8 (6.2) 14.4
30 15 % 90 2.5 14.0 13.0 5.6 (6.2) 11.2
50 0 % 49 5.7 33.2 3.0 1.0 1.0 1.0
50 2 % 75 4.4 25.4 20.9 7.0 7.0 17.7
50 4 % 100 3.7 21.2 19.3 6.8 (6.9) 17.7
50 8 % 150 3.0 17.0 16.7 6.8 - 15.2

a central vertex is selected, and a breadth-first search tree is built. According to the
construction scheme of section 2, a weight is then assigned to each edge of the graph.
The computational results displayed in the tables are average results over the 10
instances. The value of 6 × radius − 1 is also provided as a very basic bound, to be
compared with the four other values.

The bound provided by the tree heuristic is better than 6 × radius − 1, but it
is also much weaker than the values provided by the linear programs. It seems, in
view of the few integer programs we were able to solve in less than an hour, that the
lower bound C is rather close to the optimal integer value for the sparse graphs and
starts to deteriorate when the density increases up to a relative gap of 30% in the
worst cases. On the contrary, the upper bound U behaves quite badly for the sparse
graphs with a relative gap reaching such values as 150% but becomes much tighter
when the density increases, beating in absolute value the lower bound C. However,
the combination of these two bounds allows us to obtain a good approximation of the
optimal value.

Regarding the density of the graphs, the maximum value of the weight seems to
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Table 3
CPU time (in seconds).

n Density m Tree �C� I U
10 0 % 9 0.01 0.02 0.02 0.02
10 25 % 18 0.01 0.21 0.39 0.23
10 50 % 27 0.02 0.30 1.19 0.37
10 75 % 36 0.02 0.37 1.05 0.57
10 100 % 45 0.01 0.02 0.01 0.02
30 0 % 29 0.01 0.73 0.73 0.73
30 25 % 130 0.12 31.25 (4) 38.55
30 50 % 232 0.16 150.18 (3) 171.53
30 75 % 333 0.21 137.52 (9) 239.52
30 100 % 435 0.22 0.66 0.67 0.64
50 0 % 49 0.24 5.25 5.26 5.25
50 25 % 343 0.35 606.21 (0) 821.03
50 50 % 637 0.54 2973.37 (0) (4)
50 75 % 931 0.77 (2) (0) (0)
50 100 % 1225 0.93 4.76 4.74 4.73

increase rapidly from the value 1 for the tree and then slowly decreases back to the
value 1, also optimal for the complete graph. The maximum value of the weight is
also related to the size of the graph since the values observed are larger for graphs
with more nodes for a given level of density.

In the second batch of computational experiments, 12 series of 10 instances were
generated. Each series is again defined by a number of vertices (n = 10, 30, 50) and a
number of edges proportional to the number of nodes with a coefficient of 1, 1.5, 2,
and 3. The graphs generated in this batch are hence somewhat sparser than the ones
of the first batch.

The observations made on the first batch are confirmed with the second batch.
The peak point in the evolution of the maximum weights seems to be located some-
where in the sparse graphs area, apparently very close to the trees.

Finally, in the third batch of computational experiments, the computing time of
the various approaches are compared. The average computing time in seconds, over
the 10 instances, is reported in Table 3. When some instances required more than
the one hour time limit, the number reported in brackets is the number of successful
instances, i.e., the number of instances solved in less than an hour.

Although the tree heuristic and the linear programming approaches are defini-
tively not designed for the same purpose, the results displayed in Table 3 show how
much faster this simple heuristic can be. It almost never takes more than a second to
build the breadth-search tree and obtain the bound. The more elaborate approaches
based on various linear programs address a more difficult and general problem, since
they allow us to find weights corresponding to any given pattern of routing paths (if
such weights exist). As an obvious drawback, these methods are much more time-
consuming and the computing time required even increases rapidly with the size of
the problems. Even more so, for many problems, the exact solution (that is, the min-
imum maximal weight of a set of integer weights) cannot be reached in a reasonable
amount of time (with the proposed approach).

Finally, for some instances, we observed that I > C + 1. This implies that we
cannot hope (in general) to deduce integer weights only by rounding the weights given
by LP 4.
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5. Conclusion and open problems. In this paper, we solved some impor-
tant problems related to Internet networks. The traffic demands are carried through
shortest paths in sense of a set of administrative link weights. We showed that we
can simultaneously use all the network resources (links), avoid routing ambiguities (a
unique shortest path for each demand), and use a set of integer weights which are
strictly lower than 6 times the radius of the graph (and hence can be easily encoded
on routers). Then, we studied the problem of computing a set of weights that is
compatible with a given set of routing paths. The routing paths can be the output
of a dimensioning procedure [4]. In other cases, they are imposed by technical and
topological constraints. We gave some necessary conditions that must be satisfied by
the routing paths to find compatible weights. Linear programs enabling the solution
of this problem were presented. Focus was on algorithms that can be used to com-
pute integer weights. We also found many important particular graphs such as cycles,
cacti, etc., for which the suboptimality condition is sufficient to find weights.

Many problems connected with those solved in this paper are still open. First, is
it possible to have a general upper bound on the integer weights that is better than
six times the radius of the graph? Second, is there any general “simple” necessary
and sufficient condition that must be satisfied by the routing paths to guarantee the
existence of a set of compatible weights?

Computing a set of real weights compatible with some routing paths is a polyno-
mial problem, but what is the complexity of this problem when the weights have to
be integers and as small as possible?

Another interesting problem that has not been addressed in this paper can be
stated as follows: given a graph G = (V,E), can we find a minimal (in the car-
dinal sense) set of values W = {w1, w2, . . .} that generates all the possible short-
est routing paths on G? As we know that the set of weights that are compatible
with a set of routing paths φ is either empty or is a nonempty polyhedron Pφ,
the problem described above is equivalent to finding a minimal set W such that
Pφ∩

(
W |E| = W ×W × · · · ×W

) 	= ∅ for any set of routing paths φ for which Pφ 	= ∅.
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1. Background. Extensive work has been done on the topology of the partition
lattice Πn, the signed partition lattice Πn, and the Dowling lattice Qn(G); see [Ba],
[Be], [Go-Wa], [Ha], [St], and [Wa2], for example. Restricted block size partition
posets have also been studied, as in [Bj-Lo-Ya], [Bj-Sa], sections 6 and 7 of [Bj-Wa3],
[Bj-We], [Bw], [Ca-Ha-Ro], [Ha-Wa], [Li], [Su1], [Su2], [Su3], [Su-Wa], [Wa1], and
[Wa3].

The posets Πn and Πn are both special cases of Qn(G). We will examine the
topology of Qh,k

n (G), a restricted block size Dowling lattice. This poset has as special
cases the k-equal partition lattice first studied in [Bj-Lo-Ya] and the h, k-equal signed
partition lattice of [Bj-Sa].

The posets Πn and Πn arise as intersection lattices of real hyperplane arrange-
ments. Specifically, Πn is the intersection lattice of the hyperplane arrangement

An = {xi = xj | 1 ≤ i < j ≤ n}
and Πn is the intersection lattice of the hyperplane arrangement

Bn = {xi = ±xj | 1 ≤ i < j ≤ n} ∪ {xi = 0 | 1 ≤ i ≤ n}.
Let Cm denote the group generated by ω, a primitive mth root of unity. Qn(Cm) is
the intersection lattice of the complex hyperplane arrangement

Bn,m = {xi = ωpxj | 0 ≤ p < m, 1 ≤ i < j ≤ n} ∪ {xi = 0 | 1 ≤ i ≤ n},
which is known as the Dowling arrangement. The Orlik–Solomon formula [Or-So]
describes the cohomology of the complement of a hyperplane arrangement in terms of
the Whitney homology of the arrangement’s intersection lattice. One can determine
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the Whitney homologies of Πn, Πn, and Qn(G) once their homologies are known.
Thus results about the topologies of Πn, Πn, and Qn(Cm) can be used to understand
the topology of complements of certain hyperplane arrangements.

The k-equal partition lattice Πkn is the sublattice of Πn consisting of those π ∈ Πn
such that each block B of π satisfies |B| = 1 or |B| ≥ k. It first appeared in the
work of Björner, Lovász, and Yao [Bj-Lo-Ya], where they studied the computational
complexity of the following question: given a string of n numbers, are any k of them
the same? Their results depended on computing the Möbius number (i.e., the reduced
Euler characteristic) of Πkn, which appeared as the intersection lattice of the k-equal
subspace arrangement

Akn = {xi1 = · · · = xik | 1 ≤ i1 < · · · < ik ≤ n}.
Björner andWelker [Bj-We] computed the homotopy type of Πkn and used the Goresky–
MacPherson formula1 [Go-Ma] to determine the cohomology of the complement of Akn
and Betti numbers for this space.

Björner and Wachs [Bj], [Bj-Wa1], [Bj-Wa2], [Bj-Wa3], [Bj-Wa4] have adapted
and generalized shellability, a powerful tool from polytope theory, to a tool for poset
topology called lexicographical shellability. We will be using a version of lexicograph-
ical shellability called EL-shellability. We now describe some of the terminology and
results of this theory.

Let x and y be elements of a poset P . When x < y and there is no z ∈ P such
that x < z < y we say that x covers y. In this case we write x � y and refer to x � y
as a cover of P . The covering relation of P is the set of covers of P , which we denote
by CR(P ). We say that a chain of P is maximal if there is no other chain of P that
contains it. Let x1 < x2 in P . We say that a chain of [x1, x2] is saturated in P if it is
maximal in [x1, x2].

Given a totally ordered set Γ and a map λ : CR(P )→ Γ we refer to λ(x � y) as
the label of x � y and to λ as a labelling of P . We associate with a saturated chain
c : x0 � · · ·� xp the label sequence λ(x0 � x1), . . . , λ(xp−1 � xp), which we denote by
λ(c). A saturated chain c and its label sequence λ(c) are called λ-increasing if λ(c)
is strictly increasing and λ-decreasing if λ(c) is weakly decreasing. We use the terms
increasing and decreasing if λ is understood. If c′ is another saturated chain of P ,
we write c < c′ if λ(c) < λ(c′) lexicographically. λ is called an EL-shelling of P if
every interval of P has a unique increasing maximal chain that precedes every other
maximal chain of that interval.

A poset P is bounded if it contains a minimum element and a maximum element
and these elements are distinct. We will often denote these elements by 0̂ and 1̂,
respectively. If P is a bounded finite poset with an EL-shelling, then P is said to
be EL-shellable. If c is a maximal chain of P , then let ĉ denote the maximal chain
c \ {0̂, 1̂} of P \ {0̂, 1̂}.

Let P be a finite bounded poset. The chains of P \ {0̂, 1̂} form an (abstract)
simplicial complex called the order complex of P . We denote this complex by ∆(P ).
The field of poset topology is concerned with the topological properties of order com-
plexes of posets. If a topological statement is true of ∆(P ), then we say that the
same statement is true of P . We denote the ith reduced homology and cohomology
of ∆(P ) over the integers by H̃i(P ) and H̃i(P ), respectively.

1The Goresky–MacPherson formula is a partial generalization of the Orlik–Solomon formula. It
describes the cohomology of the complement of a subspace arrangement. However, it does not take
group actions into account. An equivariant version is given by Sundaram and Welker [Su-We].
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The following theorem is one of the main results of the theory of EL-shellability.
Theorem 1.1 (see [Bj-Wa3, Theorem 5.9]). An EL-shellable poset P has the

homotopy type of a wedge of spheres. Furthermore, for any EL-shelling λ of P ,
• H̃i(P ) ∼= Z# of λ- decreasing chains of P of length i+2,
• the set {ĉ | c is a λ-decreasing chain of P of length i + 2} forms a basis for

H̃i(P ).
Some EL-shellings for Πn are given in [Bj] and in [Wa1]. An EL-shelling for

Qn(G) is given in [Go-Wa]. [Bj-Wa3] contains the EL-shelling for Π
k
n defined below.

We denote a partition {B1, . . . , Bj} of a finite set S by B1/ · · · /Bj . A cover x � y in
Πn corresponds to a merge of blocks of x. That is, if x = B1/ · · · /Bj , then y is of the
form B1/ · · · /Bm ∪Bp/ · · · /Bj for some m and p, 1 ≤ m < p ≤ j. We denote such a
merge by Bm/Bp � Bm ∪Bp.

The situation for Πkn is similar but there are three kinds of merges. The first
is a merge of two nonsingleton blocks B and B′. We denote this type of merge by
B/B′

�B ∪B′. The second is a merge of a singleton block and a nonsingleton block.
We denote this type of merge by {a}/B � {a} ∪ B, where B is a nonsingleton. The
third is a merge of k singleton blocks and is denoted by {a1}/ · · · /{ak}�{a1, . . . , ak}.

Theorem 1.2 (see [Bj-Wa3, Theorem 6.1]). The labelling λ of Πkn defined by

λ(x � y) =



(1,max (B ∪B′)), B/B′

� B ∪B′,
(2, a), {a}/B � {a} ∪B,
(2,max {a1, . . . , ak}), {a1}/ · · · /{ak}� {a1, . . . , ak}

(1.1)

is an EL-shelling for Πkn.
Here and throughout this paper, pairs used to label covers for the purposes of a

shelling are ordered lexicographically.

Björner and Sagan [Bj-Sa] defined the h, k-equal signed partition poset Π
h,k

n to
be the subposet of Πn consisting of those signed partitions whose nonzero blocks have
size 1 or size at least k, and whose zero blocks have size 1 or size at least h+1. They
showed that the h, k-equal signed partition lattice is isomorphic to the intersection
lattice of the h, k-equal subspace arrangement

Bh,kn = {±xi1 = · · · = ±xik} ∪ {xj1 = · · · = xjh = 0},

where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jh ≤ n. They gave an EL-shelling of

Π
h,k

n , described the Betti numbers of Π
h,k

n , and used them to obtain the ranks of the
cohomology of the complement of Bh,kn when k > 2. We postpone the description of
their EL-shelling until we develop notation for Dowling lattices.

In this paper, we define a subposet Qh,k
n (G) of Qn(G) which generalizes Π

k
n and

Π
h,k

n . We refer to Qh,k
n (G) as the h, k-equal Dowling lattice. We define a complex

subspace arrangement Bh,kn,m which generalizes Akn and Bh,kn . We refer to Bh,kn,m as the
h, k-equal Dowling arrangement. We show that Qh,k

n (Cm) is the lattice of intersections
of Bh,kn,m. We give two closely related EL-shellings for Qh,k

n (G). We use the EL-shelling

to describe bases for the (co)homology of Qh,k
n (G), to give an expression for the Betti

numbers of Qh,k
n (G), and to describe the ranks of the cohomology of the complement

of Bh,kn,m.
2. The h, k-equal Dowling lattice Qh,k

n (G). We begin by reviewing the def-
inition of the Dowling lattice. Let G denote a finite group with identity e. Let
π = B0/B1/ · · · /Bj be a partition of {0, 1, . . . , n}. Throughout this paper we will
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assume that 0 ∈ B0. Let γ : B1 ∪ · · · ∪ Bj → G and denote the restriction of γ to
Bp by γBp . If we think of γ formally (that is, as a subset of (B1 ∪ · · · ∪ Bj) × G),
then π induces the partition B0/γB1/ · · · /γBj of B0∪γ. We refer to B0/γB1/ · · · /γBj

as a G-prepartition of {0, 1, . . . , n}. We refer to B0 as the zero block of π and of
B0/γB1/ · · · /γBj . For p > 0 we say that Bp is a nonzero block of π and that γBp is a
nonzero block of B0/γB1

/ · · · /γBj
.

For example, setting π = {0, 3, 6}/{1, 2, 7}/{4, 5} and
γ = {(1,−1), (2, 1), (4, 1), (5,−1), (7, 1)}

gives the C2-prepartition

{0, 3, 6}/{(1,−1), (2, 1), (7, 1)}/{(4, 1), (5,−1)}
of {0, 1, . . . , 7}.

When representing particular partitions of {0, 1, . . . , n} we will drop curly brack-
ets and commas. Thus the partition of {0, 1, . . . , 7} in the example will be written
036/127/45. We also drop curly brackets and commas when discussingG-prepartitions.
Additionally, we drop parentheses and put the second coordinate above the cor-
responding first coordinate unless the second coordinate is the identity, in which
case we will put nothing above the first coordinate. When our examples involve C2-
prepartitions (as they usually will), and when the second coordinate is −1, we will
simply bar the first coordinate. Thus the example above will be written 036/127/45.

There is a right action of G on {1, . . . , n} × G given by (i, h) · g = (i, hg). This
action extends to subsets S of {1, . . . , n} ×G by S · g = {x · g | x ∈ S}. We say that
two subsets S1 and S2 of {1, . . . , n} × G are equivalent if there exists g ∈ G so that
S1 = S2 ·g. This is an equivalence relation on the power set of {1, . . . , n}×G. We will
usually denote the equivalence class of S by S, resorting to S only when necessary.

Two G-prepartitions are equivalent if their zero blocks are equal and there is
a one-to-one correspondence between their nonzero blocks such that corresponding
nonzero blocks are equivalent. This is an equivalence relation on G-prepartitions. A
G-partition of {0, 1, . . . , n} is the equivalence class of a G-prepartition of {0, 1, . . . , n}.
As above, we will denote the equivalence class of a G-prepartition B0/γB1/ · · · /γBj

by B0/γB1/ · · · /γBj when useful, but normally we will omit the overbar.
The equivalence class of the C2-prepartition from the example is

{036/127/45, 036/127/45, 036/127/45, 036/127/45}.
We will usually represent an equivalence class with the member in which the smallest
element of each nonzero block is labelled with the identity. We will refer to this rep-
resentative as the canonical representative. In this case, the canonical representative
is 036/127/45.

The equivalence class of a nonzero block of a G-prepartition will be called a
nonzero G-block of the corresponding G-partition. We say that a nonzero G-block
γBp

is a singleton if |Bp| = 1 and a nonsingleton if |Bp| > 1. We refer to the zero block
of a G-prepartition as the zero G-block of the corresponding G-partition. A G-block
of a G-partition is either a zero G-block or a nonzero G-block of the G-partition.

The Dowling lattice Qn(G) is the set of G-partitions of {0, 1, . . . , n} with partial
order determined by the covering relation described below. An element y covers
B0/γB1/ · · · /γBj if y results from merging two G-blocks of B0/γB1/ · · · /γBj . There
are two ways to do this. One way involves B0; the other does not.
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B0 can be merged with a nonzero G-block γBp
of B0/γB1

/ · · · /γBj
yielding the

G-partition y = B0 ∪ Bp/γB1/ · · · /γBj . There are two merges of this type for the
C2-partition from the example. They give the covers

036/127/45� 012367/45 and 036/127/45� 03456/127.

We will denote merges that involve B0 by B0/γBp � B0 ∪Bp.
There are |G| covers of B0/γB1/ · · · /γBj in which two distinct nonzero G-blocks

γBp and γBm are merged, each of which is of the form

B0/γB1/ · · · /γBp
∪ (γBm

· g)/ · · · /γBj

for some g ∈ G. The covers that result from merging the nonzero C2-blocks of the
C2-partition in the example are

036/127/45� 036/12457 and 036/127/45� 036/12457.

Consider the merge of two nonzero G-blocks γBp
and γBm

from B0/γB1
/ · · · /γBj

into the G-block γBp
∪ (γBm

· g). Define δ : B1 ∪ · · · ∪Bj → G by

δ(i) =

{
γ(i) · g, i ∈ Bm,
γ(i), else,

and observe that γBi
= δBi

for i = 1, . . . , j. Also, γBp
∪ (γBm

· g) = δBp
∪ δBm

. In
other words, by choosing a suitable equivalence class representative, we can suppress
the group multiplier in the merge. Without loss of generality, we may assume that
B0/γB1/ · · · /γBj is that representative. Thus our notation for such a merge need not
include the group multiplier. We denote a merge of this type by γBp/γBm � γBp∪Bm .

The smallest element of Qn(G) is 0̂ = {0}/γ{1}/ · · · /γ{n}, where γ is arbitrary.

The largest element of Qn(G) is 1̂ = {0, 1, . . . n}. The two most familiar instances
of the Dowling lattice are the partition lattice Πn+1, which is isomorphic to Qn((e)),
and the signed partition lattice Πn, which is isomorphic to Qn(C2).

We assume throughout this paper that n, h, and k are integers satisfying 1 ≤ h <
k and n ≥ h and n ≥ 2. We define Qh,k

n (G) to be the subposet of Qn(G) consisting of
those G-partitions for which the zero G-block satisfies |B0| = 1 or |B0| ≥ h + 1 and
each nonzero G-block γB satisfies |B| = 1 or |B| ≥ k.

• Qh,k
n (G) is not pure when h > 1 and n ≥ h+ k nor when k > 2 and n ≥ 2k.

• Q1,2n (G) = Qn(G).
• Qk−1,k

n ((e)) = Πkn+1.

• Q1,2n (C2) = Πn.

• Qh,k
n (C2) = Π

h,k

n .
Note that if n < h, then Qh,k

n (G) consists of a single element so is not bounded.
The assumption that h < k makes Qh,k

n (G) a lattice. Without this assumption, the
conclusion fails in some cases. When h < k − 1 the poset Qh,k

n ((e)) is a sublattice of
Πn+1 that to our knowledge has not been studied previously.

Every covering relation in Qh,k
n (G) corresponds to a merge of exactly one of the

six following types.
• A zero-nonsingleton (Z-NS) merge is a merge between the zeroG-blockB0 and
a nonzero nonsingleton G-block γB . This merge is represented by B0/γB �

B0 ∪B. There is no restriction on |B0| other than |B0| = 1 or |B0| ≥ h+ 1.
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• An h-merge is a merge of {0} with the h nonzero singletonG-blocks γ{a1}, . . . ,
γ{ah}. It is represented by {0}/γ{a1}/ · · · /γ{ah} � {0, a1, . . . , ah}.
• A zero-singleton (Z-S) merge is a merge between the zero G-block B0 and
a nonzero singleton G-block γ{a} where |B0| ≥ h + 1. It is represented by
B0/γ{a} � B0 ∪ {a}.

• A nonsingleton-nonsingleton (NS-NS) merge is a merge between two nonzero
nonsingleton G-blocks γB and γB′ . It is represented by γB/γB′ � γB∪B′ .
• A k-merge is a merge of k nonzero singleton G-blocks γ{a1}, . . . , γ{ak}. It is
represented by γ{a1}/ · · · /γ{ak} � γ{a1,...,ak}.
• A singleton-nonsingleton (S-NS) merge is a merge between a nonzero singleton

G-block γ{a} and a nonzero nonsingleton G-block γB . It is represented by
γ{a}/γB � γ{a}∪B .

We now describe Björner and Sagan’s EL-shelling. Since Π
h,k

n = Qh,k
n (C2) we use

the notation we have developed for Dowling lattices.

Theorem 2.1 (see [Bj-Sa, Theorem 4.4]). Suppose 1 ≤ h < k and n ≥ h. The

labelling λ of Π
h,k

n defined by

λ(x � y) =




(1,maxB), B0/γB � B0 ∪B,
(2,maxi ai), {0}/γ{a1}/ · · · /γ{ah} � {0, a1, . . . , ah},
(2, a), B0/γ{a} � B0 ∪ {a},
(3,max(B ∪B′)), γB/γB′ � γB∪B′ ,
(4,maxi ai), γ{a1}/ · · · /γ{ak} � γ{a1,...,ak},
(4, a), γ{a}/γB � γ{a}∪B

is an EL-shelling.

3. Two EL-shellings for Qh,k
n (G). We now give an EL-shelling for Qh,k

n (G)
that is based on that of Björner andWachs (our Theorem 1.2) for Πkn. Setting h = k−1
and G = (e) gives a new EL-shelling for Πkn+1 because of the special treatment given
to the letter 0. If k = 2, we also get a new shelling of Πn+1. Setting G = C2 gives

a new EL-shelling for Π
h,k

n that is related to but simpler than Björner and Sagan’s
EL-shelling (our Theorem 2.1).

Theorem 3.1. For 1 ≤ h < k and n ≥ h, the labelling λ of Qh,k
n (G) defined by

λ(x � y) =




(1,maxB), B0/γB � B0 ∪B,
(2,maxi ai), {0}/γ{a1}/ · · · /γ{ah} � {0, a1, . . . , ah},
(2, a), B0/γ{a} � B0 ∪ {a},
(1,max(B ∪B′)), γB/γB′ � γB∪B′ ,
(2,maxi ai), γ{a1}/ · · · /γ{ak} � γ{a1,...,ak},
(2, a), γ{a}/γB � γ{a}∪B

is an EL-shelling.

Proof. Let S ⊆ {0, 1, . . . , n} with 0 ∈ S and |S| > h. There is a natural way to

define a poset Qh,k
S (G) and a labelling λS : CR(Qh,k

S (G))→ {1, 2}× (S \ {0}) so that
Qh,k

{0,1,...,n}(G) = Qh,k
n (G) and λ{0,1,...,n} = λ. We will prove by induction on |S| that

λS is an EL-shelling.

For the base step, suppose S = {0, a1, . . . , ah}. Note that QS(G) is the chain
{0}/γ{a1}/ · · · /γ{ah} �S. Assigning any label to this cover gives a shelling of QS(G),
so the label λS({0}/γ{a1}/ · · · /γ{ah} � S) = (2,maxi ai) works.
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For the induction step, suppose that |S| > h+1. We must show that every interval

[x, y] of Qh,k
S (G) has a unique increasing chain and that this chain is lexicographically

first among the maximal chains of [x, y].
First we suppose that y �= 1̂ and let y = B0/γB1

/ · · · /γBj
where j > 0. The

interval [0̂, y] is isomorphic to the product

Qh,k
B0
(G)×ΠkB1

× · · · ×ΠkBj
.(3.1)

For any T ⊆ {1, . . . , n} there is a natural way to define a lattice ΠkT and an EL-
shelling κT : CR(ΠkT ) → {1, 2} × T of ΠkT so that Π

k
{1,...,n} is Π

k
n and κ{1,...,n} is the

EL-shelling of Theorem 1.2 for Πkn.
λS restricts

2 to λB0
. By induction, we may assume that λB0

is an EL-shelling

of Qh,k
B0
(G). Also, λS restricts to κBp

, which is an EL-shelling of ΠkBp
. The ranges

of λB0 , κB1 , . . . , κBj are pairwise disjoint and the total order on the range of λS is a
shuffle of the total orders on the ranges of λB0 , κB1 , . . . , κBj . We can therefore apply
Proposition 10.15 of [Bj-Wa4] to conclude that the labelling for (3.1) is an EL-shelling.
This labelling is respected by the isomorphism from (3.1) to the restriction of λS to
[0̂, y]. The restriction of λS to [0̂, y] is therefore an EL-shelling of [0̂, y]. It follows
that for any x < y there is a unique increasing chain in [x, y] that lexicographically
precedes all other maximal chains in [x, y].

Now suppose that the interval under consideration is of the form [x, 1̂] where
x = B0/γB1/ · · · /γBj . Index the nonzero G-blocks of x so that for some t ∈ {0, . . . , j}

• 1 ≤ p ≤ t implies Bp is a nonsingleton,
• p > t implies Bp = {ap},
• 1 ≤ p < m ≤ t implies maxBp < maxBm,
• t < p < m implies ap < am.

We now describe an increasing maximal chain c of [x, 1̂]. We consider the cases x �= 0̂
and x = 0̂. In each case, we will prove that c is increasing, that it is the only increasing
chain of [x, 1̂], and that it precedes every other maximal chain in [x, 1̂].

Case I (x �= 0̂). At least one of B0 and B1 is a nonsingleton, so we can form the
chain c : x = x0 � · · · � xj = 1̂ for which xp = (B0 ∪ B1 ∪ · · · ∪ Bp)/γBp+1/ · · · /γBj .
The label sequence of c is (1,maxB1) < · · · < (1,maxBt) < (2, at+1) < · · · < (2, aj),
so c is increasing. If |B0| = 1, then we are using the fact that h < k.

To see that c is the only increasing chain in [x, 1̂], let c′ : x = x′
0� · · ·�x′

d = 1̂ be
a different maximal chain of [x, 1̂]. We show that merges of types h, NS-NS, k, and S-
NS create (possibly weak) descents in the label sequence of c′. It suffices to show that
there are two covers C1 and C2 in c′ such that C1 precedes3 C2 but λ(C1) ≥ λ(C2).

• Suppose c′ contains an h-merge having label (2, ·). Then γB1 is a nonsingleton.
Eventually a G-block containing4 γB1 will be merged with the zero G-block
giving label (1, ·).
• Suppose c′ contains an NS-NS merge and that the last such merge forms a
block γB . This merge has label (1,maxB). Eventually a G-block containing
γB will be merged with the zero G-block. If this G-block is γB , then the label
(1,maxB) is repeated. If it strictly contains γB , then a singleton G-block is

2Every cover in the product corresponds to a cover in one of the factors. To say that λS restricts

to λB0 means that the λB0
-label of the cover in Qh,k

B0
(G) is the same as the λS-label of the naturally

corresponding cover in [0̂, y].
3We say that C1 precedes C2 in c′ if C2 is closer to 1̂ than C1 in c′.
4We say that γB contains δB′ and write δB′ ⊆ γB if B′ ⊆ B and δB′ = γB′ .
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merged with γB giving a label (2, ·) prior to the merge with the zero G-block
which has label (1, ·).
• Suppose c′ contains a k-merge with label (2, ·). Eventually a G-block con-
taining the G-block that results from this merge will be merged with the zero
G-block giving the label (1, ·).
• Suppose c′ contains an S-NS merge with label (2, ·). Eventually a G-block
containing the G-block formed in this merge will be merged with the zero
G-block giving label (1, ·).

In every case, a (possibly weak) descent occurs in the label sequence of c′. We conclude
that every merge in an increasing chain must be of type Z-S or of type Z-NS. All Z-NS
merges have label (1, ·) and so must precede all Z-S merges which have label (2, ·).
These merges must occur in the same order as in c because of the second coordinate
of the label. Therefore, c is unique.

Next we show that c is lexicographically first among the maximal chains of [x, 1̂].
It suffices to show that if xp � xp+1 is any cover in c and xp � y �= xp+1, then
λS(xp � xp+1) < λS(xp � y). We consider the cases in which the nonzero G-block in
xp � xp+1 is a nonsingleton or a singleton.

Case I(a) (xp � xp+1 is a Z-NS merge). If xp � y is a Z-S merge, a k-merge, an
h-merge, or an S-NS merge, then λS(xp�y) = (2, ·) > (1,maxBp+1) = λS(xp�xp+1)
and we are done.

If xp � y is a Z-NS merge or an NS-NS merge, then let γBm be the nonzero G-
block in the merge with the largest maximum. We have m > p + 1 so λS(xp � y) =
(1,maxBm) > (1,maxBp+1) = λS(xp � xp+1).

Case I(b) (xp�xp+1 is a Z-S merge). In this case, xp consists of the zero G-block
and a number of singleton G-blocks, so xp � y either is a k-merge or is a different
Z-S merge. In either case, if γ{am} is the singleton in xp � y such that m is as large
as possible, then λS(xp � y) = (2, am) > (2, ap+1) = λS(xp � xp+1). This concludes
Case I.

Case II (x = 0̂). We form the chain c : 0̂ = x0 � · · ·� xn−h+1 = 1̂ for which

xp = {0, a1, . . . , ap+h−1}/γ{ap+h}/ · · · /γ{an}
for p = 1, . . . , n− h+ 1. Observe that the label sequence (2, ah) < (2, ah+1) < · · · <
(2, an) of c is increasing.

Now we show that c is the only increasing chain in [0̂, 1̂]. Let c′ : 0̂ = x′
0�· · ·�x′

d =
1̂ be a maximal chain of [0̂, 1̂]. If there is a k-merge in c′ giving the G-block γB , then
it has label (2, ·). Eventually a G-block containing γB will be merged with the zero
G-block, giving the label (1, ·) and a descent in c′.

Thus an h-merge is the first merge in any increasing chain and the rest are Z-S
merges. The first merge must involve the first h nonzero singletons, because if one of
them is omitted, it will eventually be merged with the zero G-block giving a descent.
The remaining singletons must be merged into the zero block in the same order as in
c because of the second coordinate, so c is unique.

Finally, we show that c is lexicographically first among the maximal chains of
[0̂, 1̂]. The same sufficiency condition that we used in Case I applies here. Suppose
p = 0. Then 0̂� y is either a k-merge or an h-merge different from the one that gives
x1. In either case, λS(0̂� y) > λS(0̂� x1) as desired.

If p > 0, then xp is of the form {0, a1, . . . , ap+h−1}/γ{ap+h}/ · · · /γ{an}. Therefore
xp � y is either a k-merge or a Z-S merge involving a singleton G-block other than
γ{ap+h}. In either case, λS(xp � y) > λS(xp � xp+1) as desired.
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Corollary 3.2. If 1 ≤ h < k and n ≥ h, then ∆(Qh,k
n (G)) has the homotopy

type of a wedge of spheres.

The next theorem gives another EL-shelling for Qh,k
n (G) that specializes to that

of [Bj-Sa] for Π
h,k

n and gives new EL-shellings for Πn+1 and Π
k
n+1.

Theorem 3.3. If 1 ≤ h < k and n ≥ h, then the labelling µ of Qh,k
n (G) defined

by

µ(x � y) =




(1,maxB), B0/γB � B0 ∪B,
(2,maxi ai), {0}/γ{a1}/ · · · /γ{ah} � {0, a1, . . . , ah},
(2, a), B0/γ{a} � B0 ∪ {a},
(3,max(B ∪B′)), γB/γB′ � γB∪B′ ,
(4,maxi ai), γ{a1}/ · · · /γ{ak} � γ{a1,...,ak},
(4, a), γ{a}/γB � γ{a}∪B

is an EL-shelling.

Proof. This proof is nearly identical to the previous one until the point at which
we need to show that c is the only increasing chain in an interval of the form [x, 1̂],
where x �= 0̂. The proof that there can be no h-merge in any increasing chain of
[x, 1̂] is the same as before. We need to show that there can be no NS-NS merges, no
k-merges, and no S-NS merges in an increasing chain of [x, 1̂].

• Suppose c′ contains an NS-NS merge with label (3, ·). Eventually a G-block
containing the G-block that results from this merge will be merged with the
zero G-block, giving a label (1, ·).
• Suppose c′ contains a k-merge with label (4, ·). Eventually, a G-block con-
taining the G-block that results from this merge will be merged with the zero
G-block, giving a label (1, ·).
• Suppose c′ contains an S-NS merge with label (4, ·). Eventually, a G-block
containing the G-block that results from this merge will be merged with the
zero G-block giving a label (1, ·).

As before, we conclude that c is unique.

In showing that c is lexicographically first among the maximal chains of [x, 1̂] we
again consider the merge xp � xp+1 in c and any other merge xp � y. Suppose first
that xp � xp+1 is a Z-NS merge. The proof is the same as before if xp � y is another
Z-NS merge, an h-merge, or a Z-S merge.

If xp � y is a k-merge or an S-NS merge, then µS(xp � xp+1) = (1,maxBp+1) <
(4, ·) = µS(xp�y). If x�y is an NS-NS merge, then µS(xp�xp+1) = (1,maxBp+1) <
(3, ·) = µS(xp � y).

If xp � xp+1 is a Z-S merge, then as before xp � y must be either a Z-S merge
involving a singleton γ{am} withm > p+1 or a k-merge. In the first case, µS(xp�y) =
(2, am) > (2, ap+1) = µS(xp � xp+1). In the second case, µS(xp � y) = (4, ·) >
(2, ap+1) = µS(xp � xp+1) as desired.

Now consider the interval [0̂, 1̂] and let c be as in the previous proof. The label
sequences λS(c) and µS(c) are identical, so c is increasing in the labelling µS .

Suppose a different maximal chain c′ : 0̂ = x′
0 � · · · � x′

d = 1̂ of [0̂, 1̂] contains
a type k-merge with label (3, ·). Eventually, a G-block containing the G-block that
results from this merge will be merged with the zero G-block, giving the label (1, ·).
Therefore c′ cannot be increasing. The same reasoning as before shows that c′ cannot
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be increasing when c′ consists of an h-merge and some Z-S merges. We conclude that
c is the unique increasing chain of [0̂, 1̂].

To see that c is lexicographically first among the maximal chains of [0̂, 1̂] suppose
p = 0 and 0̂ � y is a k-merge. Then µS(0̂ � y) = (4, ·) > (2, ah) = µS(0̂ � x1). The
case when 0̂� y is an h-merge is the same as before.

If p > 0 and xp � y is a k-merge, then µS(xp � y) = (4, ·) > (2, ap+h) = µS(xp �

xp+1). The case when p > 0 and xp � y is a Z-S merge is the same as before.

4. Betti numbers for Qh,k
n (G). We now find the rank of H̃ l(Qh,k

n (G)), where
1 ≤ h < k and n ≥ h. This number is known as the lth reduced Betti number of
Qh,k
n (G) and will be denoted by β̃ln,h,k,G. When k = 2 we obtain the usual Dowling

lattice whose unique nonzero Betti number β̃n−2n,1,2,G is known to be
∏n−1
i=0 (i|G| + 1),

so assume k > 2. Theorem 1.1 and Theorem 3.1 tell us that β̃ln,h,k,G is the number

of λ-decreasing maximal chains of length l+ 2 in Qh,k
n (G), so we want to count these

chains. Another approach would be to count the h, k-caterpillars of section 5, which
are in bijection with the decreasing chains of Qh,k

n (G).
For a maximal chain c of Qh,k

n (G) let tc denote the number of k-merges in c.
Maximal chains in Qh,k

n (G) are of two types: those that have an h-merge and those
that do not. If c has no h-merge, then tc satisfies 1 ≤ tc ≤ �n/k� and the length of c is
given by l(c) = n−tc(k−2). If c has one h-merge, then tc satisfies 0 ≤ tc ≤ �(n−h)/k�
and the length of c is given by l(c) = n− tc(k−2)− (h−1). Let Dl

n,h,k,G and D̂l
n,h,k,G

be the number of λ-decreasing chains in Qh,k
n (G) of length l that have no h-merge

and one h-merge, respectively.
In any λ-decreasing maximal chain c in Qh,k

n (G), all h-merges, k-merges, Z-S
merges, and S-NS merges must come before all Z-NS merges and NS-NS merges
because of the first coordinate of the labels. Following [Su-Wa] we refer to the least
element of c that has no nonzero singleton G-blocks as the pivot of the chain. The
pivot divides the chain into a lower portion and an upper portion.

Theorem 4.1. Suppose 1 ≤ h < k and k > 2 and n ≥ h. If l = n− t(k − 2) for
some t where 1 ≤ t ≤ �n/k�, then

Dl
n,h,k,G = |G|n−t

∑
0=i0≤···≤it=n−tk


t−1∏
j=0

(
n− jk − ij − 1

k − 1
)
(1 + j|G|)(j + 1)ij+1−ij


 .

(4.1)

If l = n− t(k − 2)− (h− 1) for some t where 0 ≤ t ≤ �(n− h)/k�, then

D̂l
n,h,k,G =




(
n− 1
h− 1

)
if t = 0,

n−h∑
m=kt

(
n

m

)(
n−m− 1

h− 1
)
D
m−t(k−2)
m,h,k,G if t ≥ 1.

(4.2)

All other values of Dl
n,h,k,G and D̂l

n,h,k,G are zero.
Proof. We will count λ-decreasing chains c for which tc = t, i.e., chains having

pivots with t nonzero G-blocks. First we count λ-decreasing chains having no h-merge.
In such a chain, the zero G-block cannot participate in any merge in the lower portion.
The k-merges of c divide the lower portion of c into t segments. For 0 ≤ j ≤ t let ij
be the number of merges of a singleton with one other G-block that occur while there
are j or fewer nonzero nonsingleton G-blocks, so that 0 = i0 ≤ i1 ≤ · · · ≤ it = n− tk.
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When performing the (j+1)st k-merge we must use the largest remaining singleton
together with k−1 of the other n−jk− ij−1 available singletons. |G|k−1 different G-
blocks can be formed from a fixed set of k nonzero singleton G-blocks, so the number
of choices for the (j + 1)st k-merge is

|G|k−1
(
n− jk − ij − 1

k − 1
)
.

There are |G|(j+1) ways to perform each singleton merge when j+1 nonsingleton G-
blocks are present, so there are a total of [|G|(j+1)]ij+1−ij ways to merge the ij+1−ij
singletons that will be merged between the (j + 1)st and the (j + 2)th k-merge. The
total number of choices for the lower portion of c is therefore

∑
0=i0≤···≤it=n−kt


t−1∏
j=0

|G|k−1
(
n− jk − ij − 1

k − 1
)
[|G|(j + 1)]ij+1−ij




= |G|n−t
∑

0=i0≤···≤it=n−tk


t−1∏
j=0

(
n− jk − ij − 1

k − 1
)
(j + 1)ij+1−ij


 .(4.3)

After the pivot there comes a sequence of t merges of types Z-NS and NS-NS. The
nonzero G-block with the largest maximum must be involved in each of these merges
to ensure that c is λ-decreasing. For the jth merge above the pivot, there is one way
to merge this G-block with the zero G-block and |G| ways to merge it with each of
the t− j other nonzero G-blocks. Thus there are a total of 1 + |G|(t− j) choices for
the jth merge and a total of

t−1∏
j=1

(1 + j|G|)(4.4)

choices for the upper portion of the chain. Taking the product of (4.3) with (4.4) we
obtain equation (4.1).

To obtain the formula for D̂l
n,h,k when t = 0, observe that the h-merge must be

the first merge and that all merges after that are between singletons and the zero G-
block. The h-merge must involve the largest singleton G-block and h−1 other nonzero
singletons. There are

(
n−1
h−1
)
ways to perform the h-merge. The singletons that remain

must be merged with the zero G-block in decreasing order of first coordinate, so no
further choice is involved. This concludes the first part of (4.2).

Now consider the case when t ≥ 1 and there is an h-merge. Let T ⊆ {1, . . . , n}
with |T | = m where kt ≤ m ≤ n − h. Let S = T ∪ {0}. We count over all such
sets S the number of pairs of decreasing chains (c1, c2) for which c1 is in Qh,k

S (G) and

has no h-merge and t k-merges and for which c2 is in Qh,k
{0,...,n}\T (G) and consists of

one h-merge and no k-merges. Such pairs are in bijection with decreasing chains of
Qh,k
n (G) having t k-merges and one h-merge. Merges in c1 correspond to k-merges,

S-NS merges, NS-NS merges, and Z-NS merges in c. Merges in c2 correspond to
h-merges and Z-S merges in c.



ON THE HOMOLOGY OF THE h, k-EQUAL DOWLING LATTICE 61

For example, let S = {0, 1, 2, 3, 5, 6, 9, 10, 11, 13, 15}. The λ-decreasing chain

c = 0/1/2/3/4/5/6/7/8/9/10/11/12/13/14/15
� 0/1/2/3 9 11 15/4/5/6/7/8/10/12/13/14
� 0 4 14/1/2/3 9 11 15/5/6/7/8/10/12/13
� 0 4 14/1/2 6 10 13/3 9 11 15/5/7/8/12
� 0 4 12 14/1/2 6 10 13/3 9 11 15/5/7/8
� 0 4 8 12 14/1/2 6 10 13/3 9 11 15/5/7
� 0 4 7 8 12 14/1/2 6 10 13/3 9 11 15/5
� 0 4 7 8 12 14/1/2 6 10 13/3 5 9 11 15
� 0 4 7 8 12 14/1 2 6 10 13/3 5 9 11 15
� 0 3 4 5 7 8 9 11 12 14 15/1 2 6 10 13
� 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

in Q2,415 ((e)) corresponds to the pair of λ-decreasing chains

c1 = 0/1/2/3/5/6/9/10/11/13/15 � 0/1/2/3 9 11 15/5/6/10/13
� 0/1/2 6 10 13/3 9 11 15/5 � 0/1/2 6 10 13/3 5 9 11 15
� 0/1 2 6 10 13/3 5 9 11 15 � 0 3 5 9 11 15/1 2 6 10 13
� 0 1 2 3 5 6 9 10 11 13 15

and

c2 = 0/4/7/8/12/14 � 0 4 14/7/8/12 � 0 4 12 14/7/8
� 0 4 8 12 14/7 � 0 4 7 8 12 14

in Q2,4{0,1,2,3,5,6,9,10,11,13,15}((e)) and Q2,4{0,4,7,8,12,14}((e)), respectively. Here and else-
where, each newly formed {e}-block is displayed in boldface for readability.

There are
(
n
m

)
ways to choose T ⊆ {1, . . . , n} with |T | = m. As seen in (4.1)

there are D
m−t(k−2)
m,h,k,G decreasing chains in Qh,k

S (G) for which the number of k-merges

is t and the number of h-merges is 0, so there are
(
n
m

)
D
m−t(k−2)
m,h,k,G chains that can

serve as c1. As seen in the first part of (4.2) there are
(
n−m−1
h−1

)
decreasing chains in

Qh,k
{0,...,n}\T (G) that can serve as c2. Thus we have

D̂l
n,h,k,G =

n−h∑
m=kt

(
n

m

)(
n−m− 1

h− 1
)
D
m−t(k−2)
m,h,k,G

as desired for the second part of (4.2).

Taken together, Theorem 1.1 and Theorem 4.1 give the following corollary. When
1 < h < k − 1, the length l of a chain determines whether the chain includes an h-
merge or not. When h = 1 or h = k−1, we must count chains of length l that include
an h-merge as well as those that do not.

Corollary 4.2. If 1 ≤ h < k and n ≥ h and k > 2, then Qh,k
n (G) has

the homotopy type of a wedge of spheres. Its integral homology groups are free with
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reduced Betti numbers

β̃ln,h,k,G=




Dl+2
n,h,k,G if 1 < h < k − 1 and l = n− t(k − 2)− 2

for some t where 1 ≤ t ≤ �n/k�,
D̂l+2
n,h,k,G if 1 < h < k −1 and l= n− t(k − 2)− (h− 1)− 2

for some t where 0 ≤ t ≤ �(n− h)/k�,
Dl+2
n,h,k,G + D̂l+2

n,h,k,G if h = 1 and l = n− t(k − 2)− 2
for some t where 0 ≤ t ≤ �n/k�,

Dl+2
n,h,k,G + D̂l+2

n,h,k,G if h = k − 1 and l = n− t(k − 2)− 2
for some t where 1 ≤ t ≤ �(n+ 1)/k�,

0 otherwise.

5. The h, k-caterpillar basis for homology. We describe dual bases for the
homology and cohomology groups of Qh,k

n (G) in terms of trees which we call h, k-
caterpillars. The cohomology basis is obtained from the λ-decreasing chains (cf. The-
orem 1.1). The homology basis is modelled on the caterpillar basis for Πkn of [Wa2].

There are two kinds of h, k-caterpillars. The first kind corresponds to decreasing
chains with no h-merge, and the second kind corresponds to decreasing chains with
one h-merge. h, k-caterpillars are built up from k-caterpillars, which in turn are built
up from k-stars.

A k-star is a tree whose vertices are subsets of {1, . . . , n} ×G such that
• no element of {1, . . . , n} appears twice as the first coordinate of an element
of a vertex of the k-star;
• one vertex, called the root, is of cardinality k− 1, and the remaining vertices,
called legs, are of cardinality 1;

• there is at least one leg whose element has a larger first coordinate than every
element of the root;
• each leg is of degree one and is adjacent to the root.

For example, let n = 100 and G = C2. Figure 5.1 shows a 4-star. Its legs are {1},
{6}, {15}, and {25}, and its root is {4, 7, 10}.

       
4 7 10

1

   
6

      
15

25

Fig. 5.1. A 4-star.

In our figures we adopt the notational conventions that apply to our examples,
i.e., dropping curly brackets and commas from sets, putting second coordinates over
first coordinates, etc.

A k-caterpillar is a tree such that we have the following:
• Its vertex set is the disjoint union of the vertex sets of one or more k-stars.
• No element of {1, . . . , n} appears twice as the first coordinate of an element
of a vertex.
• Its edge set contains the edge sets of the k-stars in the union.
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• The subgraph induced by the roots of the k-stars, called the spine, is a path.
The requirement that the k-caterpillar is a tree implies that each edge is either
an edge of one of the k-stars or joins the roots of two k-stars.
• The pair having the smallest first coordinate among all elements of the vertices
of the k-caterpillar has a second coordinate e.

• The k-star to which the leg with the largest first coordinate belongs is called
the maximum k-star ; its root is at one end of the spine.

The legs of the k-stars are also called legs of the k-caterpillar. For example, let n = 100
and G = C2. The tree depicted in Figure 5.2 is a 4-caterpillar. Its maximum 4-star
is the rightmost star.

           
3 15 20

       
8 13 22

       
1 16 19

25
     
112321

   
72

Fig. 5.2. A 4-caterpillar.

An h, k-caterpillar of the first type is a tree such that
• v0 = {0} is a vertex and the remaining vertices are subsets of {1, . . . , n}×G,
• each element of {1, . . . , n} appears exactly once as the first coordinate of an
element of a vertex,
• each component of the induced subforest on the vertices other than v0 is a

k-caterpillar,
• each k-caterpillar in the subforest is joined to v0 at the root of the k-star
farthest from the maximum k-star.

The value of h cannot be inferred from an h, k-caterpillar of the first type since the
corresponding chains have no h-merge.

For example, if n = 27 and G = C2, then the tree depicted in Figure 5.3 is a
2, 4-caterpillar of the first type.

           
3 15 20

       
8 13 21

       
1 16 19

25
     
112223

   
72

0
            
4 6 17 24

          
10 18 26

27

          
5 9 12

14

Fig. 5.3. A 2, 4-caterpillar of the first type.

An h, k-caterpillar of the second type is a tree such that we have the following:
• v0 = {0, (a1, e), . . . , (ah−1, e)} is a vertex, where ai ∈ {1, . . . , n} for 1 ≤ i < h.
• Every vertex adjacent to v0 is either a singleton from {1, . . . , n} × {e} or is
the root of the k-star furthest from the maximum k-star in a k-caterpillar.
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The singleton elements adjacent to v0 are also called legs.
• There is a singleton adjacent to v0 the first coordinate of which is larger than
the first coordinate of every pair in v0.
• Each element of {1, . . . , n} appears exactly once as the first coordinate of an
element of a vertex.

For example, if n = 20 and G = C2, then the tree depicted in Figure 5.4 is a 2, 4-
caterpillar of the second type.

0 6

20

15

3

19
     
13

16
   
8

11

     
1 7 9

             
12 17 18

       
4 10 14

2 5

Fig. 5.4. A 2, 4-caterpillar of the second type.

Any set S of edges of an h, k-caterpillar κ of either type gives an element πS of
Qh,k
n (G) whose G-blocks are obtained from the union of the vertices in the connected

components of κ corresponding to S and from breaking isolated vertices of size h or
k − 1 into singleton G-blocks.

For example, if S is the set of edges of the 2, 4-caterpillar depicted in Figure 5.5,
then the corresponding C2-partition is

πS = 0 1 6 7 9 11 15/2/3/4/5/8/10/12 17 18 19/13/14/16/20

or, using the canonical representative,

πS = 0 1 6 7 9 11 15/2/3/4/5/8/10/12 17 18 19/13/14/16/20.

0 6

20

15

3

19
     
13

16
   
8

11

     
1 7 9

             
12 17 18

       
4 10 14

2 5

Fig. 5.5. A 2, 4-caterpillar with some edges deleted.

Furthermore, S1 ⊆ S2 if and only if πS1 ≤ πS2 . For each h, k-caterpillar κ, we
therefore obtain a sublattice Qκ of Q

h,k
n (G) that is isomorphic to the Boolean lattice

on the number of edges of κ.
Let ρκ be the fundamental cycle of spherical complex Qκ; this cycle is unique

up to sign. We claim that ρκ contains exactly one summand ĉκ such that cκ is λ-
decreasing. cκ can be obtained as follows. The smallest element of cκ corresponds to
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no edges of κ being included. To get the next element of cκ find the leg whose element
has the largest first coordinate and add the edge incident to that leg. Continue by
adding edges incident to singleton vertices in decreasing order of the first coordinate
of the element of the singleton vertices. When all edges incident to legs have been
added, we have reached the pivot.

Next find the k-caterpillar having the pair with the largest first coordinate as an
element of one of its vertices and add the edges in the spine of that k-caterpillar,
starting at the maximum k-star and working towards v0. Then find the k-caterpillar
having the pair with the next largest first coordinate as an element of one of its
vertices and repeat. Continue until all edges of κ are added.

For example, if κ is the 2, 4-caterpillar in Figure 5.3, then cκ is the chain

0/1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22/23/24/25/26/27
�0/1/2/3/4/5/6/7/8/9/10 18 2627/11/12/13/14/15/16/17/19/20/21/22/23/24/25
�0/1 16 19 25/2/3/4/5/6/7/8/9/10 18 26 27/11/12/13/14/15/17/20/21/22/23/24
�0/1 16 19 25/2/3/4 6 17 24/5/7/8/9/10 18 26 27/11/12/13/14/15/20/21/22/23
�0/1 16 19 25/2/3 15 20 23/4 6 17 24/5/7/8/9/10 18 26 27/11/12/13/14/21/22
�0/1 16 19 25/2/3 15 20 23/4 6 17 24/5/7/8 13 21 22/9/10 18 26 27/11/12/14
�0/1 16 19 25/2/3 15 20 23/4 6 17 24/5 9 12 14/7/8 13 21 22/10 18 26 27/11
�0/1 11 16 19 25/2/3 15 20 23/4 6 17 24/5 9 12 14/7/8 13 21 22/10 18 26 27
�0/1 11 16 19 25/2/3 7 15 20 23/4 6 17 24/5 9 12 14/8 13 21 22/10 18 26 27
�0/1 11 16 19 25/2 3 7 15 20 23/4 6 17 24/5 9 12 14/8 13 21 22/10 18 26 27
�0/1 11 16 19 25/2 3 7 15 20 23/4 6 17 24/5 9 10 12 14 18 26 27/8 13 21 22
�0 5 9 10 12 14 18 26 27/1 11 16 19 25/2 3 7 15 20 23/4 6 17 24/8 13 21 22
�0 5 9 10 12 14 18 26 27/1 8 11 13 16 19 21 22 25/2 3 7 15 20 23/4 6 17 24
�0 5 9 10 12 14 18 26 27/1 2 3 7 8 11 13 15 16 19 20 21 22 23 25/4 6 17 24
�0 1 2 3 5 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 25 26 27/4 6 17 24
�0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27,

and if C is the 2, 4-caterpillar of the second type in Figure 5.4, then cκ is the chain

0/1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20
�0 6 20/1/2/3/4/5/7/8/9/10/11/12/13/14/15/16/17/18/19
�0 6 20/1/2/3/4/5/7/8/9/10/11/12 17 18 19/13/14/15/16
�0 6 20/1/2/3/4 10 14 16/5/7/8/9/11/12 17 18 19/13/15
�0 6 15 20/1/2/3/4 10 14 16/5/7/8/9/11/12 17 18 19/13
�0 6 15 20/1/2/3/4 10 14 16/5/7/8/9/11/12 13 17 18 19
�0 6 15 20/1 7 9 11/2/3/4 10 14 16/5/8/12 13 17 18 19
�0 6 15 20/1 7 9 11/2/3/4 8 10 14 16/5/12 13 17 18 19
�0 6 15 20/1 7 9 11/2/3/4 8 10 14 16/5 12 13 17 18 19
�0 3 6 15 20/1 7 9 11/2/4 8 10 14 16/5 12 13 17 18 19
�0 3 6 15 20/1 2 7 9 11/4 8 10 14 16/5 12 13 17 18 19
�0 3 6 15 20/1 2 5 7 9 11 12 13 17 18 19/4 8 10 14 16
�0 1 2 3 5 6 7 9 11 12 13 15 17 18 19 20/4 8 10 14 16
�0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20.

The correspondence between h, k-caterpillars and λ-decreasing chains also goes
the other way. That is, to each λ-decreasing chain c : 0̂ = x0 � · · · � xd = 1̂ of
Qh,k
n (G) there corresponds an h, k-caterpillar κc which is obtained by the following

construction. Each merge in c corresponds to an edge in κc, and the merges determine
the first coordinates of the vertices of κc as described below. The second coordinate
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is determined by the canonical representative of the smaller G-partition in the Z-NS
merge involving a pair with the same first coordinate. For example, if c contains the
merge 0/1234� 01234, then 1, 2, 3, and 4 are elements of vertices of κc. In the case
of a Z-S merge or an h-merge, the second coordinate is e.

• If c contains a k-merge γ{a1}/ · · · /γ{ak} � γ{a1,...,ak} where a1 < · · · < ak,
then γ{a1,...,ak−1} is a root of κc and this root has a leg γ{ak}.

• If c contains an h-merge {0}/γ{a1}/ · · · /γ{ah}�{0, a1, . . . , ah} with a1 < · · · <
ah, then v0 = {0, (a1, e), . . . , (ah−1, e)} and the singleton {(ah, e)} is incident
to v0 in κc. Otherwise, v0 = {0}.

• Suppose c contains an S-NS merge γ{a}/γB � γ{a}∪B . Among the earlier
merges involving the elements of γB there is exactly one k-merge. Let γ{a}
be a leg incident to the root corresponding to this k-merge in κc.
• If c contains a Z-S merge B0/γ{a} � B0 ∪ {a}, then {(a, e)} is incident to v0
in κc. Note that a Z-S merge must be preceded by an h-merge.
• Suppose c contains an NS-NS merge γB/γB′ � γB∪B′ . Among the earlier
merges involving elements of one of γB and γB′ there is exactly one k-merge.
Suppose this is true of γB . There may be several k-merges among the earlier
merges involving elements of γB′ , and these k-merges correspond to the roots
of a sub-k-caterpillar5 of κc containing the maximum k-star. Join the root
corresponding to the k-merge involving elements of γB with the root of the
k-caterpillar corresponding to γB′ that is farthest from the maximum k-star
of that k-caterpillar.
• Suppose c contains a Z-NS merge B0/γB � B0 ∪ B. Then an edge joins v0
to the root of κc farthest from the maximum k-star of the k-caterpillar of κc
whose vertices contain the elements of γB .

The reader may check that κcκ = κ for each λ-decreasing chain c. The two
previous examples viewed in “reverse” serve as examples of this construction.

Let dκ = 0 if v0 is a singleton, and let dκ = 1 if the cardinality of v0 is greater
than 1. Let tκ be the number of roots of κ. The next theorem follows from the above
discussion and Proposition 1.1 of [Wa1].

Theorem 5.1. Let 1 ≤ h < k and n ≥ h. Then

{ρκ | κ is an h, k-caterpillar} and {cκ | κ is an h, k-caterpillar}
are dual bases for H̃l(Q

h,k
n (G)) and H̃ l(Qh,k

n (G)), respectively. The κ’s are constrained
to satisfy l = n− tκ(k − 2)− dκ(h− 1)− 2.

6. The subspace arrangement Bh,k
n,m and the cohomology of its comple-

ment. A subspace arrangement of a vector space V is a set A = {W1, . . . ,Wr} of
subspaces of V . In this paper, we will be working with subspace arrangements of Cn,
which will be viewed as R2n when necessary. The intersection lattice of A, denoted
L(A), is defined to be the set of intersections of elements of A ordered by reverse
inclusion.

Let ω be a primitive mth root of unity. The hyperplane arrangement An,m is
defined in [Or-So] to be the set of hyperplanes of the form {z ∈ Cn | zp = 0}, where
1 ≤ p ≤ n, together with the hyperplanes of the form {z ∈ Cn | zp−ωrzq = 0}, where
1 ≤ p < q ≤ n and 0 ≤ r < m.
An,1 is the complexified braid arrangement, also known as the Coxeter arrange-

ment of type An, whose intersection lattice is the partition lattice Πn+1. The ar-

5A sub-k-caterpillar κ of a k-caterpillar κ′ is a k-caterpillar that is an induced subgraph of κ′.
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rangement An,2 is the Coxeter arrangement of type Bn whose intersection lattice is
the signed partition lattice Πn. The Dowling lattice Qn(Cm) is the lattice of inter-
sections L(An,m) of the arrangement An,m.

Define the h, k-equal Dowling subspace arrangement Bh,kn,m to be the set of sub-
spaces of the form {z ∈ Cn | zj1 = · · · = zjh = 0}, where 1 ≤ j1 < · · · < jh ≤ n, to-
gether with subspaces of the form {z ∈ Cn | ωi1zj1 = · · · = ωikzjk}, where 0 ≤ il < m

for l = 1, . . . , k and 1 ≤ j1 < · · · < jk ≤ n. Observe that B1,2n,m = An,m, that Bk−1,kn,1

is the type A k-equal subspace arrangement, and that Bh,kn,2 is the type B h, k-equal
subspace arrangement.

Proposition 6.1. If 1 ≤ h < k and n ≥ h, then L(Bh,kn,m) = Qh,k
n (Cm).

Let Mh,k
n,m = Cn \ ∪A∈Bh,k

n,m
A. We will use our knowledge of the topology of

Qh,k
n (Cm) = L(Bh,kn,m) to describe the cohomology of Mh,k

n,m. The following theorem,
known as the Goresky–MacPherson formula, shows that it suffices to understand
the homology of the posets [0̂, y] for each y ∈ Qh,k

n (Cm) in order to understand the
cohomology of Mh,k

n,m. For an element y of a poset P we denote the dth reduced

homology of the subposet [0̂, y] of P by H̃d(0̂, y).
Theorem 6.2 (see [Go-Ma]). Let A be a subspace arrangement in Rn with

intersection lattice L. Then for all dimensions d,

H̃d

(
Rn \

⋃
A∈A

A

)
=
⊕
y∈L\0̂

H̃codim(y)−d−2(0̂, y).

In order to apply this result, we will view A ∈ Bh,kn,m as a subset of R2n and Mh,k
n,m

as R2n \ ∪A∈Bh,k
n,m

A. In this context, codim(y) refers to the real codimension of y as

a subset of R2n.
Since the intervals [0̂, y] are isomorphic to the product of an h, k-equal Dowling

lattice with a product of k-equal partition lattices, the following results will be useful.
Let β̃dn,k denote the d-dimensional reduced Betti number of Πkn.

Theorem 6.3 (see [Bj-We]). If 2 < k ≤ n, then Πkn has the homotopy type of a
wedge of spheres, so its homology groups are free. Furthermore, β̃dn,k �= 0 if and only
if d = n− 3− t(k − 2) for some t with 1 ≤ t ≤ �n/k�, and in that case

β̃dn,k = (t− 1)!
∑

0=i0≤···≤it=n−tk

t−1∏
j=0

(
n− jk − ij − 1

k − 1
)
(j + 1)ij+1−ij .

Let β̃d(P ) denote the d-dimensional reduced Betti number of the poset P . The
next result follows from the Künneth formula and results of Quillen [Qu] and Walker
[Wk].

Proposition 6.4. Let Pi be a bounded finite poset for i = 1, . . . , j. Then

β̃d(P1 × · · · × Pj) =
∑

r1+···+rj=d−2(j−1)
β̃r1(P1) · · · β̃rj (Pj).

Recall that the d-dimensional reduced Betti numbers β̃dn,m,h,k of Q
h,k
n (Cm) were

computed in Corollary 4.2. Define

β̃d0,m,h,k =

{
1 if d = −2,
0 else.

(6.1)
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Theorem 6.5. Suppose 1≤ h <k and k >2 and n ≥ h. Let y = B0/γB1
/ · · · /γBj

∈ Qh,k
n (Cm) be such that γB1 , . . . , γBp are all of the nonzero nonsingleton Cm-blocks

of y. Set ai = |Bi| for i = 0, 1, . . . , p. Then we have the following:

1. β̃d(0̂, y) =
∑
r0+r1+···+rp=d−2p β̃

r0
a0−1,m,h,kβ̃

r1
a1,k
· · · β̃rpap,k. Here the ri’s may

assume any integer values.
2. β̃d(0̂, y) is nonzero if and only if one of the following hold:

(a) a0 = 1 and d =
∑p
i=1 ai − p − 2 − t(k − 2) for some t where p ≤ t ≤∑p

i=1�ai/k�.
(b) a0 > 1 and 1 < h < k − 1 and d =

∑p
i=0 ai − p− 3− t(k − 2) for some

t where p+ 1 ≤ t ≤ �(a0 − 1)/k�+
∑p
i=1�ai/k�.

(c) a0 > 1 and 1 < h < k − 1 and d =
∑p
i=0 ai − p− 3− t(k − 2)− (h− 1)

for some t where p ≤ t ≤ �(a0 − h− 1)/k�+∑p
i=1�ai/k�.

(d) a0 > 1 and h = 1 and d =
∑p
i=0 ai − p− 3− t(k − 2) for some t where

p ≤ t ≤ �(a0 − 1)/k�+
∑p
i=1�ai/k�.

(e) a0 > 1 and h = k − 1 and d =
∑p
i=0 ai − p − 3 − t(k − 2) for some t

where p+ 1 ≤ t ≤∑p
i=0�ai/k�.

Proof. The first point results from Proposition 6.4 and the fact that

[0̂, y] ∼= Qh,k
a0−1(Cm)×Πka1

× · · · ×Πkap .

Definition (6.1) allows us to apply Proposition 6.4 when a0 = 1.

To see that the second point is true, observe that β̃d(0̂, y) �= 0 if and only if
there is a nonzero term in the sum in point one. This happens precisely when there
is a term in which each factor is nonzero. In other words, we must be able to write
d−2p = r0+r1+ · · ·+rp where (by Theorem 6.3) we must have ri = ai−3− ti(k−2)
for some ti with 1 ≤ ti ≤ �ai/k� for each i = 1, . . . , p.

If a0 = 1, then r0 = −2 by definition (6.1) and d =
∑p
i=1 ai − p − 2 − t(k − 2),

where t =
∑p
i=1 ti so that p ≤ t ≤∑p

i=1�ai/k�. This is conclusion 2.(a).
Now suppose that a0 > 1 and consider the options for r0. Suppose 1 < h < k−1.

By Corollary 4.2 we must have either r0 = a0 − 3 − t0(k − 2) for some t0 where
1 ≤ t0 ≤ �(a0 − 1)/k� or r0 = a0 − 3 − t0(k − 2) − (h − 1) for some t0 where
0 ≤ t0 ≤ �(a0 − h − 1)/k�. If h = 1 or h = k − 1, then the same corollary gives
r0 = a0 − 3 − t0(k − 2) with 0 ≤ t0 ≤ �(a0 − 1)/k� or with 1 ≤ t0 ≤ �a0/k�,
respectively. Substituting for the ri’s, setting t =

∑p
i=0 ti, and rearranging, we get

the following possibilities:

1. 1 < h < k − 1 and d =
∑p
i=0 ai − p − 3 − t(k − 2), where p + 1 ≤ t ≤

�(a0 − 1)/k�+
∑p
i=1�ai/k�.

2. 1 < h < k − 1 and d =
∑p
i=0 ai − p − 3 − t(k − 2) − (h − 1), where p ≤ t ≤

�(a0 − h− 1)/k�+∑p
i=1�ai/k�.

3. h = 1 and d =
∑p
i=0 ai − p − 3 − t(k − 2), where p ≤ t ≤ �(a0 − 1)/k� +∑p

i=1�ai/k�.
4. h = k− 1 and d =

∑p
i=0 ai− p− 3− t(k− 2), where p+1 ≤ t ≤∑p

i=0�ai/k�.
Options 1.–4. correspond to conclusions 2.(b)–(e), respectively.

Let ρdn,m,h,k and ρ̃dn,m,h,k denote the ranks of H
d(Mh,k

n,m) and H̃d(Mh,k
n,m), respec-

tively.

Theorem 6.6. Suppose 1 ≤ h < k and k > 2 and n ≥ h.

1. The groups Hd(Mh,k
n,m) are free.
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2.

ρ̃dn,m,h,k =
∑

y∈Qh,k
n (Cm)\0̂


 ∑
u0+···+up=d

β̃2a0−4−u0

a0−1,m,h,k β̃2a1−4−u1

a1,k
· · · β̃2ap−4−up

ap,k


.

Here a0 is the size of the zero block of y, a1, . . . , ap are the sizes of the nonzero
nonsingleton blocks of y, and the ui’s can assume any integer value.

Proof. The first conclusion follows from the Goresky–MacPherson formula to-
gether with the fact that all intervals of an EL-shellable poset are EL-shellable. As
for the second conclusion, the Goresky–MacPherson formula and the fact that the
(real) codimension6 of y is 2a0 + · · ·+ 2ap − 2p− 2 show that

ρ̃dn,m,h,k =
∑

y∈Qh,k
n (Cm)\0̂

β̃2a0+···+2ap−2p−4−d(0̂, y).

Point 1. of Theorem 6.5 gives

ρ̃dn,m,h,k =
∑

y∈Qh,k
n (Cm)\0̂


 ∑
r0+···+rp=2a0+···+2ap−4p−4−d

β̃r0a0−1,m,h,k β̃r1a1,k
· · · β̃rpap,k


 .

Making the change of variable ri = 2ai − 4− ui for i = 0, 1, . . . , p gives

2a0+ · · ·+2ap−4p−4−d = r0+r1+ · · ·+rp = 2a0+ · · ·+2ap−4p−4−u0−· · ·−up,

whence d = u0 + · · ·+ up and

ρ̃dn,m,h,k =
∑

y∈Qh,k
n (Cm)\0̂


 ∑
u0+···+up=d

β̃2a0−4−u0

a0−1,m,h,k β̃2a1−4−u1

a1,k
· · · β̃2ap−4−up

ap,k




as desired.
Note. We will have ρ̃dn,m,h,k �= 0 precisely when one of the summands in the

second point is nonzero; each factor in that summand must therefore be nonzero.
Theorem 6.3 and Corollary 4.2 show that ρdn,m,h,k �= 0 if and only if there exists

y ∈ Qh,k
n (Cm) such that for i = 1, . . . , p we have 2ai− 4−ui = ai− 3− ti(k− 2), that

is, ui = ai − 1 + ti(k − 2), where 1 ≤ ti ≤ �ai/k�, and
• if h = 1, then 2a0−4−u0 = a0−1−t0(k−2)−2, that is, u0 = a0−1+t0(k−2),
for some t0 in the range 0 ≤ t ≤ �(a0 − 1)/k�;

• if 1 < h < k − 1, then either
– 2a0 − 4 − u0 = a0 − 1 − t0(k − 2) − 2, that is, u0 = a0 − 1 + t0(k − 2),
for some t0 in the range 1 ≤ t ≤ �(a0 − 1)/k� or

– 2a0 − 4 − u0 = a0 − 1 − t0(k − 2) − (h − 1) − 2, that is, u0 = a0 − 1 +
t0(k − 2) + h− 1, for some t0 in the range 0 ≤ t0 ≤ �(a0 − 1− h)/k�;

• if h = k − 1, then 2a0 − 4 − u0 = a0 − 1 − t0(k − 2) − 2, that is, u0 =
a0 − 1 + t0(k − 2), for some t0 in the range 1 ≤ t ≤ �a0/k�.

Taking t = t0 + · · ·+ tp with d = u0 + · · ·+ up shows that ρ
d
n,m,h,k �= 0 if and only if

there is y ∈ Qh,k
n (G) so that

6The codimension of y ∈ Qh,k
n (Cm) means the codimension of the corresponding element of

L(Bh,k
n,m).
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• if h = 1, then d =
∑p
i=0 ai − p − 1 + t(k − 2) for some t with p ≤ t ≤

�a0/k�+ �a1/k�+ · · ·+ �ap/k�;
• if 1 < h < k − 1, then either

– d =
∑p
i=0 ai−p−1+ t(k−2) for some t with p+1 ≤ t ≤ �(a0−1)/k�+

�a1/k�+ · · ·+ �ap/k� or
– d =

∑p
i=0 ai − p − 1 + t(k − 2) + (h − 1) for some t with p ≤ t ≤

�(a0 − 1− h)/k�+ �a1/k�+ · · ·+ �ap/k�;
• if h = k − 1, then d =

∑p
i=0 ai − p− 1 + t(k − 2) for some t with p+ 1 ≤ t ≤

�a0/k�+ �a1/k�+ · · ·+ �ap/k�.
Here the ai’s are as in the previous theorem.
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Abstract. Let G = (V + s, E) be a graph with a designated vertex s of degree d(s), and let
f(s) = (d1, d2, . . . , dp) be a partition of d(s) into p positive integers. An f(s)-detachment of G is
a graph G′ obtained by “splitting” s into p vertices, called the pieces of s, such that the degrees
of the pieces of s in G′ are given by f(s). Thus every edge sw ∈ E corresponds to an edge of G′
connecting some piece of s to w. We give necessary and sufficient conditions for the existence of an
f(s)-detachment of G in which the local edge-connectivities between pairs of vertices in V satisfy
prespecified lower bounds.

Our result is a common generalization of a theorem of Mader on edge splittings preserving local
edge-connectivities and a result of Fleiner on f(s)-detachments satisfying uniform lower bounds. It
implies a conjecture of Fleiner on f(s)-detachments preserving local edge-connectivities. By using our
characterization we extend a theorem of Frank on local edge-connectivity augmentation of graphs
to the case when stars of given degrees are added, and we also solve the local edge-connectivity
augmentation problem for 3-uniform hypergraphs.

Key words. detachments of graphs, edge-connectivity, edge splitting

AMS subject classification. 05C40

DOI. 10.1137/S0895480199363933

1. Introduction. We consider loopless undirected graphs which may contain
parallel edges. Let G = (V + s,E) be a graph with a designated vertex s. A degree
specification is a sequence f(s) = (d1, d2, . . . , dp) of positive integers with

∑p
1 di =

d(s). An f(s)-detachment of G is a graph G′ = (V ∪ {s1, s2, . . . , sp}, E′) obtained by
“splitting” s into p vertices, s1, s2, . . . , sp, called the pieces of s in G′, such that the
degree of si is equal to di for 1 ≤ i ≤ p. Thus every edge sw ∈ E corresponds to an
edge of siw ∈ E′, connecting some piece of s to w.

Let H = (W,E) be a graph. For two vertices u, v ∈W the local edge-connectivity
between u and v, denoted by λH(u, v), is the maximum number of pairwise edge-
disjoint paths from u to v. Let U ⊆ W and let r : U2 → Z+ be a symmetric integer
valued function on pairs of vertices of U . We say that r is a requirement function on
U , and we call H r-edge-connected in U if

λH(x, y) ≥ r(x, y) for all pairs x, y ∈ U.(1)

The main result of this paper is the following necessary and sufficient condition for
the existence of an f(s)-detachment of G, which is r-edge-connected in V .

Theorem 1.1. Let G = (V + s,E) be a graph such that there are no cut-edges
incident to s. Let f(s) = (d1, d2, . . . , dp) be a degree specification with di ≥ 2 for all
1 ≤ i ≤ p, and let r be a requirement function on V . Then there exists an f(s)-
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Budapest, Hungary (jordan@cs.elte.hu).
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detachment of G, which is r-edge-connected in V , if and only if

G is r-edge-connected in V and(2)

λG−s(u, v) ≥ r(u, v)−
p∑
i=1


di/2�(3)

holds for every pair u, v ∈ V .
The first results on the existence of highly connected detachments (with degree

specifications) were obtained by Nash-Williams [8]. The version that we investigate,
where the goal is to detach a single vertex s and the degree specification may be
arbitrary, was first studied by Fleiner [3]. He proved the following theorem. For a
positive integer k we call a graph H k-edge-connected in U if H is r-edge-connected
in U for the uniform requirement function r(u, v) ≡ k, u, v ∈ U .

Theorem 1.2 (see [3]). Let G = (V + s,E) be k-edge-connected in V for some
k ≥ 2, and let f(s) = (d1, d2, . . . , dp) be a degree specification with di ≥ 2 for all
1 ≤ i ≤ p. Then there exists an f(s)-detachment of G which is k-edge-connected in
V if and only if λG−s(u, v) ≥ k −∑p

i=1
di/2� holds for every pair u, v ∈ V .
Theorem 1.2 follows from Theorem 1.1 by setting r(u, v) = k for every pair

u, v ∈ V . Note that Fleiner’s result is valid for a family of hypergraphs as well. We
discuss this extension and show how it follows from Theorem 1.1 in section 6.

In the same paper Fleiner conjectured that if there are no cut-edges incident to s in
G = (V +s,E) and λG−s(u, v) ≥ λG(u, v)−

∑p
i=1
di/2� holds for every pair u, v ∈ V ,

then there exists an f(s)-detachment G′ of G for which λG′(u, v) = λG(u, v) for every
pair u, v ∈ V . Theorem 1.1 implies this conjecture by setting r(u, v) = λG(u, v) for
every u, v ∈ V .

Detachments are closely related to edge splittings. Splitting off two edges su, sv
in a graph means replacing su, sv by a new edge uv. If u = v, then the resulting
loop is deleted. Splitting off su, sv in a graph G = (V + s,E) is called λ-admissible
if λG′(u, v) = λG(u, v) holds for every pair u, v ∈ V , where G′ is the graph obtained
by splitting off the pair su, sv. This operation is a useful tool in proving theorems
and designing algorithms for connectivity problems. We use and, in Theorem 1.1, we
extend the following deep result of Mader on edge splittings preserving local edge-
connectivity. The somewhat stronger form of this result that we state here, and a
shorter proof, can be found in Frank [4].

Theorem 1.3 (see [7]). Let G = (V + s,E) be a connected graph with d(s) = 3
such that there is no cut-edge incident to s. Then there is a λ-admissible splitting
at s.

Proof. We may assume that d(s) ≥ 4. Let us define a degree specification for s and
a requirement function on V by choosing f(s) = (d1, d2) with d1 = 2 and d2 = d(s)−2,
and r(u, v) = λG(u, v) for all pairs u, v ∈ V . We claim that G, f(s) and r satisfy (2)
and (3). Clearly, (2) must hold by the definition of r. Furthermore, we have p = 2 and∑p
i=1
di/2� = 
d(s)/2�. It is easy to see that λG−s(u, v) ≥ λG(u, v)−
d(s)/2�. Thus

(3) holds as well. Hence Theorem 1.1 implies that there exists an f(s)-detachment
G′ = (V ∪ {s1, s2}, E′) of G which is r-edge-connected in V . This implies that
splitting off the edges sx, sy in G, where s1x, s1y are the edges incident to s1 in G′,
is λ-admissible.

As a new application, we use Theorem 1.1 to solve the graph augmentation prob-
lem where stars of given degrees may be attached to a given graph in order to meet
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given local edge-connectivity requirements. This extends a theorem of Frank [5] on
augmenting the local edge-connectivities by adding a smallest set of new edges. We
also solve the local edge-connectivity augmentation problem for 3-uniform hyper-
graphs.

The organization of the paper is as follows. Section 2 contains further definitions
and preliminary results. In section 3 we describe the proof method of our main
theorem and show how to reduce the problem to the case when f(s) = (3, 3, . . . , 3).
In section 4 we introduce the method of “tight set contraction.” By using this method
we complete the proof of the main result in section 5. Applications are discussed in
section 6.

2. Preliminaries. Let H = (W,E) be a graph. For X,Y ⊆ W we use d(X,Y )
to denote the number of edges from X − Y to Y − X. Let d(X) = d(X,V − X)
denote the degree of a set X ⊆W . A singleton set {v} is simply denoted by v. Thus
d(v) is the degree of vertex v ∈ W . The symbols ⊆ and ⊂ denote set containment
and proper set containment, respectively. Two sets X,Y are said to be intersecting if
X ∩ Y , X − Y , Y −X are all nonempty.

The degree function of a graph satisfies the following well-known equalities.
Proposition 2.1. Let H = (W,E) be a graph. For arbitrary subsets X,Y ⊆W ,

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ),(4)

d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2d(X ∩ Y,W − (X ∪ Y )).(5)

Let H = (W,E) be a graph, let U ⊆ W be a subset of vertices with |U | ≥ 2 and
let r : U2 → Z+ be a requirement function on U . For set ∅ = X ⊂ U we define

R(X) = max{r(u, v) : u ∈ X, v ∈ U −X}.(6)

Clearly, R is symmetric on U ; that is, R(X) = R(U−X) holds for all ∅ = X ⊂ U .
The following property was verified by Frank.

Proposition 2.2 (see [5, Proposition 5.4]). For any two nonempty subsets X,
Y ⊆ U , at least one of the following holds:

R(X) +R(Y ) ≤ R(X ∩ Y ) +R(X ∪ Y ),(7)

R(X) +R(Y ) ≤ R(X − Y ) +R(Y −X).(8)

If X ∪ Y = U , then (8) always holds (with equality).
In the rest of this section let G = (V + s,E) be a graph with a designated vertex

s and let r : V 2 → Z+ be a requirement function on V . For sets ∅ = X ⊂ V we define

h(X) = d(X)−R(X).(9)

Propositions 2.1 and 2.2 imply the following proposition.
Proposition 2.3. For any two nonempty subsets X,Y ⊂ V , at least one of the

following holds:

h(X) + h(Y ) ≥ h(X ∩ Y ) + h(X ∪ Y ) + 2d(X,Y ),(10)

h(X) + h(Y ) ≥ h(X − Y ) + h(Y −X) + 2d(X ∩ Y, V + s− (X ∪ Y )).(11)

If X ∪ Y = V , then (11) always holds (with equality).
Given a degree specification f(s) = (d1, d2, . . . , dp), we shall use the notation

ϕ =

p∑
i=1


di/2�.(12)
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It will be convenient to reformulate (2) and (3) in terms of the degree functions of G
and G− s, functions h and R, and number ϕ. The following two lemmas are easy to
deduce from Menger’s theorem.

Lemma 2.4. Condition (2) holds in G = (V + s,E) if and only if

h(X) ≥ 0 for every ∅ = X ⊂ V.(13)

Lemma 2.5. Condition (3) holds in G = (V + s,E) if and only if

dG−s(X) ≥ R(X)− ϕ for every ∅ = X ⊂ V,(14)

which is equivalent to

dG(s,X) ≤ h(X) + ϕ for every ∅ = X ⊂ V.(15)

We shall need the following operations to construct the required f(s)-detachment
of G. Let su, sv, sz be distinct edges in G = (V + s,E). The operation 2-split (on
su, sv) deletes the edges su, sv and adds a new vertex t and two new edges tu, tv.
Similarly, operation 3-split (on su, sv, sz) deletes su, sv, sz and adds a new vertex t
and three new edges tu, tv, tz. Note that (some of) the split edges may be parallel.
Let G = (V + s,E) be r-edge-connected in V . We say that a 2-split (or 3-split) is
r-admissible in G if the resulting graph G′ = (V + s+ t, E′) is also r-edge-connected
in V . Let ∅ = X ⊂ V . We say that

X is

{
tight,
dangerous,
bad

if h(X) =

{
= 0,
≤ 1,
≤ 2.

Note that, by definition, tight sets are dangerous, and dangerous sets are bad. For a
pair (or triple) of edges su, sv (su, sv, sz) and a set X ⊂ V , we shall use e(su, sv;X)
(e(su, sv, sz;X)) to denote the number of those edges of the given pair (or triple,
respectively) that enter X.

Lemma 2.6. Let G = (V + s,E) be r-edge-connected in V . Then
(a) the 2-split on su, sv is r-admissible if and only if there is no dangerous set X

with e(su, sv;X) = 2,
(b) the 3-split on su, sv, sz is r-admissible if and only if (i) there is no tight set X

with e(su, sv, sz;X)≥2 and (ii) there is no bad setM with e(su, sv, sz;M)=3.
Proof. We prove only (b). The proof of (a) is similar (but simpler). Let G′ =

(V + s+ t, E′) denote the graph obtained from G by a 3-split on su, sv, sz. Observe
that for proper subsets X ⊂ V we have dG′(X + t) = dG(X)− (2e(su, sv, sz;X)− 3).

To see necessity suppose that (i) or (ii) does not hold. Then there is a set Y ⊂ V ,
which is either tight or bad in G, and for which we have dG′(Y + t) ≤ R(Y ) − 1.
Thus, for some pair x, y with x ∈ Y, y ∈ V − Y , and r(x, y) = R(Y ), we must have
λG′(x, y) ≤ r(x, y)− 1. Hence the 3-split is not r-admissible.

To see sufficiency suppose that the 3-split on su, sv, sz is not r-admissible and
let x, y ∈ V with λG′(x, y) ≤ r(x, y) − 1. Then there is a set Y ⊂ V + s + t with
x ∈ Y, y /∈ Y and dG′(Y ) ≤ r(x, y)−1. Since dG′ and r are symmetric, we may assume
that s /∈ Y . Thus, since G is r-edge-connected in V and we have dG(N) = dG′(N) for
all N ⊆ V , we must have t ∈ Y . Let X = Y − t. Since dG(X) ≥ R(X) ≥ r(x, y), we
can now deduce that (i) or (ii) does not hold.

We close this section with two simple lemmas that we shall use in sections 4 and 5.
The proofs demonstrate the typical applications of inequalities (10) and (11).
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Lemma 2.7. Let G = (V + s,E) be r-edge-connected in V and let X,Y be
intersecting tight sets in G. Then either X ∩ Y and X ∪ Y are also tight, or X − Y
and Y −X are tight and d(s,X ∩ Y ) = 0 holds.

Proof. We apply Proposition 2.3 to the pair X,Y and use the fact that h(Z) ≥ 0
for all ∅ = Z ⊂ V by Lemma 2.4. If (10) holds and X ∪ Y = V , then we have
0 = h(X) + h(Y ) ≥ h(X ∩ Y ) + h(X ∪ Y ) ≥ 0. Thus equality holds everywhere,
and hence X ∩ Y and X ∪ Y are also tight. If (11) holds, then we have 0 = h(X) +
h(Y ) ≥ h(X − Y ) + h(Y − X) + 2d(X ∩ Y, V + s − (X ∪ Y )) ≥ 2d(X ∩ Y, s). This
implies d(s,X ∩ Y ) = 0 and h(X − Y ) = h(Y −X) = 0. Thus X − Y and Y −X are
tight.

We say that a triple su, sv, sz is semi-admissible if there is no tight set X with
e(su, sv, sz;X) ≥ 2 (that is, Lemma 2.6(b)(i) holds).

Lemma 2.8. Let G = (V + s,E) be r-edge-connected in V , let X be a tight
set, let su, sv, sz be a semi-admissible triple, and let M be a maximal bad set with
e(su, sv, sz;M) = 3. Then either X ⊆ M , or d(s,X ∩M) = 0, M −X is bad, and
e(su, sv, sz;M −X) = 3.

Proof. If X ⊆ M or X ∩M = ∅, then we are done. M ⊆ X cannot hold, since
e(su, sv, sz;M) = 3 and the triple is semi-admissible. Thus we may assume that X,M
is an intersecting pair.

We apply Proposition 2.3 to the pair X,M and use the fact that h(Z) ≥ 0
for all ∅ = Z ⊂ V by Lemma 2.4. If (10) holds and X ∪ M = V , then we have
0 + 2 ≥ h(X) + h(M) ≥ h(X ∩ M) + h(X ∪ M) ≥ 0 + 3, a contradiction. Here
h(X ∪M) ≥ 3 follows from the maximality of M .

Thus (11) holds. Then we have 0 + 2 ≥ h(X) + h(M) ≥ h(X −M) + h(M −
X) + 2d(X ∩M,V + s − (X ∪M)) ≥ 2d(s,X ∩M). If d(s,X ∩M) ≥ 1, then this
implies d(s,X ∩M) = 1 and h(M −X) = 0. Hence M −X is tight, and we must have
e(su, sv, sz;M −X) ≥ 2. This contradicts the fact that su, sv, sz is a semi-admissible
triple. Thus d(s,X ∩M) = 0 must hold. In this case we get h(M − X) ≤ 2 and
e(su, sv, sz;M −X) = 3, as required.

3. Detachments by admissible and feasible 2-splits. We start this section
by an informal description of the main steps of the proof of Theorem 1.1. It will not
be difficult to reduce the problem to the case when each term di in f(s) is either two
or three. Thus either there is a term, say dp, for which dp = 2 or each term in f(s)
is equal to three (in particular, dp = 3). The proof is then by induction on d(s). We
shall perform a dp-split at vertex s (hence creating a new vertex t, and decreasing the
degree of s), extend the requirement function to V + t, reduce the degree specification
by deleting the last term, and then apply induction to show that the resulting graph
G′ has a good detachment G′′ (with respect to the modified requirements and degree
specification). From this detachment of G′ we can obtain a good f(s)-detachment of
G by simply adding vertex t to the pieces of s. In order to make this proof work we
need to make sure that (a) the dp-split that we perform preserves r-edge-connectivity
in V and (b) the resulting graph satisfies (2) and (3) on vertex set V + t with respect
to the extended requirement function and the reduced degree specification. In this
section we make this precise and show that the required dp-split exists when dp = 2.
(The other case, when dp = 3, will be settled in section 5.)

In the rest of this section let G = (V + s,E) be a graph satisfying (2) and
(3) with respect to a requirement function r : V 2 → Z+ and degree specification
f(s) = (d1, d2, . . . , dp) with dp ∈ {2, 3}. Furthermore, suppose that r is smooth; that
is, r(u, v) ≥ 2 for every pair u, v ∈ V . Note that since r is smooth and (2) holds, it
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follows that there are no cut-edges in G. Recall that (2) and (3) are equivalent to
(13) and (14), respectively, by Lemmas 2.4 and 2.5.

Let G′ = (V + t + s,E′) be obtained from G by a dp-split. Here t is the new
vertex created by the split. The extended requirement function r′ on V + t in G′ is
defined as follows:

r′(u, v) =
{

r(u, v) if u, v ∈ V,
2 if u = t, v ∈ V (or v = t, u ∈ V ).

(16)

The reduced degree specification f ′(s) is obtained from f(s) by deleting the last
term, i.e., f ′(s) = (d1, . . . , dp−1). With the extended requirement function r′ we also
define function R′, defined on the proper subsets X of V +t by R′(X) = max{r′(u, v) :
u ∈ X, v ∈ (V + t)−X}, which satisfies

R′(X) =




R(X) if ∅ = X ⊂ V,
2 if X = {t}, V,
R(X − t) otherwise.

(17)

With the reduced degree specification f ′(s) we also define the corresponding number

ϕ′ =
∑p−1

1 
di/2�, which satisfies

ϕ′ = ϕ− 1.(18)

The proof of the next lemma is simple.
Lemma 3.1. Suppose that G′ = (V + t + s,E′) is obtained from G by an r-

admissible dp-split. Then G′ is r′-edge-connected in V + t.
Thus by performing an r-admissible dp-split we can make sure that G′ satisfies

(2) with respect to r′ and V + t. To guarantee that G′ satisfies (3) as well, we need
to find an r-admissible dp-split satisfying some additional conditions, described in the
next lemma.

First observe that condition (3) for G′, r′, and f ′(s) is equivalent to

dG′−s(X) ≥ R′(X)− ϕ′ for all ∅ = X ⊂ V + t.(19)

This form of (3) and (18) show that, in order to meet (19), the degree of certain
subsets X ⊂ V in G′ − s must be strictly larger than their degree in G− s. Let

C′ = {X ⊂ V : dG−s(X) = R(X)− ϕ},(20)

and let C denote the inclusionwise minimal members of C′. Sets in C are called cores.
Lemma 3.2. Suppose that G′ = (V + t + s,E′) is obtained from G by an r-

admissible 2-split on su, sv (or 3-split on su, sv, sz). Then G′ satisfies (19) if and
only if e(su, sv;C) ≥ 1 (e(su, sv, sz;C) ≥ 1, respectively) for every C ∈ C.

Proof. Since the split is r-admissible, r is smooth, and by using (17), we can
deduce that (19) holds for X = {t}, V . For the remaining proper subsets of V + t it
follows from the symmetry of R′ that (19) is equivalent to

dG′−s(X) ≥ R(X)− ϕ+ 1 for every ∅ = X ⊂ V.(21)

The definition of C shows that (21) holds if and only if there is at least one split edge
from s to each of the cores. This proves the lemma.

We shall also use the fact that X ∈ C′ holds if and only if

d(s,X) = h(X) + ϕ.(22)
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We say that a 2-split on su, sv is feasible if e(su, sv;C) ≥ 1 for every C ∈ C. Similarly,
a 3-split on su, sv, sz is feasible if e(su, sv, sz;C) ≥ 1 holds for every C ∈ C. To identify
feasible splits the following properties of cores will be useful. We say that a degree
specification f(s) = (d1, d2, . . . , dp) is 3-regular if di = 3 for 1 ≤ i ≤ p. Note that
d(s) ≤ 3ϕ and equality holds if and only if f(s) is 3-regular.

Lemma 3.3. The set of cores satisfies the following:
(a) the cores are pairwise disjoint,
(b) d(s, C) ≥ ϕ for each C ∈ C,
(c) |C| ∈ {0, 2, 3},
(d) if |C| = 3, then f(s) is 3-regular, each core C is tight, and satisfies d(s, C)=ϕ.
Proof. Since G satisfies (3), G− s satisfies (13) with respect to R − ϕ, and each

core is tight in G− s (also with respect to R − ϕ). Thus the minimality of the cores
and Lemma 2.7 (applied to G − s) imply that (a) holds. Property (b) follows from
(22), (2), and Lemma 2.4. To see (c) let C be a core. The symmetry of the degree
function of G − s and R in V implies that V − C ∈ C′. Hence we have |C| ≥ 2. It
follows from (a), (b), and d(s) ≤ 3ϕ that |C| ≤ 3. Moreover, |C| = 3 may hold only
if f(s) is 3-regular, and d(s, C) = ϕ for each core C. In this case, h(C) = 0 follows
from (22). Thus C is tight in G.

Lemma 3.4. Suppose that C = {C1, C2}, ϕ ≥ 2, and let sc1, sc2 be a pair of edges
with ci ∈ Ci for 1 ≤ i ≤ 2. Then the 2-split on sc1, sc2 is r-admissible and feasible.

Proof. By the choice of c1, c2, the 2-split on sc1, sc2 is feasible. We shall prove
that it is r-admissible as well. Let αi = d(s, Ci), 1 ≤ i ≤ 2. By Lemma 3.3(b) we
have αi ≥ ϕ, and by (22) we have h(Ci) = αi − ϕ for 1 ≤ i ≤ 2.

For a contradiction suppose that the 2-split is not r-admissible. Then Lemma 2.6
implies that there exists a dangerous set X ⊂ V with e(sc1, sc2;X) = 2. Let βi =
d(s,X ∩ Ci), 1 ≤ i ≤ 2. Since ci ∈ X, we have βi ≥ 1 for 1 ≤ i ≤ 2. If C1 ∪ C2 ⊆ X,
then (14) implies R(X)−ϕ ≤ dG−s(X) ≤ d(X)−α1−α2 ≤ d(X)−2ϕ ≤ R(X)+1−2ϕ,
contradicting the assumption ϕ ≥ 2. Thus we may assume, without loss of generality,
that C1 −X = ∅.

Claim 3.5. (a) If X∪C1 = V, then h(X∪C1) ≥ α1−ϕ+2, and (b) h(C1−X) ≥
α1 − ϕ+ 1− β1.

Proof. Since there exist no cores other than C1 and C2, each set in C′ contains
C1 or C2. Thus V − (X ∪ C1) /∈ C′ must hold, and by the symmetry of C′, we also
have X ∪C1 /∈ C′. Hence (14) implies R(X ∪C1)−ϕ+1 ≤ dG−s(X ∪C1). Now, since
β2 ≥ 1, it follows from Lemma 3.3(a) that d(X ∪ C1) ≥ dG−s(X ∪ C1) + α1 + β2 ≥
R(X ∪ C1) + α1 − ϕ+ 2. Thus (a) holds.

Since C1 is a core, we have R(C1 − X) − ϕ + 1 ≤ dG−s(C1 − X). This implies
d(C1 − X) = dG−s(C1 − X) + α1 − β1 ≥ R(C1 − X) − ϕ + 1 + α1 − β1. Thus (b)
holds.

Now we apply Proposition 2.3 to X and C1. If (10) holds and C1 ∪X = V , then,
by using Lemma 2.4, the fact that X is dangerous, (22), and Claim 3.5(a), we obtain
1+ (α1−ϕ) ≥ h(X)+h(C1) ≥ h(X ∩C1)+h(X ∪C1) ≥ α1−ϕ+2, a contradiction.
Thus (11) must hold for X and C1. Then by Lemma 2.4 and Claim 3.5(b) we have
1+(α1−ϕ) ≥ h(X)+h(C1) ≥ h(X−C1)+h(C1−X)+2d(s,X∩C1) ≥ α1−ϕ+1+β1,
a contradiction, since β1 ≥ 1. This final contradiction shows that the 2-split is r-
admissible as claimed.

Lemma 3.6. Suppose that ϕ ≥ 2 and f(s) is not 3-regular. Then there exists an
r-admissible and feasible 2-split in G.

Proof. By Lemma 3.3(c),(d) we have |C| ∈ {0, 2}. First suppose C = ∅. Since
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d(s) ≥ 4 and there are no cut-edges incident to s in G, Theorem 1.3 implies that there
is a λ-admissible splitting su, sv at s in G. Since G is r-edge-connected in V , the 2-
split on su, sv is r-admissible. Since there are no cores, this 2-split is feasible as well.

Now suppose |C| = {C1, C2}. In this case, by Lemma 3.3(b), we can choose a pair
of edges sc1, sc2 with ci ∈ Ci for 1 ≤ i ≤ 2. By Lemma 3.4 the 2-split on sc1, sc2 is
r-admissible and feasible.

4. Contracting tight sets. An important step in the proof of Theorem 1.3 is
the contraction of nonsingleton tight sets; see [4, 7]. We shall also follow this approach
in section 5. In this section we describe the details of this method and prove that,
roughly speaking, contracting nonsingleton tight sets does not change the problem.

Let G = (V + s,E) be a graph and let r : V 2 → Z+ be a requirement function
on V . Suppose that G is r-edge-connected in V and let T ⊂ V be a tight set in G
(with respect to r). Let Ĝ = (V̂ + s, Ê) be obtained from G by contracting T into a
single vertex t. Each set X̂ ⊂ V̂ will correspond to a unique subset of V , which we
shall denote by X, defined as follows:

X =

{
X̂ if t /∈ X̂,

(X̂ − t) ∪ T if t ∈ X̂.
(23)

We shall use d̂ and λ̂ to denote the degree function and the local edge-connectivity
function in Ĝ, respectively, and we define a requirement function r̂ : V̂ 2 → Z+ for Ĝ
as follows:

r̂(u, v) =




r(u, v) if u, v ∈ V̂ − t,
max{r(u, x) : x ∈ T} if v = t,
max{r(x, v) : x ∈ T} if u = t.

(24)

With d̂ and r̂ we also define functions R̂ and ĥ on sets X̂ ⊂ V̂ by R̂(X̂) =

max{r̂(u, v) : u ∈ X̂, v ∈ V̂ − X̂} and ĥ(X̂) = d̂(X̂)− R̂(X̂). The next lemma follows

directly from the definition of r̂ and the fact that d̂(X̂) = dG(X) for all X̂ ⊂ V̂
(without using the fact that T is tight).

Lemma 4.1. For X̂ ⊂ V̂ we have
(a) R̂(X̂) = R(X), and

(b) ĥ(X̂) = h(X).
It follows that Ĝ is r̂-edge-connected in V̂ . We also obtain the following easy but

useful corollaries.
Lemma 4.2. Suppose that the 2-split on su, sv is r-admissible in G. Then the

2-split on su′, sv′ is r̂-admissible in Ĝ, where su′ and sv′ denote the edges of Ĝ
corresponding to su and sv.

Proof. Suppose that su′, sv′ is not r̂-admissible in Ĝ. Then by Lemma 2.6(a) there

exists a dangerous set X̂ ⊂ V̂ with ĥ(X̂) ≤ 1 and e(su′, sv′; X̂) = 2. By Lemma 4.1(b)
it follows that X is a dangerous set in G with e(su, sv;X) = 2. By Lemma 2.6(a) it
contradicts the fact that the 2-split on su, sv is r-admissible in G.

Lemma 4.3. Suppose that G satisfies (14) with respect to r and some degree
specification f(s). Then Ĝ satisfies (14) with respect to r̂ and f(s).

Proof. Suppose (14) fails in Ĝ and let Ŵ ⊂ V̂ be a set with dĜ−s(Ŵ ) < R̂(Ŵ )−ϕ.
Since dG−s(W ) = dĜ−s(Ŵ ), and by Lemma 4.1(a), we have dG−s(W ) < R(W ) − ϕ,
contradicting the fact that (14) holds in G.

Mader [7] and Frank [4, Claim 3.2] showed that if a splitting is λ̂-admissible in
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Ĝ, then the corresponding splitting is λ-admissible in G. We need a similar fact for
3-splits and arbitrary requirement functions.

Lemma 4.4. Suppose that the 3-split on su′, sv′, sz′ is r̂-admissible in Ĝ. Then
the 3-split on su, sv, sz is r-admissible in G, where su, sv, sz denote the edges corre-
sponding to su′, sv′, sz′ in G.

Proof. For a contradiction suppose that the 3-split on su, sv, sz is not r-admissible
in G. By Lemma 2.6(b) this implies that there is set Y ⊂ V in G for which either (i)
Y is tight and e(su, sv, sz;Y ) ≥ 2, or (ii) Y is bad and e(su, sv, sz;Y ) = 3.

Claim 4.5. Y and T are intersecting sets.
Proof. Since T is tight in G, it follows from Lemma 4.1 that t is a singleton tight

set in Ĝ (with respect to r̂). Since the 3-split on su′, sv′, sz′ is r̂-admissible in Ĝ, it
follows from Lemma 2.6(b) that e(su′, sv′, sz′; {t}) ≤ 1. Thus Y −T = ∅. If Y ∩T = ∅
or T ⊆ Y , then there is a set Ŷ in Ĝ corresponding to Y . By Lemma 4.1(b) we have

h(Y ) = ĥ(Ŷ ), and hence, by Lemma 2.6(b), Ŷ shows that the 3-split on su′, sv′, sz′

is not r̂-admissible in Ĝ, a contradiction.
First suppose that Y is tight. In this case Claim 4.5 and Lemma 2.7, applied to

Y and T , imply that either Y ∪ T is tight, or Y − T is tight and d(s, Y ∩ T ) = 0.
In each of these cases we obtain a tight set (Y ∪ T or Y − T ) satisfying (i) which is
not intersecting with T . This contradicts Claim 4.5. Thus the 3-split on su, sv, sz is
semi-admissible.

Next suppose that Y is bad. We may assume that Y is a maximal bad set. Now
Claim 4.5 and Lemma 2.8 imply that Y −T is bad and e(su, sv, sz;Y −T ) = 3. Thus
Y − T satisfies (ii) and is not intersecting with T . This contradicts Claim 4.5 and
completes the proof of the lemma.

5. The proof of Theorem 1.1. In this section first we consider the case of
3-regular degree specifications and prove that, if the necessary conditions hold, there
exists an r-admissible and feasible 3-split in G. This will enable us to complete the
proof of our main theorem.

In this section (until the proof of Theorem 1.1) let G = (V + s,E) be a graph
satisfying (2) and (3) with respect to a smooth requirement function r : V 2 → Z+

and 3-regular degree specification f(s) = (d1, d2, . . . , dp) with p ≥ 2. These conditions
imply that there are no cut-edges in G and ϕ ≥ 2. Note that (2) and (3) are equivalent
to (13) and (14), respectively, by Lemmas 2.4 and 2.5, and recall the definition of cores
from section 3 and the fact that G has at most three cores.

First we consider the case when G has three cores. In this case we can find an
r-admissible and feasible 3-split without tight set contractions.

Lemma 5.1. Suppose that C = {C1, C2, C3} and let sc1, sc2, sc3 be a triple of
edges with ci ∈ Ci for 1 ≤ i ≤ 3. Then the 3-split on sc1, sc2, sc3 is r-admissible and
feasible.

Proof. By the choice of c1, c2, c3, the 3-split on sc1, sc2, sc3 is feasible. We
shall prove that it is r-admissible as well by showing that conditions (i) and (ii)
of Lemma 2.6(b) hold.

For a contradiction first suppose, without loss of generality, that there is a max-
imal tight set X with e(sc1, sc2;X) = 2. By Lemma 3.3(d) each core is tight. Thus
Lemma 2.7 and the maximality of X imply that C1 ∪ C2 ⊆ X. Now we can use
Lemmas 2.5, 3.3(b) and (15) to deduce ϕ = ϕ + h(X) ≥ d(s,X) ≥ 2ϕ. This con-
tradicts the fact that ϕ ≥ 2. Thus Lemma 2.6(b)(i) holds, and hence the triple is
semi-admissible.

Now suppose that there is a maximal bad set M with e(sc1, sc2, sc3;M) = 3.
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Fig. 1. An obstacle with respect to the requirement function r ≡ 4.

Since the triple is semi-admissible and each core is tight, Lemma 2.8 implies that
C1 ∪ C2 ∪ C3 ⊆M . By Lemmas 2.5, 3.3(b) and (15), this gives ϕ+ 2 ≥ ϕ+ h(M) ≥
d(s,M) ≥ 3ϕ. Again, this contradicts the fact that ϕ ≥ 2. Thus Lemma 2.6(b)(ii)
holds as well.

Now we turn to the case when |C| ∈ {0, 2}. In this case we prove the existence of
an r-admissible and feasible 3-split by using the method of tight set contractions. To
this end, in addition to the assumptions listed at the beginning of this section, in the
next three lemmas we shall also assume that

every tight set in G is a singleton.(25)

Lemma 5.2. Suppose that (25) holds and the 2-split on su, sv is r-admissible in
G. Then there exists an edge sz for which su, sv, sz is a semi-admissible triple.

Proof. Let sa be an edge different from su, sv and suppose that the triple su, sv, sa
is not semi-admissible. Then there exists a tight set X with e(su, sv, sa;X) ≥ 2. Since
the 2-split on su, sv is r-admissible, Lemma 2.6(a) implies that we must have, without
loss of generality, e(sa, su;X) = 2. Now (25) implies that u = a and {u} is tight. By
Lemma 2.5 we have d(s, u) ≤ ϕ; hence there exists an edge sb, different from sv, with
b = u. If the triple su, sv, sb is not semi-admissible either, then we must have b = v
and {v} is tight. Moreover, d(s, v) ≤ ϕ holds, and hence, since f(s) is 3-regular and
hence d(s) = 3ϕ, there exists an edge sz with z = u, v. We conclude that the triple
su, sv, sz is semi-admissible, as required.

We shall strengthen Lemma 5.2 and prove that every r-admissible 2-split is part
of an r-admissible 3-split unless G has the following special structure. We say that a
graphH = (W+s, F ) with d(s) = 6 is an obstacle (with respect to a given requirement
function r on W ) if H is r-edge-connected in W and there exist two sets M1,M2 ⊂W
such that

(i) M1 and M2 are bad,
(ii) M1 −M2 and M2 −M1 are tight, and
(iii) dH(s,M1 −M2) = dH(s,M1 ∩M2) = dH(s,M2 −M1) = 2.
An obstacle is shown in Figure 1. It follows from Lemma 2.6(b) that if H is an

obstacle, then there is no r-admissible 3-split on su, sv, sz for any choice of the edge
sz, where su, sv is the pair of edges from s to M1 ∩ M2. On the other hand, an
r-admissible 3-split exists.

Lemma 5.3. Suppose that G is an obstacle and (25) holds. Then there is an
r-admissible 3-split in G.

Proof. Since G is an obstacle and f(s) is 3-regular, we have d(s) = 6, f(s) = (3, 3),
ϕ = 2, and there exist sets M1,M2 ⊂ V satisfying properties (i), (ii), and (iii) above.
It follows from (ii) and (25) that {a} = M1−M2 and {b} = M2−M1 are singleton tight
sets in G. We claim that a 3-split on sa, sb, su is r-admissible, where u ∈ M1 ∩M2.
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To see this observe that the triple is semi-admissible, since a, b, u are distinct vertices
and (25) holds. Furthermore, a bad set M with e(sa, sb, su;M) = 3 would satisfy
d(s,M) ≥ 5. This is impossible, since d(s,M) ≤ h(M) + ϕ ≤ 4 by (15). Thus
conditions (i) and (ii) of Lemma 2.6(b) hold, and hence the 3-split is r-admissible, as
claimed.

Lemma 5.4. Suppose that G is not an obstacle, (25) holds, and the 2-split on
su, sv is r-admissible. Then there exists an edge sz such that the 3-split on su, sv, sz
is r-admissible.

Proof. By Lemma 5.2 the triple su, sv, sa is semi-admissible for some edge sa.
If the 3-split on su, sv, sa is r-admissible, then we are done. Otherwise there exists
a maximal bad set M with e(su, sv, sa;M) = 3 by Lemma 2.6. By (15) we have
d(s,M) ≤ h(M) + ϕ ≤ 2 + ϕ. Thus, since d(s) = 3ϕ and ϕ ≥ 2, it follows that
there exists an edge sb with b ∈ V −M . Observe that the triple su, sv, sb is semi-
admissible by (25), using the fact that the 2-split on su, sv is r-admissible. Thus
either the 3-split on su, sv, sb is r-admissible, or there exists a maximal bad set M ′

with e(su, sv, sb;M ′) = 3. Clearly, M and M ′ are intersecting sets.
Apply Proposition 2.3 to the pair M,M ′. If (10) holds (and M ∪M ′ = V ), then

we have 2+2 ≥ h(M)+h(M ′) ≥ h(M∩M ′)+h(M∪M ′) ≥ 2+3, a contradiction. Here
we used the maximality of M and the fact that the 2-split on su, sv is r-admissible
(and hence, by Lemma 2.6(a), h(M ∩M ′) ≥ 2 holds). Now suppose that (11) holds,
and let N = V − (M ∪M ′). The existence of the edges su, sv implies that

d(M ∩M ′, N + s) ≥ 2.(26)

By (11) we have 2 + 2 ≥ h(M) + h(M ′) ≥ h(M − M ′) + h(M ′ − M) + 2d(M ∩
M ′, V + s− (M ∪M ′)) ≥ 2d(M ∩M ′, N + s). By (26) this implies that h(M −M ′) =
h(M ′ −M) = 0 and d(M ∩M ′, N + s) = 2. Therefore M −M ′ and M ′ −M are
both tight, and by Lemma 2.5 we have d(s,M −M ′), d(s,M ′ −M) ≤ ϕ. Suppose
that, in addition, we have d(s,N) = 0. Then we obtain, by using ϕ ≥ 2, that
3ϕ ≥ 2ϕ+ 2 ≥ d(s,M −M ′) + d(s,M ′ −M) + d(s,M ∩M ′) + d(s,N) = d(s) = 3ϕ,
which implies that ϕ = 2, and G is an obstacle (by choosing M1 = M and M2 = M ′),
contradicting our assumption.

Thus d(s,N) ≥ 1 holds. Let sc be an edge with c ∈ N . As above, it can be
seen that su, sv, sc is a semi-admissible triple and either the 3-split on su, sv, sc is
r-admissible or there is a maximal bad set M ′′ with e(su, sv, sc;M ′′) = 3. In the
former case we are done. In the latter case we apply Proposition 2.3 to the pairs
M,M ′′ and M ′,M ′′, as above, and conclude that M − M ′′, M ′′ − M , M ′ − M ′′,
and M ′′ −M ′ are all tight. Since (25) holds and the sets M,M ′,M ′′ are pairwise
distinct maximal bad sets, it follows that M ∩ M ′ = M ∩ M ′′ = M ′ ∩ M ′′ and
M ∪M ′ ∪M ′′ = M ∩M ′ ∩M ′′ ∪ {a, b, c}.

Claim 5.5. Let X,Y be disjoint nonempty subsets of V with d(X,Y ) = 0 and
suppose that X ∪ Y is bad. Then X and Y are both tight.

Proof. Clearly, we have R(X ∪ Y ) ≤ max{R(X), R(Y )}, so we may suppose,
without loss of generality, that R(X ∪Y ) ≤ R(X) holds. Since G is r-edge-connected
in V and r is smooth, Lemma 2.4 implies that R(X) ≤ d(X) and 2 ≤ R(Y ) ≤ d(Y ).
Since d(X,Y ) = 0, we have d(X) = d(X ∪ Y ) − d(Y ). Thus R(X ∪ Y ) ≤ R(X) ≤
d(X) = d(X ∪ Y ) − d(Y ) ≤ R(X ∪ Y ) + 2 − 2. Hence equality must hold in each of
these inequalities, which implies that X and Y are both tight.

Now we can deduce that d(c,M ′′− c) ≥ 1 as follows. For a contradiction suppose
that d(c,M ′′−c) = 0 holds. Then, by applying Claim 5.5 withX={c} and Y =M ′′−c,
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we obtain that the set M ′′ − c is tight. Since e(su, sv;M ′′ − c) = 2, this contradicts
the fact, by Lemma 2.6(a), that the 2-split on su, sv is r-admissible. This proves
d(c,M ′′ − c) ≥ 1. Thus there is an edge cr with r ∈M ′′ − c. We have already shown
that M ′′ − c = M ∩M ′ and that equality holds in (26). Since the edges su, sv also
enter the set M ∩M ′, we obtain 2 = d(N + s,M ∩M ′) ≥ 3, a contradiction. This
proves the lemma.

Lemma 5.6. There exists an r-admissible and feasible 3-split in G.
Proof. By Lemma 3.3(b),(c) we have |C| ∈ {0, 2, 3}, and there is an edge from

s to each of the cores. If |C| = 3, then the lemma follows from Lemma 5.1, so we
may assume that |C| ∈ {0, 2} holds. In this case, starting from G, let us contract
nonsingleton tight sets (and update the requirement function) as long as possible,
and let Ĝ = (V̂ + s, Ê) and r̂ denote the resulting graph and requirement function,
respectively. By Lemmas 4.1 and 4.3, Ĝ satisfies (13) and (14) with respect to r̂
and f(s), and by construction (25) holds. Note that r̂ is smooth, and the degree

specification for G and Ĝ are the same (in particular, d̂(s) = 3ϕ ≥ 6 holds).
Let us choose a pair su, sv of edges in G in such a way that e(su, sv;C) ≥ 1

for each core C (if there is any), and the 2-split on su, sv is r-admissible in G. By
Theorem 1.3 and Lemma 3.4 this can be done. Lemma 4.2 shows that the 2-split on
su′, sv′ is r̂-admissible in Ĝ, where su′, sv′ are the edges of Ĝ corresponding to su, sv.
Thus, by Lemmas 5.3 and 5.4, either there exists an r̂-admissible 3-split su′, sv′, sz′

in Ĝ, or Ĝ is an obstacle with respect to r̂ and there is an r̂-admissible 3-split in Ĝ.
It follows from Lemma 4.4 that the corresponding 3-splits in G are r-admissible. In
the former case the choice of the pair su, sv implies that this 3-split in G is feasible as
well. In the latter case, when Ĝ is an obstacle, (19) can be verified directly by using
the fact that the 3-split is r-admissible and f(s) = (3, 3). Thus Lemma 3.2 implies
that the 3-split is also feasible.

We are ready to prove the main result of this paper.
Proof of Theorem 1.1. First we prove necessity. Suppose that G′ = (V +

{s1, s2, . . . , sp}, E′) is an f(s)-detachment of G, which is r-edge-connected in V .
Since contracting the pieces of s into a single vertex does not decrease the local edge-
connectivities between pairs of vertices of V , it follows that G is also r-edge-connected
in V . Thus (2) holds. Consider a pair u, v ∈ V and let P1, . . . , Pl be edge-disjoint
paths from u to v in G′, where l = λG′(u, v). For each piece si, 1 ≤ i ≤ p, the number
of those edges incident to si that belong to some of these paths is even. Thus at most
ϕ =

∑p
i=1
di/2� paths can go through the set of pieces of s, and hence at least l− ϕ

paths lie entirely in G′−{s1, . . . , sp} = G− s. Since G′ is r-edge-connected in V , this
implies λG−s(u, v) ≥ l − ϕ = λG′(u, v)− ϕ ≥ r(u, v)− ϕ, which gives (3).

From now on we prove sufficiency. Suppose that G = (V + s,E), r : V 2 → Z+,
and f(s) = (d1, d2, . . . , dp) satisfy the hypotheses of the theorem and that (2) and (3)
hold. We shall prove that there is an f(s)-detachment of G which is r-edge-connected
in V . We claim that it is sufficient to consider degree specifications for which di ≤ 3
for 1 ≤ i ≤ p. To see this suppose that, without loss of generality, d1 ≥ 4, and replace
the degree specification f(s) by f∗(s) = (2, d1−2, d2, . . . , dp). The claim follows from
the fact that (a) conditions (2) and (3) remain valid (since ϕ remains the same), and
(b) an f∗(s)-detachment G∗ of G which is r-edge-connected in V gives rise to an f(s)-
detachment of G, which is also r-edge-connected in V , by identifying two pieces of s
in G∗ with degree two and degree d1 − 2, respectively. Thus, by iteratively applying
this reduction to the degree specification, as long as it is necessary, we may assume
that each term in f(s) is equal to two or three. So we can also assume that either
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dp = 2, or dp = 3 and f(s) is 3-regular.
Our proof is by induction on d(s). If d(s) ≤ 3, then, since di ≥ 2 for all 1 ≤ i ≤ p,

we must have p = 1, and the theorem is trivial. Thus we may assume d(s) ≥ 4.
Since di ≤ 3 for all 1 ≤ i ≤ p, this implies p ≥ 2 and ϕ ≥ 2. By focusing on the
2-edge-connected component of G containing s, we may also assume that G is 2-edge-
connected in V + s. With this assumption (and since ϕ ≥ 2) we can increase some of
the requirements up to 2, if necessary, without violating conditions (2) and (3). Thus
we may also assume r ≥ 2.

Note that, by Lemmas 2.4 and 2.5, (2) and (3) hold if and only if (13) and (14)
hold. If dp = 2, then Lemma 3.6 implies that there is an r-admissible and feasible
2-split in G. If dp = 3 (and hence f(s) is 3-regular), then Lemma 5.6 implies that
there is an r-admissible and feasible 3-split in G. Let G′ = (V +t+s,E′) be the graph
obtained from G by an r-admissible and feasible 2- or 3-split, and let r′ and f ′(s)
be the extended requirement function and reduced degree specification, respectively.
Now the choice of the split and Lemmas 3.1 and 3.2 imply that G′ satisfies (2) and (3)
with respect to V + t, r′, and ϕ′. Clearly, d′(s) < d(s). Thus, by induction, G′ has an
f ′(s)-detachment G′′ which is r-edge-connected in V . Since G′′ is an f(s)-detachment
of G, the theorem follows.

We close this section by extending Theorem 1.1 to arbitrary degree specifications.
We need the following definitions. Let H = (V,E) be a graph and let r : V 2 → Z+

be a requirement function. As before, let R(X) = max{r(u, v) : u ∈ X, v ∈ V −X}
be defined on sets X ⊂ V , and let qH(X) = R(X)− dH(X). A connected component
D of H is called a marginal component (with respect to r) if qH(W ) ≤ 0 for every
W ⊂ D and qH(D) ≤ 1 hold. Note that if r is smooth, then there are no marginal
components in H. We also need a lemma due to Frank.

Lemma 5.7 (see [5, Lemma 5.6]). Suppose that H = (V,E) has no marginal
components, and let H ′ = (V + s,E) be a graph obtained from H by adding a new
vertex s and α new edges between V and s so that H ′ is r-edge-connected in V . In
addition, suppose that γ is an integer satisfying

t∑
i=1

qH(Xi) ≤ γ(27)

for every subpartition {X1, . . . , Xt} of V . Then it is possible to delete α − γ edges
incident to s in H ′ so that none of the remaining new edges is a cut-edge in the
resulting graph H ′′ and that H ′′ is r-edge-connected in V .

Theorem 5.8. Let G = (V + s,E) be a graph, let r be a requirement function
on V , and suppose that G − s has no marginal components with respect to r. Let
f(s) = (d1, d2, . . . , dp) be an arbitrary degree specification, where the number of di = 1
terms equals ψ. Then there exists an f(s)-detachment of G which is r-edge-connected
in V if and only if (2) and (3) hold, and

t∑
i=1

qG−s(Xi) ≤ d(s)− ψ(28)

holds for every subpartition {X1, . . . , Xt} of V .
Proof. First we prove the only if direction. Suppose the desired f(s)-detachment

G′ exists. As in the proof of Theorem 1.1, this implies that (2) and (3) hold. Let
S be the set of pieces of s in G′ and let L ⊆ S denote the set of pieces with degree
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one. It is easy to see that G′ is r-edge-connected in V if and only if G′ −L is r-edge-
connected in V . Since G′ − L is r-edge-connected in V , we have dG′−L(X) ≥ R(X)
for all ∅ = X ⊂ V . Thus dG′−L(S − L,X) ≥ R(X) − dG−s(X) = qG−s(X) for all
∅ = X ⊂ V , which implies (28), since dG′−L(S − L, V ) = d(s)− ψ.

To see the other direction we can use Lemma 5.7 to show that it is possible to
delete ψ edges incident to s inG so that the resulting graphG∗ is still r-edge-connected
in V and has no cut-edges incident to s. Let f∗(s) be the degree specification obtained
from f(s) by deleting each term with di = 1. It is easy to see that G∗ satisfies (3) with
respect to r and f∗(s). Now Theorem 1.1 implies that G∗ has an f∗(s)-detachment
G′′ = (V + {s1, s2, . . . , sp−ψ}, E′′) which is r-edge-connected in V . By adding ψ new
vertices to G′′ and an edge wvw for some vw ∈ V for each new vertex w, we obtain
the desired f(s)-detachment of G.

6. Applications and corollaries. In this section we apply Theorem 1.1 to
deduce new results on graph and hypergraph augmentation problems. In the local
edge-connectivity augmentation problem we are given a graph (or hypergraph) G =
(V,E) and a requirement function r : V 2 → Z+, and the goal is to find a smallest
set F of new edges (or hyperedges of given size) for which the augmented graph (or
hypergraph) G′ = (V,E + F ) is r-edge-connected in V . For graphs this problem was
solved, in terms of a min-max equality and a polynomial algorithm, by Frank [5]. For
hypergraphs it is NP-hard to find a smallest augmentation consisting of hyperedges
of size two [2].

First we consider the extension of the graph problem, where, instead of adding
edges, we attach stars of given degrees. (A star of degree t is the graph K1,t.) In other
words, we add (an independent set of) new vertices and connect each new vertex si
to V by di edges, where the di’s are given positive integers. For simplicity, we shall
assume that G has no marginal components with respect to r. The following result
can be extended to the case when marginal components may exist, following [5]. We
leave these details to the interested reader.

Theorem 6.1. Let G = (V,E) be a graph and let r : V 2 → Z+ be a requirement
function, such that G has no marginal components with respect to r. Then G can be
made r-edge-connected in V by attaching p stars with degrees d1, . . . , dp, where di ≥ 2
for all 1 ≤ i ≤ p, if and only if

t∑
i=1

qG(Xi) ≤
p∑
i=1

di(29)

holds for every subpartition {X1, . . . , Xt} of V and

λG(u, v) ≥ r(u, v)−
p∑
i=1


di/2�(30)

for every pair u, v ∈ V.
Proof. Necessity is easy to see. To prove sufficiency suppose that (29) and

(30) hold for G. Observe that the required attachment exists if and only if G
can be extended to a graph G′ = (V + s,E′) by adding a new vertex s such that
dG′(s) =

∑p
i=1 di, and G′ has an f(s)-detachment which is r-edge-connected in V for

f(s) = (d1, d2, . . . , dp). Condition (29) and Lemma 5.7 imply that an extension G′

which is r-edge-connected in V and which satisfies (2) and dG′(s) =
∑p
i=1 di exists.

Condition (30) shows that G′ satisfies (3) with respect to r and f(s). Thus Theo-
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rem 1.1 implies that G′ has an f(s)-detachment which is r-edge-connected in V . This
proves the theorem.

With Theorem 6.1 we can also solve the following optimization problem: given
G, r, and a positive integer w, determine the smallest number γw for which G can be
made r-edge-connected by attaching γw stars of degree w each. When we augment
the local edge-connectivities, attaching stars of degree two is equivalent to adding
new edges. Thus for w = 2 we obtain Frank’s theorem as a corollary. (Note that (29)
implies (30) if di = 2 for 1 ≤ i ≤ p.)

Theorem 6.2 (see [5]). Let G = (V,E) be a graph and let r : V 2 → Z+ be a
requirement function, such that G has no marginal components with respect to r. Then
G can be made r-edge-connected by adding γ new edges if and only if

∑t
i=1 q(Xi) ≤ 2γ

holds for every subpartition {X1, . . . , Xt} of V .
A 3-hypergraph is a hypergraph with hyperedges of size at most three. The

next problem we consider is the local edge-connectivity augmentation problem for
3-hypergraphs, where the new hyperedges that we add are also of size at most three.

Theorem 6.3. Let G = (V,E) be a 3-hypergraph and let r : V 2 → Z+ be a
smooth requirement function. Then G can be made r-edge-connected by adding γ new
hyperedges of size two and β new hyperedges of size three if and only if

t∑
i=1

qG(Xi) ≤ 2γ + 3β(31)

holds for every subpartition {X1, . . . , Xt} of V and

λG(u, v) ≥ r(u, v)− (γ + β)(32)

for every pair u, v ∈ V.
Proof. Necessity is easy to see. To see sufficiency, suppose that G satisfies (31)

and (32). Let us construct a graph G′ = (V ′, E′) by replacing every edge e = uvw of
size three in G by a special vertex ve and three graph edges veu, vev, vew. The key
observation is that replacing hyperedges of size three by stars of degree three (and
vice versa) does not change the local edge-connectivities in V . Thus (32) remains
valid in G′. Define a requirement function r′ on pairs of vertices of G′ by putting
r′(u, v) = r(u, v) for all pairs u, v ∈ V and r′(x, y) = 0 otherwise. Since r is smooth,
and by the definition of r′, it follows that G′ has no marginal components with respect
to r′. Furthermore, since (31) and (32) hold, and by the definition of G′ and r′, it
can be seen that G′ satisfies (29) and (30) with respect to r′ and degree sequence
d1, d2, . . . , dp, where p = γ + β, di = 2 for 1 ≤ i ≤ γ, and di = 3 for γ + 1 ≤ i ≤ p.
Thus we can use Theorem 6.1 to deduce that G′ can be made r-edge-connected in V
by attaching γ stars of degree two and β stars of degree three. Note that, using the
fact that r′(ve, y) = 0 if ve is a special vertex, the proof of Theorem 6.1 shows that the
stars can be attached to G′ so that no star is attached to any of the special vertices.
By replacing each star tu, tv of degree two by an edge uv, and each star tu, tv, tw of
degree three by a hyperedge uvw, as well as each star veu, vev, vew by the hyperedge
uvw, we obtain an r-edge-connected 3-hypergraph on V , as required.

Fleiner [3] proved that Theorem 1.2 is valid for 3-hypergraphs as well, provided
no hyperedge of size three contains the designated vertex s. In fact, his proof works
only in the more general 3-hypergraph setting. He also proved Theorem 6.3 in the
special case of uniform requirements. Here we note that the 3-hypergraph version of
Theorem 1.2 (and Theorem 1.1) is easy to deduce directly from Theorem 1.1 by the
3-hyperedge/star replacement method that we used in the proof of Theorem 6.3.
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The detachment problem considered by Nash-Williams [8, 9] was different in the
following sense. Given a graph G = (V,E), a global degree specification f for G assigns
a degree specification f(v) = (dv1, . . . , d

v
pv ) to each vertex v ∈ V . We say that G′ is a

global f-detachment of G if G′ can be obtained from G by simultaneously detaching
each vertex v into pv pieces such that the degrees of the pieces are given by f(v).
Thus every edge uv in G corresponds to an edge connecting some piece of u to some
piece of v in G′. Nash-Williams proved the following theorem. (See [1] for a somewhat
shorter proof.)

Theorem 6.4 (see [9]). Let G = (V,E) be a graph, let f be a global degree
specification for G, and let k ≥ 2 be an integer. Then G has a k-edge-connected global
f-detachment if and only if G is k-edge-connected, dvi ≥ k for every v ∈ V , 1 ≤ i ≤ pv,
and neither of the following two cases occurs:

(a) k is odd and G has a cut-vertex v with f(v) = (k, k),
(b) k is odd, V = {u, v}, and f(u) = f(v) = (k, k).
Fleiner [3] showed that Theorem 6.4 can be deduced from Theorem 1.2. It might

be interesting to prove some kind of local edge-connectivity version of Theorem 6.4
using Theorem 1.1.

We do not discuss the algorithmic aspects of our results in detail but note that
the proofs of Theorem 1.1 and its applications are algorithmic and give rise to poly-
nomial algorithms for constructing an r-edge-connected f(s)-detachment, if it exists,
and augmenting the local edge-connectivity of a graph or 3-hypergraph optimally by
attaching stars or adding hyperedges of size at most three. This follows from the
fact that checking whether a 2-split or 3-split is r-admissible and feasible can be
done by max-flow computations. An efficient algorithm for the special case of finding
λ-admissible splittings is given in [6].
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Abstract. Splitting off two edges su, sv in a graph G means deleting su, sv and adding a new
edge uv. Let G = (V + s, E) be k-edge-connected in V (k ≥ 2) and let d(s) be even. Lovász
proved that the edges incident to s can be split off in pairs in a such a way that the resulting graph
on vertex set V is k-edge-connected. In this paper we investigate the existence of such complete
splitting sequences when the set of split edges has to meet additional requirements. We prove
structural properties of the set of those pairs u, v of neighbors of s for which splitting off su, sv
destroys k-edge-connectivity. This leads to a new method for solving problems of this type.

By applying this method we obtain a short proof for a recent result of Nagamochi and Eades
on planarity-preserving complete splitting sequences and prove the following new results: let G and
H be two graphs on the same set V + s of vertices and suppose that their sets of edges incident
to s coincide. Let G (H) be k-edge-connected (l-edge-connected, respectively) in V (k, l ≥ 2) and
let d(s) be even. Then there exists a pair su, sv which can be split off in both graphs preserving
k-edge-connectivity in G (l-edge-connectivity in H, respectively), provided d(s) ≥ 6. If k and l are
both even, then such a pair always exists. By using these edge-splitting results and the polymatroid
intersection theorem we give a polynomial algorithm for the problem of simultaneously augmenting
the edge-connectivity of two graphs by adding a (common) set of new edges of (almost) minimum
size.
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1. Introduction. Edge-splitting is a well-known and useful method for solving
problems in graph connectivity. Splitting off two edges su, sv means deleting su, sv
and adding a new edge uv. This operation may decrease the edge-connectivity of
the graph. The essence of the edge-splitting method is to find a pair of edges which
can be split off preserving the edge-connectivity or other connectivity properties of
the graph. If such a good pair exists, then one may reduce the problem to a smaller
graph which can lead to inductive proofs. Another typical application is the edge-
connectivity augmentation problem where splitting off is an important subroutine in
some polynomial algorithms. This connection will be discussed in detail in section 5.
(For a survey, see [9].)

Let G = (V + s,E) be a graph which is k-edge-connected in V ; that is, d(X) ≥ k
holds for every ∅ �= X ⊂ V . Here d(X) denotes the degree of X. Suppose that d(s)
is even and k ≥ 2. Lovász [12] proved that for every edge su there exists an edge
sv for which splitting off the pair su, sv preserves k-edge-connectivity in V . We call
such a pair admissible. By repeated applications of this theorem we can see that all
the edges incident to s can be split off in pairs in such a way that the resulting graph
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1610, G. Cornuéjols, R. E. Burkard, and G. Woeginger, eds., Springer-Verlag, Berlin, 1999, pp. 273–
288. This research was supported in part by the Hungarian Scientific Research Fund grants T037547
and F034930 and FKFP grant 0143/2001.

http://www.siam.org/journals/sidma/17-1/36448.html
†Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, 1117
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(on vertex set V ) is k-edge-connected. Such a splitting sequence which isolates s (and
preserves k-edge-connectivity in V ) is called a complete (admissible) splitting at s.

This result gives no information about the structure of the subgraph (V, F ) in-
duced by the set F of new edges that we obtain by the splittings (except the degree-
sequence of its vertices, which is the same for every complete splitting). Recent prob-
lems in edge-connectivity augmentation gave rise to edge-splitting problems, where
the goal is to find a complete admissible splitting for which the subgraph of the new
edges satisfies some additional requirement. For example, while adding F to G − s,
one may want to preserve simplicity [2], planarity [13], or bipartiteness [1], too.

The goal of this paper is to develop a new method for solving such “constrained”
edge-splitting problems. The basic idea is to define the nonadmissibility graph B(s)
of G = (V + s,E) on the set of neighbors of s by connecting two vertices x, y if
and only if the pair sx, sy is not admissible. We give a complete characterization
of those graphs that arise as nonadmissibility graphs. Furthermore, we prove that
B(s) is 2-edge-connected if and only if B(s) is a cycle, k is odd, and G has a special
structure, which we call round. This structural property turns out to be essential
in several edge-splitting problems. Suppose that the additional requirement the split
edges have to meet can be given by defining a constraint graph D(s) on the neighbors
of s in every iteration of the splitting sequence so that the requirement is satisfied if
and only if uv ∈ E(D(s)) holds for the admissible pair su, sv that we split off, in every
iteration. Clearly, such an admissible pair exists if and only if D(s) is not a subgraph
of B(s). Our method is to compare the structure of the graphs B(s) and D(s) that
may occur in some iteration. By showing that D(s) can never be the subgraph of
the corresponding B(s) we can verify the existence of a complete admissible splitting
satisfying the additional requirement.

As a first application of this method we give a simplified proof for a recent result of
Nagamochi and Eades [13] on planarity-preserving complete admissible splittings. We
also show that some results of Bang-Jensen et al. [1] on partition-constrained complete
admissible splittings can be obtained by this method. Then we use our structural
results to prove the following “intersection theorem” for admissible splittings: let two
graphs G = (V + s,E) and H = (V + s,K) be given for which the sets of edges
incident to s in G and H coincide. Let G and H be k- and l-edge-connected in V ,
respectively (k, l ≥ 2). Then there exists a pair of edges su, sv which is admissible in
G and H (with respect to k and l, respectively) simultaneously, provided d(s) ≥ 6. If
k and l are both even, then such a pair always exists, and therefore a simultaneously
admissible complete splitting exists as well.

By using these edge-splitting results and the polymatroid intersection theorem
we give a min-max theorem and a polynomial algorithm for the simultaneous edge-
connectivity augmentation problem. In this problem two graphs G′ = (V,E), H ′ =
(V,K) and two integers k, l ≥ 2 are given and the goal is to find a smallest set F
of new edges for which G′′ = (V,E ∪ F ) and H ′′ = (V,K ∪ F ) are k-edge-connected
and l-edge-connected, respectively. Our algorithm finds a feasible solution whose size
does not exceed the optimum by more than one. If k and l are both even, then the
solution is optimal.

1.1. Definitions and notation. Graphs in this paper are undirected and may
contain parallel edges. Let G = (V,E) be a graph. A subpartition of V is a collection
of pairwise disjoint nonempty subsets of V . A set consisting of a single vertex v is
simply denoted by v. An edge joining vertices x and y is denoted by xy. Sometimes
xy will refer to an arbitrary copy of the parallel edges between x and y, but this will
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not cause any confusion. Adding or deleting an edge e in a graph G is denoted by
G+e or G−e, respectively. The symbols ⊆ and ⊂ denote set containment and proper
set containment, respectively.

For X,Y ⊆ V , d(X,Y ) denotes the number of edges with one endvertex in X−Y
and the other in Y −X. We define the degree of a subset X as d(X) = d(X,V −X).
For example, d(v) denotes the degree of vertex v. The set of neighbors of v (or v-
neighbors for short), that is, the set of vertices adjacent to vertex v, is denoted by
N(v). A graph G = (V,E) is k-edge-connected if

d(X) ≥ k for all ∅ �= X ⊂ V.(1)

The operation splitting off a pair of edges su, sv at a vertex s means replacing
su, sv by a new edge uv. If u = v, then the resulting loop is deleted. We use Gu,v

to denote the graph obtained by splitting off the edges su, sv in G (the vertex s will
always be clear from the context). A complete splitting at vertex s (with even degree)
is a sequence of d(s)/2 splittings of pairs of edges incident to s.

2. Preliminaries. The degree function satisfies the following well-known equal-
ities.

Proposition 2.1. Let H = (V,E) be a graph. For arbitrary subsets X,Y ⊆ V ,

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ),(2)

d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2d(X ∩ Y, V − (X ∪ Y )).(3)

In the rest of this section let s be a specified vertex of a graph G = (V + s,E)
with degree function d such that d(s) is even and (1) holds with respect to some
k ≥ 2. Saying (1) holds in such a graph G means it holds for all ∅ �= X ⊂ V (in which
case G is said to be k-edge-connected in V ). A set ∅ �= X ⊂ V is called dangerous if
d(X) ≤ k + 1 and d(s,X) ≥ 2. (Notice that in the standard definition of dangerous
sets property d(s,X) ≥ 2 is not required.) A set ∅ �= X ⊂ V is critical if d(X) = k.
Two sets X,Y ⊆ V are crossing (or X crosses Y ) if X − Y , Y − X, X ∩ Y , and
V − (X ∪ Y ) are all nonempty. Edges sv, st form an admissible pair in G if Gv,t still
satisfies (1). It is well known, and easy to see, that sv, st is not admissible if and only
if some dangerous set contains both t and v.

The statements in the following two lemmas can be proved by standard meth-
ods using Proposition 2.1. Most of them are well known and appeared explicitly or
implicitly in [8], or later in [1] (see also [3]). We omit the proofs.

Lemma 2.2.
(a) A maximal dangerous set does not cross any critical set.
(b) If X is dangerous, then d(s, V −X) ≥ d(s,X).
(c) If k is even, then two maximal dangerous sets X,Y which are crossing have

d(s,X ∩ Y ) = 0.
Let t be a neighbor of s. A dangerous set X with t ∈ X is called a t-dangerous

set.
Lemma 2.3. Let v be an s-neighbor. Then exactly one of the following holds:
(i) The pair sv, su is admissible for every edge su �= sv.
(ii) There exists a unique maximal v-dangerous set X.
(iii) There exist precisely two maximal v-dangerous sets X,Y . In this case k is

odd and we have d(X) = d(Y ) = k + 1, d(X − Y ) = d(Y − X) = d(X ∩ Y ) = k,
d(X ∪ Y ) = k + 2, d(X ∩ Y, V + s− (X ∪ Y )) = 1, d(s,X − Y ) ≥ 1, d(s, Y −X) ≥ 1,
and d(X ∩ Y,X − Y ) = d(X ∩ Y, Y −X) = (k − 1)/2.
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An s-neighbor v for which (iii) holds in Lemma 2.3 is called special.

The previous lemmas include all ingredients of Frank’s proof [8] for the next
splitting off theorem due to Lovász.

Theorem 2.4 (see [12, Problem 6.53]). Suppose that (1) holds in G = (V +s,E),
k ≥ 2, d(s) is even, and |N(s)| ≥ 2. Then for every edge st there exists an edge su
(t �= u) such that the pair st, su is admissible.

3. The structure of nonadmissibility graphs. In this section let G = (V +
s,E) be a graph which satisfies (1) with respect to some k ≥ 2. The nonadmissibility
graph B(s) = (N(s), E(B(s))) of G (with respect to s) is defined on vertex set N(s).
Two vertices u, v ∈ N(s) (u �= v) are adjacent in B(s) if and only if the pair su, sv is
not admissible in G. Notice that while G may contain parallel edges, B(s) is always
a simple graph. It follows from the definition that two edges su, sv (u �= v) form
an admissible pair in G if and only if uv ∈ E(B̄(s)), that is, uv is an edge of the
complement of B(s).

This notion turns out to be useful in problems where we search for a complete
admissible splitting for which the set F of edges obtained by the splittings satisfies
some additional property Π. Let G′ := G− s. For example, G′ + F may be required
to be simple, planar, or bipartite. If property Π is closed under taking subgraphs,
it defines a graph for every iteration of a splitting sequence in the following way.
Suppose that by splitting off some admissible pairs we have preserved property Π;
that is, G′ + F ′ satisfies Π for the set F ′ of edges split off so far. Define a constraint
graph DΠ(s) = (N(s), E(DΠ(s))) on the set of neighbors of s in such a way that
splitting off xy preserves Π (that is, G′ + F ′ + xy satisfies Π) if and only if xy ∈
E(DΠ(s)). By definition, a constraint graph is simple. Given Π and its constraint
graph DΠ(s), an admissible split satisfying Π will be called a DΠ(s)-split, or simply
a D(s)-split. It is clear from the definitions that a D(s)-split exists if and only if
D(s) and B̄(s) have a common edge. In other words, a D(s)-split does not exist if
and only if D(s) is a (spanning) subgraph of B(s). It is easy to decide whether a
DΠ(s)-split exists for a given Π. On the other hand, to decide whether a complete
admissible splitting satisfying property Π exists may be difficult. (For instance, to
decide whether there is a complete admissible splitting in a simple graph that preserves
simplicity is NP-complete [11].) Structural properties of the nonadmissibility graph
help overcome this difficulty in several cases by the following observation: if DΠ(s)
cannot be the subgraph of B(s) at any iteration (since, say, it is always connected
while the nonadmissibility graph is disconnected), then a complete admissible splitting
satisfying property Π exists.

In order to use this kind of argument, we characterize those graphs that arise
as nonadmissibility graphs. A vertex v which is adjacent to all the other vertices of
the graph is a dominating vertex. A complete (subgraph of a) graph will be called
a clique. The union of two cliques with precisely one vertex in common is a double
clique. Every double clique has a dominating vertex. In what follows assume that
d(s) is even and |N(s)| ≥ 2. Note that the neighbors of s in some dangerous set of G
induce a clique in B(s). The definition of B(s), Lemma 2.3, and Theorem 2.4 imply
the following.

Lemma 3.1. (a) B(s) has no dominating vertex. (b) The neighbors of a vertex t
in B(s) induce a clique unless t is special. If t is special, the neighbors of t in B(s)
can be covered by two cliques of B(s).

This leads to a simple characterization of nonadmissibility graphs in the case
when k is even.
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Theorem 3.2. Suppose that G = (V +s,E) satisfies (1), d(s) is even, |N(s)| ≥ 2,
and k is even. Then B(s) is the disjoint union of (at least two) complete graphs.

Proof. By Lemma 2.3 there is no special s-neighbor in G. Hence, by Lemma
3.1(b), the neighbors of each vertex of B(s) induce a clique. Thus B(s) is the union
of pairwise disjoint cliques. B(s) itself cannot be complete by Lemma 3.1(a).

It is easy to see that every graph consisting of (at least two) disjoint complete
graphs can be obtained as a nonadmissibility graph.

Now let us focus on the case when k ≥ 3 is odd. In this case the complete char-
acterization of nonadmissibility graphs is more complicated. We need the following
key lemma.

Lemma 3.3. Suppose that t is special and let X and Y be the two maximal t-
dangerous sets. Let u be a special s-neighbor in Y − X. Let Y and Z denote the
two maximal u-dangerous sets in G. Then Z ∩X = ∅, Y = (X ∩ Y ) ∪ (Z ∩ Y ), and
d(s, Y ) = 2.

Proof. Notice that for every special vertex u′ ∈ Y − X one of the two maximal
u′-dangerous sets must be Y by Lemma 2.3. Thus Y is indeed one of the two maximal
u-dangerous sets.

Let v be an s-neighbor in Z−Y . First suppose v ∈ X−Y . Since X and Y are the
only maximal t-dangerous sets, we have t /∈ Z. This shows that v is also special and the
two maximal v-dangerous sets are X and Z. Lemma 2.3(iii) implies d(Z) = k+ 1 and
d(X−Y ) = d(Y −X) = k. Hence by (3), applied to Z and X−Y and to Z and Y −X,
we obtain X − Y ⊂ Z and Y −X ⊂ Z. By Lemma 2.3(iii) we have d(X ∩ Y ) = k.
Hence Z ∩ X ∩ Y = ∅ by Lemma 2.2(a), provided Z ∪ (X ∩ Y ) �= V . Moreover,
Z ∪ (X ∩ Y ) = V implies d(s, Z) ≥ d(s)− 1 > d(s, V −Z), using d(s) ≥ 4. Since Z is
dangerous, this would contradict Lemma 2.2(b). Thus we conclude Z ∩X ∩ Y = ∅.

The above verified properties of Z and Lemma 2.3(iii) imply that k + 1 = d(Z) ≥
d(X ∩ Y,Z) + d(s, Z) ≥ d(X ∩ Y,X − Y ) + d(X ∩ Y, Y −X) + 2 = k− 1 + 2 = k + 1.
This shows that d(s, Z) = 2 and hence d(s, Z ∪ (X ∩ Y )) = 3 holds. We also get
d(Z, V −Z−(X∩Y )) = 0, and by Lemma 2.3(iii) we have d(X∩Y, V −Z−(X∩Y )) = 0
as well. Therefore d(Z∪ (X ∩Y ), V −Z− (X ∩Y )) = 0 and hence d(s, Z∪ (X ∩Y )) =
d(Z ∪ X ∪ Y ) = 3 ≤ k. This shows Z ∪ X ∪ Y is dangerous, contradicting the
maximality of X.

Thus we may assume that v ∈ V − (X ∪ Y ). By Lemma 2.3(iii) we have d(Z) =
k + 1, d(X − Y ) = d(Y − X) = d(X ∩ Y ) = k and there exists an s-neighbor
w ∈ X −Y . Clearly, t /∈ Z and by the previous argument we may assume w /∈ Z. We
claim that Z ∩ (X − Y ) = ∅. Indeed, otherwise Z and X − Y would cross (observe
that t /∈ Z ∪ (X − Y )), contradicting Lemma 2.2(a). We claim that Z ∩ (X ∩ Y ) = ∅
holds as well. This claim follows similarly by Lemma 2.2(a), since w /∈ Z ∪ (X ∩ Y ).
A third application of Lemma 2.2(a) shows Y − X ⊂ Z. To see this observe that
t /∈ Z ∪ (Y −X) and hence (Y −X)−Z �= ∅ would imply that Z and Y −X cross, a
contradiction.

Summarizing the previous observations, we obtain Z ∩X = ∅ and Y = (X ∩Y )∪
(Z ∩ Y ). By Lemma 2.3(iii) this implies d(s, Y ) = 2. This proves the lemma.

A corollary of Lemma 3.3 is the following sharpening of Lemma 3.1(b). Let t be
a special s-neighbor and let X and Y be the maximal t-dangerous sets. Then each
pair sx, sy with x ∈ X − Y , y ∈ Y − X is admissible and hence the t-neighbors in
B(s) induce two disjoint cliques. (See also [3, section 2].)

We recall some basic definitions and facts. An inclusionwise maximal 2-edge-
connected subgraph is a 2-component. (By definition, a single vertex is 2-edge-
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connected.) An edge e is called a cut-edge in a connected graph H if H − e is discon-
nected. It is well known that the 2-components of a graph are pairwise vertex-disjoint
and those edges of a connected graph which are not included in any 2-component are
precisely the cut-edges. By contracting the 2-components of a connected graph H, we
get a tree whose edges correspond to the cut-edges of H. This tree is the 2-component
tree of H. 2-components corresponding to the leaves of this tree are called leaves.

Theorem 3.4. Suppose that G = (V + s,E) satisfies (1), d(s) is even, and
|N(s)| ≥ 2. Let H be a component of B(s). Then H is either

(a) a clique, or

(b) a double clique, or

(c) two disjoint cliques connected by a path, or

(d) a cycle of length at least four.

Proof. First we show that each 2-component W of H is either a clique, a double-
clique, or a cycle. Suppose W is neither a clique nor a double-clique. Since W is not
a clique, there exists a vertex t ∈ W for which the neighbors of t in W do not form
a clique. By Lemma 3.1 and the maximality of W it follows that t is special. Let X
and Y denote the two cliques in B(s) corresponding to the two maximal t-dangerous
sets of G. By the choice of t and the maximality of W , we have X ∪ Y ⊆ W . Since
X ∪ Y forms a double-clique in B(s) and W is connected and is not a double-clique,
without loss of generality there is an edge uv in W with u ∈ Y − t, v ∈W − (X ∪ Y ).
By applying Lemma 2.3(iii) and Lemma 3.3 to t and u we get Y = {t, u} and that u
and t have no common neighbors. Let P be a shortest path in W − tu from t to u.
Such a path exists since W is 2-edge-connected. By Lemma 3.3 there are no edges
in B(s) from X − t to Y − t. Thus P has at least three edges and C := P + tu is
a cycle of length at least four. We claim that W = C. Since P is a shortest path,
C has no chords. Therefore each vertex on C is special by Lemma 3.1(b). Suppose
there is a vertex z ∈ W − C that is adjacent to a vertex of C. Since u and t have
no common neighbors, we may assume that z and u are nonadjacent. Let q �= u be
the last neighbor of z on P (counting from t to u) and let p be the vertex preceding
q on P . (Observe that q �= t by Lemma 3.1(b). Thus p exists.) By Lemma 3.1(b)
and the choice of q, it follows that p and z are adjacent. On the other hand, applying
Lemma 3.3 to the special vertex p and its neighbor q, it follows that p and q have no
common neighbors, a contradiction. This proves that W = C, as required.

It remains to verify that if H is not 2-edge-connected, then it is the union of
two disjoint cliques connected by a path. In our argument the following corollaries
of Lemma 3.1(b) and Lemma 3.3, respectively, are crucial: (i) B(s) has no “claw”
(that is, a vertex that is adjacent to three pairwise nonadjacent vertices); (ii) B(s)
contains no induced subgraph isomorphic to the union of a triangle (t, w, u) and two
independent edges tx, uy.

Suppose that H is not 2-edge-connected and let Z be a nonsingleton 2-component
of H. By our proof above and since B(s) is simple, Z is either a clique (on at least 3
vertices), a double-clique (with each clique containing at least 3 vertices), or a cycle
(on at least 4 vertices). Since Z �= H, there is at least one cut-edge e incident to
Z. If Z is a double-clique or a cycle, then Z + e has a claw or a bad triangle as in
(ii), a contradiction. We have the same conclusion if there are at least two cut-edges
incident to Z and Z is a clique. This shows that each nonsingleton 2-component of
H is a clique which is also a leaf. Therefore, since B(s) has no claw, the 2-component
tree must be a path and hence H is the union of two disjoint cliques, connected by a
path, as required.
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One can obtain a complete characterization of graphs arising as a nonadmissibility
graph (of some graph G = (V +s,E) with d(s) even and |N(s)| ≥ 2) by extending the
properties verified in Lemma 3.1(a) and Theorem 3.4 by some minor observations. For
example, if B(s) is disconnected, then it has no C4 components, and if B(s) consists
of two disjoint cliques connected by a path P , then P has an even number of vertices.
We leave these details to the interested reader.

Those graphs G = (V + s,E) for which B(s) is 2-edge-connected are of special
interest. To describe their structure, first we need some definitions. In a cyclic
partition X = (X0, . . . , Xt−1) of V the t partition classes {X0, . . . , Xt−1} are cyclically
ordered. Thus we use the convention Xt = X0, and so on. In a cyclic partition two
classes Xi and Xj are neighboring if |j − i| = 1 and nonneighboring otherwise. We
say that G′ = (V ′, E′) is a Cp

l -graph for some p ≥ 3 and some even l ≥ 2 if there
exists a cyclic partition Y = (Y0, . . . , Yp−1) of V ′ for which d′(Yi) = l (0 ≤ i ≤ p− 1)
and d′(Yi, Yj) = l/2 for each pair Yi, Yj of neighboring classes of Y (which implies
d′(Yi′ , Yj′) = 0 for each pair of nonneighboring classes Yi′ , Yj′). A cyclic partition of
G′ with these properties is called uniform.

Let G = (V +s,E) satisfy (1) for some odd k ≥ 3. Such a G is called round (from

vertex s) if G− s is a C
d(s)
k−1-graph. Note that by (1) this implies that d(s, Vi) = 1 for

each class Vi (0 ≤ i ≤ d(s)− 1) of a uniform partition V of G− s.

Lemma 3.5. Let G = (V +s,E) satisfy (1) for some odd k ≥ 3. Suppose that G is
round from s and let V = (V0, . . . , Vr) be a uniform partition of V , where r = d(s)−1.
Then

(a) G− s is (k − 1)-edge-connected and for every X ⊂ V with dG−s(X) = k − 1

either X ⊆ Vi or V − X ⊆ Vi holds for some 0 ≤ i ≤ r or X =
⋃i+j
i Vi for some

0 ≤ i ≤ r, 1 ≤ j ≤ r − 1;

(b) for any set I of new edges which induces a connected graph on N(s), the graph
(G− s) + I is k-edge-connected;

(c) the uniform partition of G− s is unique;

(d) B(s) is a cycle on d(s) vertices (which follows the ordering of V).
Proof. Let H := G− s. Since G satisfies (1) and dG(s, Vi) = 1 for 0 ≤ i ≤ r, we

get dH(Y ) ≥ k−1 if Y ⊆ Vi for some i. Suppose that H is not (k−1)-edge-connected
and let X ⊂ V be a maximal set with dH(X) ≤ k− 2. By the definition of a uniform
partition, X cannot be the union of some classes of V. Thus there exists a Vj ∈ V for
which X and Vj are intersecting. If X∪Vj = V , then dH(X) = dH(V −X) = dH(Vj−
X) ≤ k−2 follows, a contradiction. Thus X and Vj cross. Now (2) and the maximality
of X imply k− 1 + k− 2 ≥ dH(Vj) + dH(X) ≥ d(Vj ∩X) + d(Vj ∪X) ≥ k− 1 + k− 1,
a contradiction. This proves that H is (k − 1)-edge-connected. Let Y ⊂ V satisfy
dH(Y ) = k − 1 and assume that neither Y nor V − Y is a subset of some class of V.
If Y crosses some Vj , then by (2) and (3) we have dH(Y ∩ Vj) = dH(Vj − Y ) = k− 1.
This cannot hold by (1) and dG(s, Vj) = 1. Thus Y is the union of some classes of
V. By the properties of a uniform partition it is clear that these classes have to be
consecutive. This proves (a).

Property (a) implies that if I is a set of new edges which induces a connected
graph on N(s), then for every Y ⊂ V with dH(Y ) = k − 1 there is at least one edge
xy ∈ I with |Y ∩ {x, y}| = 1. Thus adding I to H increases the edge-connectivity to
at least k. This proves (b).

To see (c) let us fix some s-neighbor v. In a given uniform partition this vertex is
the unique s-neighbor in some Vj and by property (a) Vj is the unique maximal set
of degree k in G which contains v. This shows that the set of classes of the uniform
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partitions is unique. By the degree properties of a uniform partition it follows that
the cyclic ordering of these classes is also unique. This proves (c).

By definition a uniform partition V satisfies dG(Vi ∪ Vi+1) = k + 1 for 0 ≤ i ≤ r.
Thus B(s) contains a cycle which follows the cyclic ordering of V. This proves (d)
when r = 2. Suppose r ≥ 3 and take a dangerous set X in G. By (a) we can see
that dG(s,X) = 2 and dH(X) = k − 1 hold and that X must be the union of two
consecutive classes of V. Therefore B(s) is a cycle.

Theorem 3.6. Suppose that G = (V + s,E) satisfies (1) for some k ≥ 2, d(s) is
even, and |N(s)| ≥ 2. Then B(s) is 2-edge-connected if and only if B(s) is a cycle of
length d(s), k is odd, d(s) ≥ 4, and G is round from s.

Proof. Suppose that G is round from s and d(s) ≥ 4. Lemma 3.5(d) shows B(s)
is a cycle and hence B(s) is 2-edge-connected. To see the other direction assume
that B(s) is 2-edge-connected. By Theorem 3.4 and Lemma 3.1(a), B(s) is a cycle.
Thus, by Lemma 3.1(b), each s-neighbor is special, and hence there are no parallel
edges incident to s by Lemma 2.3(iii). This shows that B(s) has d(s) vertices. Let
v0, . . . , vd(s)−1 denote the vertices of B(s), following the cyclic ordering. Let Vi =
X1
vi ∩X2

vi (0 ≤ i ≤ d(s) − 1), where X1
vi and X2

vi are the two maximal vi-dangerous
sets in G. Now by Lemma 2.3(iii) and Lemma 3.3 it is easy to see that (V0, . . . , Vd(s)−1)

is a uniform partition of G − s and that G − s is a C
d(s)
k−1-graph. Hence G is round

from s, as required.

4. Applications. In this section we apply Theorems 3.2 and 3.6 and give new
proofs for previous results from [1] and [13].

4.1. Edge-splitting preserving planarity. The following theorem is due to
Nagamochi and Eades [13]. The new proof we present here seems to be simpler,
especially for k even.

Theorem 4.1 (see [13]). Let G = (V + s,E) be a planar graph satisfying (1)
with respect to either an even k or k = 3 and suppose that d(s) is even. Then there
exists a complete admissible splitting at s for which the resulting graph is planar.

Proof. Suppose that we are given a fixed planar embedding of G. This embedding
uniquely determines a cyclic ordering C of (the edges incident to s and hence) the
neighbors of s. Clearly, splitting off a pair su, sv for which u and v are consecutive in
this cyclic ordering preserves planarity (and a planar embedding of the resulting graph
can be obtained without re-embedding G − {su, sv}). Thus to see that a complete
admissible splitting exists at s which preserves planarity it is enough to prove that
(∗) there exists an admissible pair su, sv for which u and v are consecutive in C. Let
us call such a pair a consecutive admissible pair. By repeated applications of (∗) we
obtain a complete admissible splitting which preserves planarity (and the embedding
of G− s as well).

The existence of a consecutive admissible pair can be formulated in terms of a
constraint graph. We may assume |N(s)| ≥ 4. Let D(s) be a cycle defined on the
neighbors of s following the cyclic ordering C. Clearly, a consecutive admissible pair
exists if and only if there exists a D(s)-split. If k is even, then Theorem 3.2 and the
fact that D(s) is connected (while the nonadmissibility graph B(s) is disconnected)
show that (∗) holds in every iteration. (Note that during the process of iteratively
splitting off consecutive admissible pairs the set of neighbors as well as the constraint
graph D(s) may change. This happens when s loses some neighbor w by splitting off
the last copy of the edges sw.) This completes the proof of the theorem in the case
when k is even.
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Now consider the case k = 3. The above argument and Theorem 3.6 show (using
the fact that D(s) is 2-edge-connected) that by splitting off consecutive admissible
pairs as long as possible, either we find a complete admissible splitting which preserves
planarity (and the embedding of G− s) or we get stuck in a graph G′ which is round
from s and for which BG′(s) = DG′(s) holds. In the latter case we need to re-embed
some parts of G′ in order to complete the splitting sequence and maintain planarity.

Let us consider such a round G′ = (V + s,E′) with BG′(s) = DG′(s). Let
V0, . . . , V2m−1 be the uniform partition of G′ − s (where 2m := dG′(s)) and let vi be
the neighbor of s in Vi (0 ≤ i ≤ 2m − 1). There exists a face F of G′ − s whose
boundary includes every s-neighbor. Since k = 3 and G′ is round, it can be seen that
we may assume that F is a finite face in the embedding of G′ − s and every edge
which connects two consecutive members of the uniform partition of G′ − s is on the
boundary of F as well as on the boundary of the infinite face. Since G′ is round,
we can apply Lemma 3.5(a) and deduce that adding the edges v0vm and viv2m−i
(1 ≤ i ≤ m − 1) to G′ − s results in a 3-edge-connected graph G′′. Thus G′′ can be
obtained from G′ by a complete admissible splitting. Furthermore, this set of m new
edges can be added to the planar embedding of G′ − s within face F in such a way
that in the resulting embedding of G′′ every edge crossing involves the edge v0vm. To
avoid these edge crossings we can do the following: first we “flip” V0 and/or Vm in
G′−s, that is, re-embed the subgraphs induced by V0 and Vm in such a way that both
v0 and vm occur on the boundary of the infinite face while the edges leaving V0 and
Vm remain unchanged. Since G′ is round, k = 3, and v0 and vm are s-neighbors in
G′, it is easy to see that this can be done. Then we can connect v0 and vm within the
infinite face and add the other new edges as before. This yields a planar embedding
of G′′. This completes the proof of the theorem.

The theorem does not hold if k ≥ 5 is odd; see [13]. Note that the above proof
implies that the graphs obtained by a maximal planarity preserving admissible split-
ting sequence are round for every odd k ≥ 5. The original proof in [13] also used the
flipping operation but in a more sophisticated way. Our proof shows that if k = 3,
then at most two flippings are sufficient.

4.2. Edge-splitting with partition-constraints. Let G = (V + s,E) be a
graph for which (1) holds for some k ≥ 2 and d(s) is even. Let P = {P1, P2, . . . , Pr},
2 ≤ r ≤ |V |, be a prescribed partition of V . In order to solve a more general partition-
constrained augmentation problem, Bang-Jensen et al. [1] investigated the existence
of complete admissible splittings at s for which each split edge connects two distinct
classes of P. This problem can also be formulated in terms of constraint graphs, and
our results on nonadmissibility graphs can be applied to prove some results from [1].
We briefly sketch this connection below. (Note that the partition-constrained edge-
splitting problem turns out to be a special case of the “simultaneous edge-splitting
problem” that we discuss in detail in section 5.)

An admissible pair sx, sy is called allowed if x and y belong to different classes of
P. Let S := N(s), Si := S ∩ Pi, and di := d(s, Si). The following definition describes
a situation when a complete allowed splitting does not exist if k is odd.

Definition 4.2 (see [1]). Let {A1, A2, B1, B2} be a partition of V with the
following properties in G for some index i, 1 ≤ i ≤ r:

(i) d(X) = k for X = A1, A2, B1, B2;
(ii) d(X,Y ) = 0 for (X,Y ) = (A1, A2), (B1, B2);
(iii) S ∩X = Si for X = A1 ∪A2 or X = B1 ∪B2;
(iv) di = d(s)/2. Such a partition is called a C4-obstacle in G.
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The following lemma is extracted from [1, Lemmas 2.13, 3.3, 3.4, 5.1].
Lemma 4.3. Let G = (V + s,E) be a graph for which (1) holds, d(s) is even, and

di ≤ d(s)/2 for all 1 ≤ i ≤ r. Then
(i) if d(s) ≥ 6, then for any nonempty Si there is an allowed pair sx, sy with

x ∈ Si;
(ii) if d(s) = 4, then there exists a complete allowed splitting at s unless k is odd

and G contains a C4-obstacle {A1, A2, B1, B2}. In the latter case in graph G− s we
have d(A1) = d(A2) = d(B1) = d(B2) = k − 1 and d(A1 ∪B1) = d(A1 ∪B2) = k − 1.
Moreover,

(iii) if k is even, then there exists a complete allowed splitting at s, and
(iv) if k is odd, then there exists a sequence of allowed splittings of length at least

d(s)/2− 2.
Proof. For a nonempty Si let the constraint graph D(s) be the complete bipartite

graph on color classes Si and S−Si, respectively. Since di ≤ d(s)/2, we have S−Si �=
∅. An allowed pair sx, sy with x ∈ Si exists if and only if there exists a D(s)-split.
D(s) is either 2-edge-connected and is not a cycle, or has a dominating vertex, or is a
four-cycle. In the first two cases Theorem 3.2 and Theorem 3.6 show that a D(s)-split
exists. Moreover, if D(s) is a four-cycle and there is no D(s)-split, then G is round
and d(s) = 4. In that case G− s is a C4-obstacle with the required properties. This
proves (i) and (ii).

Let dj ≥ di for every 1 ≤ i ≤ r. Splitting off an allowed pair sx, sy with x ∈ Pj
maintains di ≤ d(s)/2 for all 1 ≤ i ≤ r. Thus iteratively applying (i) by choosing
an Sj with the largest dj , we can find a complete allowed splitting (if k is even) or
a sequence of allowed splittings of length at least d(s)/2 − 2. This proves (iii) and
(iv).

Note that by Lemma 3.5(c) the C4-obstacle in (ii), if exists, is unique.

5. Simultaneous edge-splitting and edge-connectivity augmentation. In
this section we consider the following optimization problem: let G = (V,E) and
H = (V,K) be two graphs on the same set V of vertices and let k, l ≥ 2 be integers.
Find a smallest set F of new edges for which Ĝ = (V,E + F ) is k-edge-connected
and Ĥ = (V,K + F ) is l-edge-connected. Let us call this the simultaneous edge-
connectivity augmentation problem. We give a polynomial algorithm which finds an
optimal solution if both k and l are even and finds a solution whose size is at most
one more than the optimum, otherwise. One of the two main parts of our algorithm is
based on a new splitting off theorem that we prove using Theorems 3.2, 3.4, and 3.6.

If G = H (and k ≥ l), then our problem reduces to finding a smallest set F of
edges for which Ĝ = (V,E + F ) is k-edge-connected. This is the well-solved k-edge-
connectivity augmentation problem. Several polynomial algorithms are known which
can solve this problem optimally. One approach, which is due to Cai and Sun [4]
(simplified and extended later by Frank [8]), divides the problem into two parts: first
it extends G by adding a new vertex s and a smallest set F ′ of edges incident to s such
that |F ′| is even and G′ = (V + s,E +F ′) satisfies (1) with respect to k. Then in the
second part, using Theorem 2.4, it finds a complete admissible splitting from s in G′.
The resulting set of split edges will be an optimal solution for the k-edge-connectivity
augmentation problem; see [8].

We follow and extend this approach for the simultaneous augmentation problem.
To do this we have to extend both parts: we need an algorithm which finds a smallest
F ′ incident to s for which G′ = (V +s,E+F ′) and H ′ = (V +s,K+F ′) simultaneously
satisfy (1) with respect to k and l, respectively, and then we need to verify that there
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exists a complete splitting at s which is simultaneously admissible in G′ and H ′.
Both of these extended problems have interesting new properties. While a small-

est F ′ in the first part can be found by a greedy deletion procedure in the k-edge-
connectivity augmentation problem, this is not the case in the simultaneous version.
Moreover, a complete splitting at s, which is simultaneously admissible in G′ and
H ′, does not always exist. (To see this let V = {a, b, c, d}, E = {ab, bc, cd, da},K =
{ac, bd}, F ′ = {sa, sb, sc, sd} and let k = 3, l = 2.) However, as we shall see, a
smallest F ′ can be found in polynomial time by solving an appropriate “submodular
flow” problem. Furthermore, if k and l are both even, then the required complete and
simultaneously admissible splitting does exist (and an “almost complete” splitting
sequence can always be found).

5.1. Simultaneous edge-splitting. We start with the splitting problem. Let
G = (V +s,E +F ) and H = (V +s,K +F ) be given which satisfy (1) with respect to
k and l, respectively. Here F denotes the set of edges incident to s. (For simplicity,
we assume V = V (G) = V (H), although for the splitting problem we do not need
this.) Suppose that d(s) := dG(s) = dH(s) is even. We say that a pair su, sv is legal
if it is admissible in G as well as in H. A complete splitting sequence at s is legal if
the resulting graphs (after deleting s) satisfy (1) with respect to k and l, respectively.
The property of being legal can be formulated in terms of a constraint graph D(s).
Namely, a pair su, sv (u �= v) is legal if and only if su, sv is a D(s)-split in G with
respect to D(s) = B̄H(s). Thus a legal pair exists if and only if B̄H(s) is not a
subgraph of BG(s).

Lemma 5.1. Let H = (V + s,K + F ) satisfy (1) with respect to some l ≥ 2 and
let d(s) be even. Let D be the complement of the nonadmissibility graph BH(s) of H.
Then one of the following holds:

(i) D is 2-edge-connected and D is not a cycle,
(ii) D has a dominating vertex,
(iii) D = C4,
(iv) D arises from a complete bipartite graph K2,m (m ≥ 1) by attaching an edge

to a vertex of degree m,
(v) D consists of two independent edges.
Proof. Let B = BH(s) and let S := N(s). If B is 2-edge-connected, then B is a

cycle of length d(s) ≥ 4 by Theorem 3.6. If d(s) = 4, then (v) holds, otherwise (i)
holds. Thus we may assume that B is not 2-edge-connected.

Case I (B is disconnected). If B has an isolated vertex, then (ii) holds. Otherwise
S has a bipartition S = X ∪ Y , |X|, |Y | ≥ 2, such that there are no edges from X to
Y in B. Let p := |X| and r := |Y |. Now D contains a spanning complete bipartite
graph Kp,r. Thus D is 2-edge-connected. If p = r = 2, then (iii) holds, otherwise (i)
holds.

Case II (B is connected (and has at least one cut-edge)). Now Theorem 3.4
implies that B is the union of two disjoint cliques connected by a path. Lemma 3.1(a)
implies that either the connecting path has at least two edges or each of the two
cliques has at least two vertices. Thus we can assume that there exists an X ⊂ S
with |X|, |S −X| ≥ 2 and dB(X) = 1. Let p := |X| and r := |S −X| and let e = xv,
v ∈ X, be the unique edge leaving X in B. Now D contains a spanning complete
bipartite graph Kp,r minus one edge. If p, r ≥ 3, then (i) holds. If p = r = 2,
then B (as well as D) is a path on four vertices and hence (iv) holds with m = 1.
Suppose we have p = 2, r ≥ 3. Let X = {v, w}. Since B is connected, the edge vw is
present in B. Furthermore, D − x is 2-edge-connected. Thus dD(x) ≥ 2 implies (i).
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If dD(x) = 1, then x is adjacent to every vertex y ∈ S−X−{x} in B. Since v has no
neighbors in S −X − {x}, it follows from Lemma 3.1(b) that x is special and S −X
induces a complete graph in B. Thus D arises from a complete bipartite graph K2,m

with m = r − 1 ≥ 2 by attaching an edge (xw) to a vertex of degree m. This gives
(iv).

Theorem 5.2. If d(s) ≥ 6, then there exists a legal pair su, sv. If k and l are
both even, then there exists a complete legal splitting at s.

Proof. Let D := B̄H(s) and A := BG(s). If k and l are both even, then The-
orem 3.2 shows that D is connected (since it is the complement of a disconnected
graph) and A is disconnected. This implies that a legal pair exists for arbitrary even
d(s) and hence a complete legal splitting exists as well.

Suppose k is odd and d(s) ≥ 6. We may assume |N(s)| ≥ 4. (Otherwise, by
Lemma 3.1(a), BH(s) has an isolated vertex, and hence D has a dominating vertex,
while A has no such vertex.) D satisfies one of (i)–(v) in Lemma 5.1. If (i) or (ii)
holds, then by Theorem 3.6 and Lemma 3.1(a) D cannot be a (spanning) subgraph
of A and hence we are done. If (v) holds, then BH(s) is cycle of length four. If (iii)
holds and D is a subgraph of A, then A is 2-edge-connected and by Theorem 3.6 we
have that A is a cycle of length four. In both cases d(s) = 4 follows, a contradiction.

Now assume (iv) holds. If m = 1, then D (as well as BH(s)) is a path on four
vertices. In this case, if D is a subgraph of A, then by Lemma 3.1(a) either A is a
four-cycle, in which case d(s) = 4 follows, or A = D. In the latter case, Lemma 3.1(b)
implies that the two inner vertices of A are special in G. Similarly, the two inner
vertices of BH(s) (which are disjoint from the inner vertices of A) are special in H.
Therefore by Lemma 2.3(iii) there are no parallel edges incident to s and d(s) = 4.
This settles case (iv) when m = 1.

If (iv) holds with m ≥ 2 and D is a subgraph of A, then Theorem 3.4 implies that
A is a clique with an attached edge. This contradicts Lemma 3.1(b). This completes
the proof of the theorem.

Corollary 5.3. Suppose that d(s) = 4 and there exists no legal pair. Then at
least one of G and H is round.

Proof. It follows from the proof of Theorem 5.2 that if no legal pair exists,
then d(s) = 4 and either one of G and H is round or BH(s) is a path on four
vertices. We show the latter case is impossible. Let the path be (a, b, c, d). By the
definition of BH(s), there exists a dangerous set X in H which contains b and c.
Since d(s) = |N(s)| = 4, Lemma 2.2(b) implies d(s,X) = d(s, V −X) = 2. Therefore
dH(X) = dH(V −X), V −X is also dangerous, and a, d ∈ V −X. In this case a and
d should also be adjacent in BH(s), a contradiction.

Note that a complete splitting sequence which is simultaneously admissible in
three (or more) graphs does not necessarily exist, even if each of the edge-connectivity
values is even.

We remark that the partition-constrained splitting problem can be reduced to a
simultaneous edge-splitting problem where at least one of k and l is even. To see this
suppose that an instance of the partition-constrained splitting problem is given as in
the beginning of section 4.2, satisfying dm ≤ d(s)/2, where dm := maxi{dG(s, Pi)}
in G = (V + s,E + F ). Let S := NG(s). Build graph H = (S + x + s,K + F ) as
follows. For each set S ∩ Pi in G let the corresponding set in H induce a (2dm)-
edge-connected graph (say, a complete graph with sufficiently many parallel edges or
a singleton). The edges incident to s in G and H coincide. Then from vertex x of
H add 2dm − dG(s, Pi) parallel edges to some vertex of S ∩ Pi (1 ≤ i ≤ r). Now H
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satisfies (1) with respect to l := 2dm. It is easy to see that a complete admissible
splitting satisfying the partition-constraints in G exists if and only if there exists a
complete legal splitting in the pair G,H. This shows that characterizing the pairs
G,H for which a complete legal splitting does not exist (even if one of k and l is even)
is at least as difficult as the solution of the partition-constrained problem [1].

5.2. Simultaneous edge-connectivity augmentation. Let G = (V,E) and
H = (V,K) be two graphs on the same set of vertices. First we show how to find a
smallest F ′ for which the extended graphs G′ = (V +s,E+F ′) and H ′ = (V +s,K+F ′)
simultaneously satisfy (1) with respect to k and l, respectively. We need some results
from the theory of polymatroids.

Let V be a finite ground-set and let p : 2V → Z ∪ {−∞} be an integer valued
function for which p(∅) = 0. We call p fully supermodular if p(X) + p(Y ) ≤ p(X ∩
Y ) + p(X ∪ Y ) holds for every X,Y ⊆ V . A function p : 2V → Z ∪ {−∞} is
skew supermodular if for every X,Y ⊆ V either the above submodular inequality
holds or p(X) + p(Y ) ≤ p(X − Y ) + p(Y − X). If p(Y ) ≤ p(X) holds for every
Y ⊆ X, then p is monotone. For a fully supermodular and monotone function p
the set C(p) := {x ∈ R

V : x ≥ 0, x(A) ≥ p(A) for every A ⊆ V } is called the
contra-polymatroid of p. The next result is due to Frank.

Theorem 5.4 (see [8]). Let p be a skew supermodular function. Then C(p) is a
contra-polymatroid whose unique (monotone, fully supermodular) defining function p̄
is given by

p̄(X) := max

(
t∑
i=1

p(Xi) : {X1, . . . , Xt} is a subpartition of X
)

.

Given a graph G = (V,E) and k ∈ Z+, let pkG : 2V → Z be defined by pkG(X) :=
k − dG(X) if ∅ �= X �= V and pkG(∅) = pkG(V ) = 0. This function pkG is skew
supermodular by Proposition 2.1. Following [8], we say that a vector z : V → Z+ is an
augmentation vector of G (with respect to k) if z(X) ≥ pkG(X) for every ∅ �= X ⊆ V .
Observe that G′ = (V + s,E + F ′) satisfies (1) with respect to k if and only if
z(v) := dF ′(v) (v ∈ V ) is an augmentation vector. Hence by Theorem 5.4 the problem
of finding a smallest F ′ for which G′ = (V + s,E + F ′) satisfies (1) can be reduced
to finding an integer valued element of the contra-polymatroid C(pkG) for which z(V )
is minimum. This can be done by a greedy algorithm [8]. Similarly, adding F ′

is simultaneously good for G and H if and only if z(X) ≥ max{pkG(X), plH(X)}
for every ∅ �= X ⊆ V , where z(v) := dF ′(v) (v ∈ V ). Let us call such a z a
common augmentation vector of G and H. Clearly, finding the smallest F ′ for which
G′ = (V + s,E + F ′) and H ′ = (V + s,K + F ′) satisfy (1) with respect to k and
l, respectively, can be solved by finding an integer valued z ∈ C(pkG) ∩ C(plH) for
which z(V ) is minimum. This problem is also tractable by Edmonds’ polymatroid
intersection theorem, which provides the following min-max equality (see also [7, 10]
and [15, Corollary 46.1c]).

Theorem 5.5 (see [6]). Let p1 and p2 be monotone, fully supermodular functions
on V with p1(∅) = p2(∅) = 0. Then

min{z(V ) : z ∈ Z
V , z ∈ C(p1) ∩ C(p2)} = max{p1(T ) + p2(V − T ) : T ⊆ V }.(4)

There exist efficient algorithms for finding a minimizer in (4). In fact, this problem
is a special “submodular flow” problem, and the weighted case is also solvable by
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an algorithm of Cunningham and Frank [5]. See Schrijver [15, Chapter 47] for more
details on the algorithmic aspects. Thus one can find a smallest common augmentation
vector in polynomial time.

Summarizing our observations we obtain the following algorithm for the simulta-
neous edge-connectivity augmentation problem. Let G = (V,E) and H = (V,K) be
the pair of input graphs.

Step 1. Find a common augmentation vector for G and H for which z(V ) is as
small as possible.

Step 2. Add a new vertex s to each of G and H and z(v) parallel edges from s to
v for every v ∈ V . If z(V ) is odd, then add one more edge sw for some w ∈ V .

Step 3. Find a maximal legal splitting sequence S at s in the resulting pair of
graphs. If S is complete, let the solution F consist of the set of split edges. Otherwise
splitting off S results in a pair of graphs G′, H ′ for which d(s) = |N(s)| = 4. In this
case let the solution F be the union of the split edges and a set I of three properly
chosen additional edges that form a path on the four s-neighbors.

The following theorem shows the correctness of the above algorithm and proves
that the solution set F is (almost) optimal. Let us define

Φk,l(G,H) = max

{
r∑
1

(k − dG(Xi)) +

t∑
r+1

(l − dH(Xi) :

{X1, . . . , Xt} is a subpartition of V ; 0 ≤ r ≤ t

}
.

The size of a smallest simultaneous augmenting set for G and H (with respect to k
and l, respectively) is denoted by OPTk,l(G,H).

Theorem 5.6. �Φk,l(G,H)/2� ≤ OPTk,l(G,H) ≤ �Φk,l(G,H)/2� + 1. If k and
l are both even, then OPTk,l(G,H) = �Φk,l(G,H)/2� holds.

Proof. It is easy to see that �Φk,l(G,H)/2� ≤ OPTk,l(G,H) holds. We shall
prove that the above algorithm results in a simultaneous augmenting set F with size
at most �Φk,l(G,H)/2� + 1 (and with size �Φk,l(G,H)/2� if k and l are both even).
It follows from Theorems 5.4 and 5.5, and our remarks on common augmentation
vectors, that for the vector z that we obtain in Step 1 of the above algorithm we have
z(V ) = Φk,l(G,H). Hence we have 2�Φk,l(G,H)/2� edges incident to s at the end of
Step 2. By Theorem 5.2 we can find a maximal sequence of legal splittings in Step 3
which is either complete or results in a pair of graphs G′, H ′, where d(s) = |N(s)| = 4.
In the former case the set F of split edges, which is clearly a feasible simultaneous
augmenting set, has size �Φk,l(G,H)/2� and hence is optimal. If k and l are both
even, then such a complete legal splitting always exists, proving OPTk,l(G,H) =
�Φk,l(G,H)/2�. In the latter case one of G′ and H ′, say G′, is round by Corollary 5.3.
There exists a complete admissible splitting in H ′ by Theorem 2.4. Let e = uv, f = xy
be the two edges obtained by such a complete splitting. Let g = vx. Adding e and f
to H ′ − s gives an l-edge-connected graph, and by Lemma 3.5(b) adding the edge set
I := {e, f, g} to G′−s yields a k-edge-connected graph. Thus the set of edges F , which
is the union of the edges obtained by the maximal legal splitting sequence and the
edge set I, is a simultaneous augmenting set. We also have |F | = �Φk,l(G,H)/2�+ 1,
as required.

There are examples showing OPT =�Φ/2�+1 may hold. (Take V ={a, b, c, d}, E=
{ab, bc, cd, da},K = {ac, bd} and let k = 3, l = 2.) It is easy to see that the above
algorithm can be implemented in polynomial time. As we pointed out, Step 1 can be



102 TIBOR JORDÁN

solved in polynomial time. One approach to solve Step 3 efficiently is using maximum
flow computations to check whether a pair of edges is legal or not. We omit the
details.

Since the weighted version of Step 1 is also tractable, extensions of the simulta-
neous augmentation problem to “vertex-induced” cost functions can also be solved
(see [8] for such generalizations of the k-edge-connectivity augmentation problem).
We also note that in a recent paper Nagamochi and Ibaraki [14, Corollary 1] gave an
efficient algorithm for Step 1 which is based on minimum cost flow computations.
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1. Introduction. For a given integer n ≥ 1 the Gray map is a bijective function
from Z

n
4 into F

2n
2 , and its main quality is that it is an isometry; in other words, it is

a distance preserving function with respect to the Lee and Hamming distances. With
this property in mind, the Gray map has been used extensively to construct binary
codes from quaternary codes (i.e., codes over Z4). In [4] the authors introduce a new
kind of binary code called a Z4-linear code, establishing that a binary code of even
length is Z4-linear if its coordinates can be arranged so that it is the image under
the Gray map of a quaternary linear code. Furthermore, the authors give necessary
and sufficient conditions for a binary code to be Z4-linear, as well as conditions under
which the binary Gray map image of a quaternary linear code is a linear code. On
the other hand, in [2] the author introduces a generalization of the Gray map and
extends the concept of Z4-linear codes to Z2k -linear codes in a natural way. He also
studies the conditions under which the binary codes will be Z2k -linear; in particular,
a characterization of Z8-linear codes is given.

In this paper, for k ≥ 1, an isometry between codes over Z2k+1 and codes over
Z4 is introduced and used together with the usual Gray map to give a generalization
of the latter mapping. This generalization of the Gray map is equivalent to the one

given in [2], but with this reexpression in terms of the isometry from Z
n
2k+1 to Z

2k−1n
4 ,

it is now possible to give several characterizations related to codes over Z2k+1 , similar
to those given in Theorems 4, 5, and 6 of [4] for codes over Z4.

This paper is organized as follows. In section 2, notation and definitions that
will be used throughout are established, and results that will be useful in order to

introduce the isometry from Z
n
2k+1 into Z

2k−1n
4 are also presented. Some properties

of this isometry, important for the main results of this work, are given in section 3.
In section 4 we extend the concept of Z2k -linear codes to quaternary codes and give
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necessary and sufficient conditions for a binary or quaternary code to be Z2k+1-linear.
In section 5 some examples are presented.

2. Definitions, notation, and preliminary results. Let F2 be the binary
field, and for a positive integer n let F

n
2 be the vector space of all binary vectors of

length n. For any positive integer k ≥ 1 let Z2k+1 be the ring of integers modulo
2k+1, and let Z

n
2k+1 be the module of n-tuples with entries in Z2k+1 . Addition in F2

and F
n
2 will be denoted by “⊕,” while addition in Z2k+1 and Z

n
2k+1 will be denoted by

“+.” Nevertheless, as we will see, the action of “⊕” will also be extended to Z2k+1

and Z
n
2k+1 .
By a quaternary code C of length n [4] we mean a block code, linear or not, over

Z4. Equivalently, by a binary code C
′ of length n we mean a block code, linear or not,

over F2. The definition of the Gray map φ from Z
n
4 into F

2n
2 is as in [4] and [10]; that

is, for all Z = (z1, z2, . . . , zn) ∈ Z
n
4 ,

φ(Z) = (r1(z1), . . . , r1(zn), r1(z1)⊕ r0(z1), . . . , r1(zn)⊕ r0(zn)) ,

where r1 and r0 are two maps from Z4 into F2 such that if z ∈ Z4, then the 2-adic
expansion of z is z = r0(z) + 2r1(z). A property of the Gray map (see [10]) is

φ(X + 2Y ) = φ(X)⊕ φ(2Y ) ∀ X,Y ∈ Z
n
4 .(1)

2.1. Two new operations on Z2k+1 . Similar to the Gray map, and for k ≥ 1,
k + 1 mappings ri, i = 0, 1, . . . , k, from Z2k+1 into F2 are introduced such that if
a ∈ Z2k+1 , the 2-adic expansion of a is a = r0(a) + 2r1(a) + · · ·+ 2krk(a). Using this
expansion of any element in Z2k+1 , two new operations, “⊕” and “�,” on Z2k+1 are
introduced as follows: if a, b ∈ Z2k+1 , then

a⊕ b =
k∑
i=0

2i(ri(a)⊕ ri(b)),

a� b =
k∑
i=0

2i(ri(a)ri(b)).

For l ∈ {1, 2, . . . , k + 1} we will use ζl(a, b) to denote the lth carry bit (see, for
example, [8]) in the rational sum between the binary numbers1 (rk(a), . . . , r0(a)) and
(rk(b), . . . , r0(b)). Thus, ζ1(a, b) = r0(a)r0(b), and since a recursive relation for ζl(a, b)
is

ζl+1(a, b) = (rl(a)rl(b))⊕ ζl(a, b)(rl(a)⊕ rl(b))

for l ∈ {1, 2, . . . , k}, then a general algebraic expression for ζl(a, b) is

ζl(a, b) =

l−1⊕
i=0

(ri(a)ri(b))

l−1∏
j=i+1

(rj(a)⊕ rj(b))(2)

for l ∈ {1, 2, . . . , k + 1}. Using the carry bits ζl = ζl(a, b), let c ∈ Z2k+1 be given by

c = 2ζ1 + 2
2ζ2 + · · ·+ 2kζk.

1Here a binary number is considered as a rational number expressed in base 2.
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Since (ζk, . . . , ζ1, 0) is the carry vector that we obtain from the rational sum
between the binary numbers (rk(a), . . . , r0(a)) and (rk(b), . . . , r0(b)), then (a + b) =
a ⊕ b ⊕ c. An alternative way to express the value (a + b) is through the following
proposition.

Proposition 2.1. For any k ≥ 1, let a and b be in Z2k+1 . Then

a+ b = (a⊕ b) + 2(a� b).
Proof. The proof is derived by induction on k. Clearly, the proposition is true

when k = 1. Suppose that the relation is valid for k ≥ 1, and let a and b be in Z2k+2 .
By the induction hypothesis we have

(a− r0(a) + b− r0(b))/2 =
k+1∑
i=1

2i−1[(ri(a)⊕ ri(b)) + 2(ri(a)ri(b))] .

This relation is equivalent to

a+ b = r0(a) + r0(b) +

k+1∑
i=1

2i[(ri(a)⊕ ri(b)) + 2(ri(a)ri(b))] .

Since r0(a) + r0(b) = (r0(a) ⊕ r0(b)) + 2(r0(a)r0(b)), the proof comes
directly.

2.2. A mapping construction. For k ≥ 2, define ρk : Z2k+1 → F
k−1
2 as ρk(a) =

(rk−1(a), . . . , r2(a), r1(a)). For all i ∈ {0, 1, . . . , 2k−1−1}, let αki ∈ F
k−1
2 be the binary

expression of i using k − 1 bits, where the most significant bit is on the left; e.g., if
k = 5 and i = 13, then α5

13 = (1101). By means of ρk and α
k
i , the following functions

ϕki : Z2k+1 → Z4 are introduced:

ϕki (a) = 2[rk(a)⊕ (ρk(a) · αki )] + r0(a)(3)

for all i = 0, 1, . . . , 2k−1 − 1, where “·” denotes the usual dot product in F
k−1
2 . The

action of the functions ϕki are extended to Z
n
2k+1 as follows: if A = (a1, a2, . . . , an) ∈

Z
n
2k+1 , then ϕ

k
i (A) = (ϕ

k
i (a1), ϕ

k
i (a2), . . . , ϕ

k
i (an)). Thus, the map ϕ

k : Z
n
2k+1 →

Z
2k−1n
4 is introduced:

ϕk(A) = (ϕk0(A), ϕ
k
1(A), . . . , ϕ

k
2k−1−1(A)) ∀ A ∈ Z

n
2k+1 .

For completeness, ϕ1 : Zn4 → Z
n
4 is defined as the identity map, ϕ

1(A) = A. Using

the map ϕk, an equivalent definition of the generalized Gray map Φ : Zn2k+1 → F
2kn
2 ,

as introduced in [2], can be given:

Φ(A) = φ(ϕk(A)).

A more general Gray map over chain rings has been introduced recently (cf. [3]).
Note that the mappings Φ and ϕk are both injective. The following properties of

these mappings are obvious from the definitions.
Proposition 2.2. Let a ∈ Z2k+1 , and let x̄ ∈ F

n
2 ; then

ϕk(ax̄) = ϕk(a)⊗ x̄,
Φ(ax̄) = Φ(a)⊗ x̄,(4)

where “⊗” is the Kronecker product (for example, see [7, Chap. 14, p. 421]).
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We extend the application of the operations “+,” “⊕,” and “�” on Z2k+1 to
Z
n
2k+1 in the natural way; that is, if A = (a1, . . . , an), B = (b1, . . . , bn) ∈ Z

n
2k+1 , then

we define A � B = (a1 � b1, . . . , a1 � bn), where the operation � is any one of these
operations. Consequently, the equations a+b = a⊕b⊕c and a+b = (a⊕b)+2(a�b)
are extended as

A+B = A⊕B ⊕
(

k∑
l=1

2lζ̄l

)
,

A+B = (A⊕B) + 2(A�B)(5)

for all A,B ∈ Z
n
2k+1 , where ζ̄l = (ζl(a1, b1), . . . , ζl(an, bn)).

On the other hand, with the introduction of the operation “�,” we recall another
important property of the Gray map.

Proposition 2.3. Let X,Y ∈ Z
n
4 ; then

φ(X + Y + 2(X � Y )) = φ(X + Y )⊕ φ(2(X � Y ))
= φ(X)⊕ φ(Y ).(6)

Proof. The proof follows from (1) and the proof of Theorem 5 in [4].

2.3. The weight functions. The Lee weight, wtL, of 0, 1, 2, 3 ∈ Z4 is 0, 1, 2, 1,
respectively, and the Lee weight wtL(A) of A ∈ Z

n
4 is the rational sum of the Lee

weights of its components. The Lee distance, dL, is defined as dL(A,B) = wtL(A−B)
for all A,B ∈ Z

n
4 . For k ≥ 1, the homogeneous weight, wthom on Z2k+1 is defined as

[3, 5]

wthom(a) =



0 if a = 0,
2k if a = 2k

2k−1 otherwise.
∀ a ∈ Z2k+1 ,

Again, for A ∈ Z
n
2k+1 , the value wthom(A) is taken as the rational sum of the

homogeneous weights of its components, and the homogeneous distance, δhom, is given
by δhom(A,B) = wthom(A−B) for all A,B ∈ Z

n
2k+1 .

2.4. The new map is an isometry. For n = 1, k ≥ 2, and for a ∈ Z2k+1 ,
the function f(i) = rk(a) ⊕ (ρk(a) · αki ) in (3) is an affine Boolean function in k − 1
variables. Hence, the vector ϕk(a) = (ϕk0(a), ϕ

k
1(a), . . . , ϕ

k
2k−1−1(a)) takes one of the

following forms:
• the null vector if a = 0;
• all of its entries are equal to 2 if a = 2k;
• half of its entries are equal to 2 and the other half are equal to 0 if a is an
even number different from 0 and 2k;

• all of its entries have the value 1 or 3 if a is odd.
The conclusion is, in any case, that wthom(a) = wtL(ϕ

k(a)). Thus, we have the
following proposition.

Proposition 2.4. The map ϕk is an isometry from (Zn2k+1 , δhom) into (Z
2k−1n
4 ,

dL).
In [4] the authors take the usual binary Hamming distance dH on F

2n
2 in order to

prove that the Gray map φ, from Z
n
4 into F

2n
2 , is an isometry. Thus as a consequence

of the previous proposition we have, as in [2], the following corollary.



ON Z2k -LINEAR AND QUATERNARY CODES 107

Corollary 2.5. The generalized Gray map Φ is an isometry from (Zn2k+1 , δhom)

into ( F2kn
2 , dH).

Therefore, since ϕk is an isometry between codes over the rings Z2k+1 and Z4, it
will be called the modular reduction isometry of order k.

3. Some properties of the modular reduction isometry. In this section
we provide some properties and definitions related to the modular reduction isometry
that will be important in order to obtain the main results.

Proposition 3.1. Let A,B ∈ Z
n
2k+1 . If r̄0(A) is a binary vector of length n that

has a one in its ith entry if and only if the ith entry of A is odd for i = 1, . . . , n, then

ϕk(2kA+B) = ϕk(2kA) + ϕk(B),

−ϕk(A) = ϕk(2kA+A),
ϕk(2kA) = 2ϕk(A) = 1̄⊗ 2r̄0(A).(7)

Proof. Without loss of generality we may assume n = 1. Thus, from (3) we have
ϕki (2

kA+B) = 2[r0(A)⊕ rk(B)⊕ (ρk(B) ·αki )]+ r0(B) = 2r0(A)+ 2[rk(B)⊕ (ρk(B) ·
αki )] + r0(B) = ϕ

k
i (2

kA) + ϕki (B) for all i = 0, 1, . . . , 2
k−1 − 1. On the other hand,

−ϕki (A) = 2[rk(A)⊕ (ρk(A) ·αki )]+3r0(A) = 2[r0(A)⊕rk(A)⊕ (ρk(A) ·αki )]+r0(A) =
ϕki (2

kA+A). The final part is straightforward.

Proposition 3.2. Let A ∈ Z
n
2k+1 ⊂ Z

n
2k+2 . Identifying Z

2kn
4 with Z

2k−1n
4 ×

Z
2k−1n
4 , we have

ϕk+1(A) = (ϕk(A � 2k1̄), ϕk(A)),(8)

where X�Y = (x1 Mod y1, . . . , xn Mod yn) for all X = (x1, . . . , xn), Y = (y1, . . . , yn)
∈ Z

n.
Proof. Again we may assume n = 1. Clearly, the proposition is true when k = 1.

If k ≥ 2, the proposition is also valid because

ρk+1(A) · αk+1
i =

{
ρk(A) · αki if 0 ≤ i ≤ 2k−1 − 1,
rk(A)⊕ ρk(A) · αki if 2k−1 ≤ i ≤ 2k − 1 .

Proposition 3.3. Let A = (a1, . . . , an) and B = (b1, . . . , bn) be elements of
Z
n
2k+1 ; then

ϕk(2k ζ̄1) = 2(ϕ
k(A)� ϕk(B)),(9)

where ζ̄1 = (ζ1(a1, b1), . . . , ζ1(an, bn)).
Proof. First note that ϕk(2k ζ̄1) = 2ϕ

k(ζ̄1). The values ϕ
k
i (ζ1(aj , bj)) and ϕ

k
i (aj)�

ϕki (bj)�1 for i = 0, . . . , 2k−1−1, j = 1, . . . , n are binary; that is, such values take only
0 or 1 depending on the input entries aj and bj . Thus, ϕ

k
i (ζ1(aj , bj)) = 1 ⇔ aj and bj

are odd numbers⇔ ϕki (aj) and ϕ
k
i (bj) are also odd numbers⇔ ϕki (aj)�ϕki (bj)�1 =

1, and the claim is proved.

Proposition 3.4. The subset ϕk(Z2k+1) = {ϕk(a) | a ∈ Z2k+1} of Z
2k−1

4 is a
Z4-submodule generated by the set {ϕk(a) | a = 2j , j = 0, 1, . . . , k − 1}.

Proof. Let ū ∈ {ϕk(a) | a ∈ Z2k+1}; then a ∈ Z2k+1 exists such that ϕk(a) = ū.
By (3), ϕki (a) = 2rk(a) + r0(a) + 2(ρk(a) · αki ), where addition + is taken on Z4. But
for all i = 0, 1, . . . , 2k−1 − 1, the functions ϕki are such that

ϕki (1) = 1, ϕ
k
i (2

k) = 2, and

ϕki (2
j) =

{
2 if αk2j · αki �= 0,
0 otherwise

with 0 < j < k.



108 H. TAPIA-RECILLAS AND G. VEGA

Then the value ϕki (a) can be rewritten as ϕ
k
i (a) = (2rk(a) + r0(a))ϕ

k
i (1) +∑k−1

j=1 rj(a)ϕ
k
i (2

j); hence ϕk(a) = (2rk(a) + r0(a))ϕ
k(1) +

∑k−1
j=1 rj(a)ϕ

k(2j).
The following definition takes the previous proposition into consideration.

Definition 3.5. A subset C of Z
2k−1n
4 is an isometric image of modular reduction

of order k, IIMRk, if for all x̄ = (x1, . . . , x2k−1n) ∈ C and for all i ∈ {1, . . . , n} the
tuple x̂ = (xi, xi+n, . . . , xi+(2k−1−1)n) ∈ Z

2k−1

4 is such that x̂ ∈ ϕk(Z2k+1), that is, if x̂

can be expressed as a linear combination of the set {ϕk(a) | a = 2j , j = 0, 1, . . . , k−1}.
In the case where k = 2 we have x̄ = (x1, . . . , x2n) ∈ C ⊂ Z

2n
4 , and if ū =

φ(x̄) = (ū1, ū2, ū3, ū4) ∈ F
4n
2 with ūi ∈ F

n
2 for i = 1, . . . , 4, then x̂ = (xi, xi+n) ∈

〈(1, 1), (0, 2)〉 ⇔ the numbers xi and xi+n are both even or both odd ⇔

ū1 ⊕ ū2 ⊕ ū3 ⊕ ū4 = 0̄,(10)

where 0̄ is the all-zero word of length n. Thus (10) gives a special characterization of
the case when a subset C ⊂ Z

2n
4 is an IIMR2.

4. Z2k+1-linear codes. We begin our discussion about Z2k+1-linear codes with
the following definition and propositions.

Definition 4.1. We say that a quaternary code C of length 2k−1n is Z2k+1-
linear if its coordinates can be arranged so that it is the image under ϕk, the modular
reduction isometry of order k, of a linear code C of length n over Z2k+1 . Similarly,
we say that a binary code C ′ of length 2kn is Z2k+1-linear if its coordinates can be
arranged so that it is the image under Φ, the generalized Gray map, of a linear code
C of length n over Z2k+1 .

4.1. Computation of ϕk(A + B) and Φ(A + B).
Proposition 4.2. Let A = (a1, . . . , an) and B = (b1, . . . , bn) be elements of

Z
n
2k+1 ; then

ϕk(A⊕B) = ϕk(A) + ϕk(B) + 2ϕk(A�B) .(11)

Proof. First observe that 2k(A�B) = 2k ζ̄1; hence 2ϕk(A�B) = ϕk(2k ζ̄1). The
rest of the proof is derived by induction over k, and since A ⊕ B = A + B + 2ζ̄1,
when k = 1, then (11) is true for this case. Suppose that (11) is true for k ≥ 1,
and for r̄k+1, r̄

′
k+1 ∈ F

n
2 and A,B ∈ Z

n
2k+1 , let A

′, B′ ∈ Z
n
2k+2 be given by A

′ =
(a′1, . . . , a

′
n) = 2

k+1r̄k+1 + A and B
′ = (b′1, . . . , b

′
n) = 2

k+1r̄′k+1 + B. Note that when
k ≥ 2, ζ1(a′i, b′i) = ζ1(ai, bi) for i = 1, . . . , n. Now, it follows from (7) and (8) that

ϕk+1(A′) = ϕk+1(2k+1r̄k+1) + (ϕ
k(A � 2k1̄), ϕk(A)),(12)

and equivalently for ϕk+1(B′). On the other hand, for ϕk+1(A′ ⊕B′) we obtain

ϕk+1(A′ ⊕B′) = ϕk+1(2k+1(r̄k+1 ⊕ r̄′k+1) +A⊕B),
= ϕk+1(2k+1(r̄k+1 ⊕ r̄′k+1))(13)

+ (ϕk((A⊕B) � 2k1̄), ϕk(A⊕B)).

Since ϕk+1(2k+1ζ̄1) = (ϕ
k(2k ζ̄1), ϕ

k(2k ζ̄1)), by the induction hypothesis it is read-
ily seen that (ϕk((A⊕B) � 2k1̄), ϕk(A⊕B)) is equal to

ϕk+1(2k+1ζ̄1) + (ϕ
k(A � 2k1̄) + ϕk(B � 2k1̄), ϕk(A) + ϕk(B)).(14)
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Considering (12) and (14) and comparing them with (13), the proof of the claim
follows.

Proposition 4.3. Using the notation of the previous proposition, we have

ϕk(A+B) = ϕk(A⊕B) + ϕk((A+B)⊕A⊕B) .
Proof. Since all of the entries of the vector (A+B)⊕A⊕B are even numbers, by

the previous proposition we conclude that ϕk(A+B) = ϕk(A⊕B⊕(A+B)⊕A⊕B) =
ϕk(A⊕B) + ϕk((A+B)⊕A⊕B).

Proposition 4.4. With notation as in Proposition 4.2, we have

Φ(A+B) = Φ(A)⊕ Φ(B)⊕ Φ((A+B)⊕A⊕B).
Proof. Φ(A + B) = φ(ϕk(A) + ϕk(B) + ϕk((A + B) ⊕ A ⊕ B + 2k ζ̄1)). Now,

observe that ϕk((A+B)⊕A⊕B + 2k ζ̄1) is a vector in Z
2k−1n
4 of the form 2X, with

X ∈ F
2k−1n
2 . From (1), we have Φ(A + B) = φ(ϕk(A) + ϕk(B)) ⊕ φ(ϕk(2k ζ̄1)) ⊕

Φ((A + B) ⊕ A ⊕ B), but from (9) we know that ϕk(2k ζ̄1) = 2(ϕk(A) � ϕk(B)).
Since φ(ϕk(A) + ϕk(B))⊕ φ(2(ϕk(A)� ϕk(B))) = Φ(A)⊕Φ(B), (see (6)), the claim
follows.

4.2. A characterization of Z2k+1-linear codes. A characterization of the
Z2k+1-linear codes, similar to the one given in [4] for Z4-linear codes, is as follows.

Theorem 4.5. A quaternary code C of length 2k−1n is Z2k+1-linear if and only
if its coordinates can be arranged so that

1. C is an IIMRk;
2. for all x̄, ȳ ∈ C with x̄ = ϕk(A), ȳ = ϕk(B) for some A,B ∈ Z

n
2k+1 ; then

x̄+ ȳ + ϕk((A+B)⊕A⊕B + 2k(A�B)) ∈ C.
Proof. This is an immediate consequence of Definition 3.5 and Propositions 4.2

and 4.3.
In the case of binary codes we have the following theorem.
Theorem 4.6. A binary code C ′ of length 2kn is Z2k+1-linear if and only if

its coordinates can be arranged so that the quaternary code C = φ−1(C ′) satisfies
condition 1 of the previous theorem and if for all ū, v̄ ∈ C ′ with ū = Φ(A), v̄ = Φ(B)
for some A,B ∈ Z

n
2k+1 , then

ū⊕ v̄ ⊕ Φ((A+B)⊕A⊕B) ∈ C ′.

Proof. This is an immediate consequence of Definition 3.5 and Proposition
4.4.
By means of relations (1), (4), and (5), Φ((A+B)⊕A⊕B) can be written as

Φ((A+B)⊕A⊕B) =
k⊕
l=1

Φ(2l)⊗ ζ̄l.

If k = 1, suppose that such a code C ′ satisfies the conditions in Theorem 4.6.
If ū = (ū1, ū2), v̄ = (v̄1, v̄2) ∈ C ′ with ūj = (uj,1,...,uj,n), v̄j = (vj,1,...,vj,n) ∈ F

n
2 for

j = 1, 2, then A = (a1, . . . , an), B = (b1, . . . , bn) ∈ Z
n
4 exists such that Φ(A) = ū and

Φ(B) = v̄. Under these circumstances, we have

ai = 2u1,i + (u1,i ⊕ u2,i),
bi = 2v1,i + (v1,i ⊕ v2,i)
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for i ∈ {1, . . . , n}. Considering relation (2), ζ̄1 = (ū1 ⊕ ū2) � (v̄1 ⊕ v̄2), and since
Φ(2) = (1, 1), then a binary code C ′ of length 2n is Z4-linear if and only if its
coordinates can be arranged so that any pair of vectors ū, v̄ ∈ C ′ satisfies

ū⊕ v̄ ⊕ (ζ̄1, ζ̄1) ∈ C ′.

Observe that this condition is the same as that provided in the characterization
of Z4-linear codes given in [4, Thm. 4].

On the other hand, in the case where k = 2 suppose again that such a code C ′

satisfies the conditions in Theorem 4.6. Then if ū = (ū1, . . . , ū4), v̄ = (v̄1, . . . , v̄4) ∈
C ′ with ūj = (uj,1, . . . , uj,n), v̄j = (vj,1, . . . , vj,n) ∈ F

n
2 for j = 1, . . . , 4, then A =

(a1, . . . , an), B = (b1, . . . , bn) ∈ Z
n
8 exists such that Φ(A) = ū and Φ(B) = v̄. Under

these circumstances, we have

ai = 4u1,i + 2(u1,i ⊕ u2,i) + (u1,i ⊕ u3,i),
bi = 4v1,i + 2(v1,i ⊕ v2,i) + (v1,i ⊕ v3,i)

for i ∈ {1, . . . , n}. Again from (2) we have

ζ̄1 = (ū1 ⊕ ū3)� (v̄1 ⊕ v̄3),
ζ̄2 = ((ū1 ⊕ ū2)� (v̄1 ⊕ v̄2))⊕ ((ū1 ⊕ ū3)

�(v̄1 ⊕ v̄3)� (ū1 ⊕ ū2 ⊕ v̄1 ⊕ v̄2)).

Since Φ(2) = (0, 1, 0, 1) and Φ(4) = (1, 1, 1, 1), we conclude that a binary code C ′ of
length 4n is Z8-linear if and only if its coordinates can be arranged so that any pair
of vectors ū, v̄ ∈ C ′ satisfies (10) and

ū⊕ v̄ ⊕ (0̄, ζ̄1, 0̄, ζ̄1)⊕ (ζ̄2, ζ̄2, ζ̄2, ζ̄2) ∈ C ′.

These last conditions are equivalent to those in the characterization of Z8-linear
codes given in [2, Prop. 4].2

As a consequence of the previous theorems a generalization of Theorem 6 of [4]
for quaternary and binary linear codes can be given.

Corollary 4.7. A quaternary linear code C of length 2k−1n is Z2k+1-linear if
and only if its coordinates can be arranged so that the code C satisfies condition 1 of
Theorem 4.5 and if for all x̄, ȳ ∈ C with x̄ = ϕk(A), ȳ = ϕk(B) for some A,B ∈ Z

n
2k+1 ,

then

ϕk((A+B)⊕A⊕B + 2k(A�B)) ∈ C.

Corollary 4.8. A binary linear code C ′ of length 2kn is Z2k+1-linear if and only
if its coordinates can be arranged so that the quaternary code C = φ−1(C ′) satisfies
condition 1 of Theorem 4.5 and if for all ū, v̄ ∈ C ′ with ū = Φ(A), v̄ = Φ(B) for some
A,B ∈ Z

n
2k+1 , then

Φ((A+B)⊕A⊕B) ∈ C ′.

2In fact, in [2] a different ordering in the definition of the generalized Gray map was used. Also,
there is a slight misprint in this paper. For this reason, the conditions given here are somewhat
different from those in [2].



ON Z2k -LINEAR AND QUATERNARY CODES 111

4.3. Linear gray map images of codes over Z2k+1 . If C is a code over Z2k+1 ,
linear or not, what conditions must be satisfied in order for its image to be linear under
the generalized Gray map or under the modular reduction isometry of order k? The
following results give an answer to this question.

Theorem 4.9. Let C be a nonempty code, linear or not, over Z2k+1 . Then the
quaternary code C = ϕk(C) is linear if and only if

∀ A,B ∈ C, then A⊕B ⊕ 2k(A�B) ∈ C.(15)

Proof. This is an easy consequence of Propositions 3.1 and 4.2 and the fact that
when (15) is true, we have

{λ1A⊕ λ2B ⊕ 2k ζ̄1(r0(λ1)A, r0(λ2)B) |
λ1, λ2 ∈ {0, 1, 2k, 2k + 1}} ⊆ C.

In [4] the authors give a characterization (Theorem 5) on the linearity of the Gray
map image of a quaternary linear code, given in the following theorem.

Theorem 4.10. The binary image C ′ = φ(C) of a quaternary linear code C is
linear if and only if

∀ x̄, ȳ ∈ C, then 2(x̄� ȳ) ∈ C.
As a consequence of the last two theorems and Propositions 3.3 and 4.2, we obtain

the following theorem.
Theorem 4.11. Let C be a nonempty code, linear or not, over Z2k+1 , and assume

that it is closed under the operation “⊕”; that is, A⊕B ∈ C for all A,B ∈ C. If such
a code satisfies

∀ A,B ∈ C, then 2k(A�B) ∈ C,
then the quaternary image ϕk(C) and the binary image Φ(C) are both linear.
Observe that condition (15) does not imply that 2k ζ̄1 ∈ C. In fact, codes over

Z2k+1 that satisfy (15) but whose images under the generalized Gray map are not
linear do exist. An example of this is when k = 1 and n = 3 with the quaternary
linear code given by C = 〈(1, 0, 1), (1, 1, 0)〉.

4.4. Linear gray map images of linear codes over Z2k+1 . Now we will give
a generalization of Theorem 4.10 for the generalized Gray map Φ and for the modular
reduction isometry ϕk.

Theorem 4.12. The quaternary image ϕk(C) of a linear code C over Z2k+1 is
linear if and only if

∀ A,B ∈ C, then (2k − 2)(A�B) ∈ C.
Proof. We know that A + B = (A ⊕ B) + 2(A � B); hence A + B = (A ⊕

B ⊕ 2k(A � B)) + (2k + 2)(A � B). On the other hand, −(2k + 2) = (2k − 2); thus
A+B + (2k − 2)(A�B) = A⊕B ⊕ 2k(A�B), and the result comes from Theorem
4.9.

Theorem 4.13. Let C be a linear code over Z2k+1 ; then for k > 1 the following
statements are equivalent.

1. ϕk(C) is linear.
2. Φ(C) is linear.
3. 2(A�B) ∈ C for all A,B ∈ C.
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Proof. Equivalence of statements 2 and 3: From relation (5) A+B− 2(A�B) =
(A⊕B); thus from Proposition 4.2, we have ϕk(A+B−2(A�B)) = ϕk(A)+ϕk(B)+
ϕk(2k ζ̄1). Using (1), (6), and (9), it follows that

Φ(A+B − 2(A�B)) = Φ(A)⊕ Φ(B).

Equivalence of statements 1 and 3: Since k > 1, then (2k − 2)(A�B) ∈ C if and
only if 2(A�B) ∈ C, and this equivalence comes from Theorem 4.12.

5. Examples. In the following examples it will be useful to represent elements of
Z
n
2k+1 as polynomials in the ring Z2k+1 [x]/(xn−1). This is achieved via the polynomial
representation map given by

(a1, a2, . . . , an) �→ a1 + a2x+ · · ·+ anxn−1 .

The operation “�” introduced in section 2 can be extended to the quotient ring
Z2k+1 [x]/(xn − 1) as follows: if A(x) = ∑n

j=1 ajx
j−1 and B(x) =

∑n
j=1 bjx

j−1 are
elements of Z2k+1 [x]/(xn − 1), then

A(x)�B(x) =
n∑
j=1

(aj � bj)xj−1 .

Example 1. The binary Hamming code of order 3 is a linear cyclic code generated
by the polynomial x3 + x + 1. Hensel-lifting this polynomial to Z8[x] results in the
polynomial G(x) = x3 + 6x2 + 5x − 1, which generates a linear cyclic code C over
Z8 (for linear cyclic codes over weak structures see, for example, [1, 6]). Since this
polynomial does not divide 2(G(x) � 2G(x)) = 4, then by Theorem 4.13 the images
ϕ2(C) and Φ(C) are nonlinear.

Example 2. Over F2[x] we have x
7 − 1 = (x − 1)(x3 + x + 1)(x3 + x2 + 1). By

Hensel-lifting to Z8 we obtain x
7− 1 = (x− 1)(x3+6x2+5x− 1)(x3+3x2+2x− 1).

Let C be the linear cyclic code of length 7 over Z8 generated by the polynomial
G(x) = (x3 + 6x2 + 5x− 1)((x3 + 3x2 + 2x− 1) + 4(x− 1)). Since 2((G(x)U1(x))�
(G(x)U2(x))) = G(x)(2(U1(1)�U2(1))) for all U1(x), U2(x) ∈ Z8[x]/(x

7− 1), then by
Theorem 4.13 the images ϕ2(C) and Φ(C) are linear.

6. Conclusions. An isometry between the modules Z
n
2k+1 and Z

n2k−1

4 was intro-
duced which helps to provide several characterizations on Z2k+1-linear codes by means
of the generalized Gray map. These results generalize those appearing as Theorems 4,
5, and 6 in [4] for quaternary codes. Also, by means of Theorem 4.13 a family of lin-
ear constacyclic codes over Z2k+1 whose images under the generalized Gray map are
binary linear quasi-cyclic codes was obtained (see [9] for details).

Acknowledgment. The authors would like to thank C. Carlet for helpful dis-
cussions and for pointing out a proof of Proposition 2.1.
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Abstract. For a finite poset P let EXT(P ) denote the following decision problem. Given a
finite poset Q and a partial map f from Q to P , decide whether f extends to a monotone total map
from Q to P .

It is easy to see that EXT(P ) is in the complexity class NP. In [SIAM J. Comput., 28 (1998),
pp. 57–104], Feder and Vardi define the classes of width 1 and of bounded strict width constraint
satisfaction problems for finite relational structures. Both classes belong to the broader class of
bounded width problems in P. We prove that for any finite poset P , if EXT(P ) has bounded strict
width, then it has width 1. In other words, if a poset admits a near unanimity operation, it also
admits a totally symmetric idempotent operation of any arity. In [Fund. Inform., 28 (1996), pp.
165–182], Pratt and Tiuryn proved that SAT(P ), a polynomial-time equivalent of EXT(P ) is NP-
complete if P is a crown. We generalize Pratt and Tiuryn’s result on crowns by proving that EXT(P ),
is NP-complete for any finite poset P which admits no nontrivial idempotent Malcev condition.

Key words. NP-complete, extendibility problem for posets, constraint satisfaction problem,
zigzags, totally symmetric idempotent and near unanimity operations
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1. Introduction. We consider the following decision problem: Let P and Q be
two finite posets and f a partial map from Q to P . Does f extend to a monotone
total map from Q to P?

We get different problems depending on which of P and Q is considered as an in-
put. As easily observed, the problem obtained in each case is contained in complexity
class NP. The case when the problem takes P , Q, and f as inputs is NP-complete,
as was proved by Duffus and Goddard in [5]. For a fixed finite poset P let EXT(P ),
denote the above problem with inputs Q and f . We call EXT(P ) the extendibility
problem for P . The complexity of a decision problem called SAT(P ), a polynomial-
time equivalent of EXT(P ), was studied by Pratt and Tiuryn in [13]. They proved
that if P is a crown, then SAT(P ) is NP-complete and also gave examples of P when
SAT(P ) is in P .

The height of a finite poset P is defined to be the maximum value of k such that
there exists a (k + 1)-element chain in P. A finite poset is dismantlable whenever its
elements can be listed in such a way that each element, except the last one, has a
unique upper or lower cover in the subposet determined by it and its successors. A
connected finite poset is ramified if it has at least two elements and no element with
a unique upper or lower cover.

A relational set (or structure) is defined here to be a set equipped with finitary
relations. A relational set always is of a certain type and it is finite if its base set is
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finite. A reduct of a relational set R is a relational set obtained from R by leaving
out some relations. For a finite relational set R we define a decision problem denoted
by CSP(R) that is called the constraint satisfaction problem for R. An instance of
CSP(R) is a finite-type reduct R′ of R and a finite relational set X similar to R′, and
the question is whether there is a morphism from X to R′.

In the case when R is of finite type, each instance I related to R′ is considered
as an instance related to R by supplying I with additional empty relations, one for
each relational symbol missing in the type of R′. So if R is of finite type, we conceive
CSP(R) as a decision problem whose instances are the finite structures similar to R,
and the question for an instance I is if there is a homomorphism from I to R. This
point of view is followed by Feder and Vardi in [6] and makes only constant time
difference in complexity compared with the general definition given for CSP(R) in
the preceding paragraph.

In [6] Feder and Vardi proved that for every relational set R of finite type
CSP(R) is polynomial-time equivalent to the retraction problem for some finite poset
P. The latter problem is easily shown to be equivalent to SAT(P ); see [13]. It also
turned out in [6] that P might be assumed to be of height at most 2 and ramified.
We mention that, in contrast with this result, Pratt and Tiuryn proved in [13] that
for every poset P of height 1, SAT(P ) is NP-complete if P contains a crown and is
in P otherwise. It is clear from the above result of Feder and Vardi that statements
on the complexity of the extendibility problem for posets might have a bearing on the
complexity of CS problems.

In [6] Feder and Vardi defined the notions of width and strict width for CS
problems. They showed that CS problems of bounded width have polynomial-time
complexity. CS problems of strict width k are certain problems of width k. In [6]
it was proved that CSP(R) has bounded strict width if and only if R admits a near
unanimity operation. It was also shown that CSP(R) has width 1 if and only if there
is a certain structure that admits a homomorphism into R. Width 1 problems were
characterized by the existence of a set function by Dalmau and Pearson in [3].

In the present paper we shall investigate the complexity of EXT(P ) for a finite
poset P . It turns out that there is a strong correlation between the complexity of
the extendibility problem and the set of the monotone idempotent operations of the
poset.

Algebras whose term operations coincide with the monotone operations of a poset
are called order primal. Idempotent Malcev conditions satisfied in order primal al-
gebras received much attention in the last decade. Some special operations play an
important role in these investigations. Let f be an n-ary operation. We say that f is
symmetric (cyclic) if it obeys the identity

f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n))

for every permutation (for an n-cycle) π of {1, . . . , n}. The operation f is called totally
symmetric if it obeys the identity

f(x1, . . . , xn) = f(y1, . . . , yn)

for all sets of variables such that {x1, . . . , xn} = {y1, . . . , yn}. An n-ary operation f
is idempotent if it obeys the identity

f(x, x, . . . , x) = x.
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Let n ≥ 3. An n-ary operation f is called a near unanimity operation if the following
n identities hold:

f(x, . . . , x, y
i�

, x, . . . , x) = x, i ∈ {1, . . . , n}.

The main results on special idempotent term operations in order primal algebras
that we rely on are contained in [12] and [16]. In [12] the authors characterized
the finite posets admitting a near unanimity operation. In [16] Szabó and Zádori
gave a characterization of finite posets admitting a totally symmetric idempotent
(TSI) operation of arity equal to the size of the poset. We note that the latter
characterization can be derived from results on width 1 in [6] and [3].

In the present paper we investigate the relationship between the above-mentioned
complexity and algebraic results. We show that if a poset P admits a near unanimity
operation, then it admits a TSI operation of arity |P |. This means that bounded strict
width implies width 1 for extendibility problems of posets. We give an example show-
ing that a similar implication does not hold for CS problems of relational structures.
Further, we prove that EXT(P ) is polynomial-time equivalent to a CS problem. Then
by invoking Jeavons’s ideas in [9] we generalize Pratt and Tiuryn’s NP-completeness
result on crowns.

2. Results. First we describe the relationship between two classes of extendibil-
ity problems for finite posets. Both of these classes lie in P and are relativized versions
of important classes of CS problems.

We call a pair (Q, f) a P -colored poset if Q is a poset and f is a partial map from
Q to P . The P -colored poset (Q, f) or the partial map f is called P -extendible if f
extends to a monotone total map from Q to P . So we might consider EXT(P ) to
be the problem whose inputs are just the finite P -colored posets, and the task is to
decide the extendibility of a P -colored poset.

Let (Q, f) and (H, g) be two P -colored posets. A monotone map α from Q to H
is called a homomorphism from (Q, f) to (H, g) if f = gα. The colored poset (H, g)
is a homomorphic image of (Q, f) under the homomorphism α if α is onto. Now,
EXT(P ) might be considered to be the problem whose input is a finite P -colored
poset (H, g), and the task is to decide if there is a homomorphism from (H, g) to the
P -colored poset (P, IdP ), where IdP is the identity map on P. Since in a CS problem
the task also is to decide if there exists a homomorphism to a designated structure
from a similar structure, the notions and theorems related to the CS problems in [6]
easily transfer to extendibility problems of posets.

Note that there is a subtle difference that prevents us from considering EXT(P ) to
be a CS problem, namely that the instances of EXT(P ) are certain poset structures
while an instance for a CS problem is allowed to be any relational structure. Later
in Proposition 9, we shall see that up to polynomial-time equivalence one can safely
drop this restriction. For the time being we insist on this distinction.

Let P be a finite poset. For EXT(P ) the notions of width and strict width are
defined in the same manner as those for CS problems in [6] of Feder and Vardi. By
transferring the proofs of Theorems 19, 20, 22, and 24 in [6] and Theorem 1 in [3], one
gets that EXT(P ) has width 1 if and only if P admits a TSI operation of arity |P |
and that EXT(P ) has bounded strict width if and only if P admits a near unanimity
operation.

Let H and Q be finite posets. We say that Q contains H if the base set of Q
contains the base set of H and the order relation of Q contains the order relation of
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H. A finite P -colored poset (Q, f) is called a zigzag if it is nonextendible but for any
H properly contained in Q the P -colored poset (H, f �H) is extendible. A P -colored
poset (Q, f) is a tree if the covering graph of Q is a tree. Let (Q, f) and (H, g) be two
P -colored posets. For a finite poset P let I(P ) be the algebra whose base set is the
base set of P and whose basic operations are the monotone idempotent operations of
P . A subalgebra of a finite power of I(P ) is called an idempotent P -subalgebra. Note
that the idempotent P -subalgebras inherit an order structure from P . Hence we shall
consider them as posets. The notions defined in this paragraph play an important
role in characterizations of finite posets that admit a near unanimity operation or a
TSI operation of arity equal to the size of the base set of the poset.

Theorem 1 (see [12]). For a finite connected poset P the following are equivalent:
(1) P admits a near unanimity operation.
(2) P has finitely many P -zigzags.
(3) The idempotent P -subalgebras are dismantlable.
It is easy to prove (see [16]) that a finite poset P admits a TSI operation of arity

|P | if and only if P admits an n-ary TSI operation for all n.
Theorem 2 (see [16]). A finite poset P admits a TSI operation of arity |P | if

and only if every P -zigzag is a homomorphic image of a nonextendible tree.
Now, we are ready to prove that bounded strict width implies width 1 in the class

of the extendibility problems for finite posets. By our earlier note it suffices to prove
the following.

Theorem 3. Every finite poset P which admits a near unanimity operation also
admits a TSI operation of arity |P |.

Proof. We refer to the proof of Theorem 4 in [16]. In the proof it is shown that if
P has finitely many zigzags and admits a cyclic operation of arbitrary arity, then every
P -zigzag is a homomorphic image of a nonextendible tree. Now, we sharpen this result
by showing that if P has finitely many zigzags, then P admits a cyclic idempotent
operation of any arity. Then by Theorems 1 and 2 we get the claim for finite connected
posets. For the case when P is not connected and admits a near unanimity operation
observe that the components of P also admit a near unanimity operation. Moreover,
the P -zigzags are the zigzags of the components and zigzags whose base posets are
fences. Hence, the nonconnected case follows from the connected one.

So for the proof of this theorem let us suppose that P has finitely many P zigzags.
Then by Theorem 1 every idempotent P -subalgebra is dismantlable. By a result of
Rival in [14], every dismantlable poset has the fixed-point property. We apply this
to the P -subalgebra In formed by the n-ary monotone idempotent operations of P,
n = 2, 3, . . . . We define the monotone operation αn on In by

αn : f(x1, . . . , xn) �→ f(x2, . . . , xn, x1).

Since for each n, In has the fixed point property, αn has a fixed point. This fixed
point is an n-ary cyclic idempotent operation for each n.

We remark that there exist finite relational sets of finite type which admit a near
unanimity operation but no TSI operation of any arity. For example, let us consider
a finite set A with at least two elements and a ternary near unanimity operation m
on it. Let R be the relational set whose base set is A and whose relations are all
binary relations preserved by m. It is well known in clone theory that, since m is near
unanimity, if R admits an operation f , then f is built from m and the projections via
composition. But since m is a near unanimity operation, the only binary operations
obtained in this way are projections. Hence R admits no binary TSI operation and
hence none of any higher arity either.
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There are simple examples of posets which admit a TSI operation of every arity
but no near unanimity operation, for example, the poset 2 + 2 + 1; see [16]. We do
not know if bounded width implies width 1 in the class of the extendibility problems
of finite posets.

During the editorial process of this paper Kun and Szabó have published paper
[10] in which they describe a polynomial-time algorithm that decides if a finite poset
admits a near unanimity operation. This improves the decidability result in [12].
In comparison, no algorithm is known for finite structures of finite type to decide if
they admit a near unanimity operation. In the same paper Szabó and Kun actually
construct a symmetric idempotent operation of any arity for any poset that admits a
near unanimity operation.

Next we shall prove that for every poset which admits no nontrivial idempotent
Malcev condition, the extendibility problem is NP-complete. It was observed by
Corominas in [2] that the only idempotent monotone operations on crowns are the
projections. Hence crowns admit no nontrivial idempotent Malcev condition and
Pratt and Tiuryn’s result on crowns is a consequence of ours. Our proof will be based
on a polynomial-time reduction of EXT(P ) to a CS problem. Once this reduction is
established, the NP-completeness of EXT(P ) follows from results in [1] and [9].

Let M be a finite set of identities in the first order language of some algebra A.
The set M is called trivial if there is a two element algebra similar to A whose basic
operations are projections satisfying M . The set M is called idempotent if in any
algebra the term operations satisfying M are idempotent. We say that an algebra B
admits a nontrivial Malcev condition if there is a nontrivial set of identities satisfied
by some term operations of B. We call an algebra trivial if its basic operations are
projections. Let n ≥ 2. An n-ary idempotent operation f is called a Taylor operation
if it satisfies n identities of the form

f(. . . , x
i�
, . . . ) = f(. . . , y

i�

, . . . ), i = 1, 2, . . . , n,

where x and y are the only variables occurring in the identities and x �= y. The proof
of the following theorem is due to Taylor; see Corollaries 5.2 and 5.3 in [17]. An
alternate proof is given in [8]; see Theorem 9.4.

Theorem 4 (see [17]). Let A be a idempotent algebra. Then the following are
equivalent:

(1) A admits no nontrivial idempotent Malcev condition.
(2) There is a two element trivial algebra in the variety generated by A.
(3) There is no Taylor operation among the term operations of A.
If A is a finite idempotent algebra satisfying the equivalent conditions of the

preceding theorem, then a two element trivial algebra is a homomorphic image of a
subalgebra of An for some finite n. In fact, more is true.

Proposition 5. Let B be a two element algebra which is a homomorphic image of
a subalgebra of a finite power of an idempotent algebra A. Then B is a homomorphic
image of a subalgebra of A.

Proof. Let C be a subalgebra of An, let h be a homomorphism of C onto B, and
assume that n > 1 is the least integer for which this situation holds. Let πi denote
the ith projection of An onto A, and let fi denote the restriction of πi to C. Let D
denote the image of fi. Suppose first that the kernel of fi is contained in the kernel of
h. Then by the second isomorphism theorem there exists a homomorphism of D onto
B and this contradicts our choice of n. Hence there exists a pair (a, b) of elements of
C such that h({a, b}) = B and ai = bi = c for some c ∈ A. However, since A is an
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idempotent algebra, the set X of all x ∈ An such that xi = c is a subalgebra of An;
in fact, it can clearly be embedded in An−1 and it admits a homomorphism onto B,
contradicting once more our choice of n.

Let A be an algebra and R a relational set on the same base set. We say that
A is an algebra for R or R is a relational set for A if the set of term operations of
A coincides with the set of morphisms from finite powers of R to R. The following
result is due to Jeavons; see Corollary 4.11 in [9].

Theorem 6 (see [9]). Let Q and R be finite relational sets on the same base
set and let A be an algebra for Q. If R is of finite type and all the relations of R
are subalgebras of finite powers of A, then CSP(R) reduces to CSP(Q) in polynomial
time.

The proof of the following result is basically contained in [1].
Theorem 7. Let R and Q be finite relational sets where R is of finite type.

Suppose that A is an algebra on the same base set as R such that the relations of
R are subalgebras of finite powers of A and that B is an algebra for Q. If A is a
homomorphic image of a subalgebra of B, then there is a polynomial-time reduction
of CSP(R) to CSP(Q).

Proof. Let C be a subalgebra of B and ϕ a homomorphism from C onto A. Let
R′ be the relational set whose base set is the base set of Q and whose relations are
the inverse images of the relations of R under ϕ−1 together with the unary relation
C. It is a routine exercise to show that the relations of R′ are preserved under the
operations of B. So, it follows that the relations of R′ are subalgebras of finite powers
of B. Now, any instance X of CSP(R) is made into an instance Y of CSP(R′) by
adding the base set of X as the unary relation corresponding to C. Moreover, X is a
satisfying instance of CSP(R) if and only if Y is a satisfying instance of CSP(R′). So
CSP(R) reduces to CSP(R′) in polynomial time. By the preceding theorem CSP(R′)
reduces to CSP(Q) in polynomial time, which concludes the proof.

By a result of Schaefer [15], there exists a relational set R of finite type on the
two element set such that CSP(R) is NP-complete. Combining this fact with the
preceding theorems we get the following.

Corollary 8. Let A be an idempotent algebra for a finite relational set Q. If A
admits no nontrivial idempotent Malcev condition, then CSP(Q) is NP-complete.

Proof. Let R be a relational set of finite type on two elements such that CSP(R)
is NP-complete. By Theorem 4 and Proposition 5, there exists a trivial two element
algebra B which is a homomorphic image of a subalgebra of A. Since B is trivial, the
relations of R are subalgebras of finite powers of B. Hence by Theorem 7 there is a
polynomial-time reduction of CSP(R) to CSP(Q).

We say that a poset P admits a nontrivial idempotent Malcev condition if I(P )
admits a nontrivial idempotent Malcev condition. Posets admitting a TSI operation
are examples of such posets since any TSI operation is a Taylor operation. Next we
show that if P admits no nontrivial Malcev condition, then EXT(P ) is NP-complete.
Let PP be the relational set defined by equipping the base set of P with the order
relation of P and all constants of P as one element unary relations. Clearly, PP is a
relational set for I(P ).

Proposition 9. The problems EXT(P ) and CSP(PP ) are polynomial-time equiv-
alent.

Proof. First we reduce EXT(P ) to CSP(PP ) in polynomial time. Let (Q,f) be
an instance for EXT(P ). By adding the unary relation f−1(p) for each p ∈ P to the
poset Q, we define an instance QP of CSP(PP ). Note that (Q,f) is extendible if and
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only if there is a morphism from QP to PP .
Next we reduce CSP(PP ) to EXT(P ) in polynomial time. Since PP is of finite

type we can assume without loss of generality that the instances of CSP(PP ) are
relational sets similar to PP . So let X be an arbitrary relational set similar to PP .
The reflexive, transitive closure of the binary relation of X is a quasi order, say α,
on P . Let θ = α ∩ α−1, the equivalence determined by α, as usual. Let x denote the
θ-block of x for each x ∈ X. We associate a P -colored poset (H, f) with X, where
H = X/θ and for each x ∈ X, f(x) = p if and only if x is in the unary relation of X
that corresponds to p. So f(x) is not defined whenever no unary relation of X contains
x. In case that f is not well defined, X is not a satisfying instance of CSP(PP ). So
we restrict ourselves to the case when f is well defined. Observe that the kernel of
any morphism from X to PP contains θ. So X is a satisfying instance of CSP(PP ) if
and only if (H, f) is extendible.

Corollary 10. If P is a finite poset which admits no nontrivial Malcev condi-
tion, then EXT(P ) is NP-complete.

Proof. By Proposition 9 it suffices to show that CSP(PP ) is NP-complete. Now,
I(P ) is an idempotent algebra for PP such that I(P ) admits no nontrivial idempotent
Malcev condition. Then by Corollary 8 the problem CSP(PP ) is NP-complete.

Posets admitting only projections as idempotent operations have been studied
in numerous papers, e.g., [2], [4], [7], and [11]. Any poset P with an idempotent
P -subalgebra that retracts onto one of these posets admits no nontrivial Malcev con-
dition and hence yields an example where EXT(P ) is NP-complete.

3. Concluding remarks. We saw that for the finite posets admitting a TSI op-
eration of large enough arity the extendibility problem has polynomial-time complex-
ity. On the other hand, we obtained that for finite posets which admit no nontrivial
idempotent Malcev condition the extendibility problem is NP-complete.

Are there any finite posets not included in the two classes of posets mentioned in
the preceding paragraph? There are CS problems without bounded width in P which
are polynomial-time equivalent to the extendibility problem for a poset as proven in
[6]. The anonymous referee, whom we thank for his/her judicious advice, noted that
a resulting poset of that type might not have bounded width either. Nonetheless, the
question still remains open.

Neither are we able to answer the following simpler question. Is there any finite
poset P that admits a binary idempotent commutative operation but does not admit
a TSI operation of arity |P |?

Acknowledgment. The authors would like to thank Pavol Hell for patiently
mediating between the referee of the paper and the authors.
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Abstract. The goal of this paper is to develop a theoretical framework in order to analyze coop-
erative games in which only certain coalitions are allowed to form. We will axiomatize the structure
of such allowable coalitions using the theory of antimatroids, a notion developed for combinatorially
abstract sets. There have been previous models developed to confront the problem of unallowable
coalitions. Games restricted by a communication graph were introduced by Myerson and Owen.
We introduce a new combinatorial structure called augmenting system, which is a generalization of
the antimatroid structure and the system of connected subgraphs of a graph. The main result of
the paper is a direct formula of Shapley and Banzhaf values for games under augmenting systems
restrictions.

Key words. cooperative game, Shapley value, Banzhaf value, set systems

AMS subject classification. 91A12

DOI. 10.1137/S0895480102402745

1. Introduction. Cooperative games under combinatorial restrictions are coop-
erative games in which the players have restricted communication possibilities, which
are defined by a combinatorial structure. The first model in which the restrictions are
defined by the connected subgraphs of a graph is introduced by Myerson [11]. Since
then, many other situations where players have communication restrictions have been
studied in cooperative game theory. Contributions on graph-restricted games include
Owen [12], Borm, Owen, and Tijs [3], and Hamiache [8]. In these models the pos-
sibilities of coalition formation are determined by the positions of the players in a
communication graph. Another type of combinatorial structure introduced by Gilles,
Owen, and van den Brink [7] is equivalent to a subclass of antimatroids. This line
of research focuses on the possibilities of coalition formation determined by the posi-
tions of the players in the so-called permission structure. Sandholm et al. [14] analyze
coalition formation in combinatorial problems.

In the present paper, we use the restricted cooperation model derived from a
combinatorial structure called augmenting system. Section 2 introduces this structure,
which is a generalization of the antimatroid structure and the system of connected
subgraphs of a graph. Furthermore, this new set system includes the conjunctive
and disjunctive systems derived from a permission structure. Section 3 introduces
games under augmenting systems which generalize the ones studied on graphs and
permission structures. Using the structural properties from these systems we will be
able to express the dividends in terms of the original game. This result will be essential
in section 4 to provide direct formulas to compute the Shapley and Banzhaf values
for games under augmenting systems restrictions. In these formulas, these values are
computed by means of the original game without having to calculate the restricted
game and taking into account only the coalitions in the augmenting system. Finally,
in section 5 we consider the potential and the Owen multilinear extension (MLE) for
the restricted game. These results generalize, unify and simplify results of Owen [12],
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Gilles, Owen, and van den Brink [7], and Bilbao [2].

2. Augmenting systems. Antimatroids were introduced by Dilworth [5] as
particular examples of semimodular lattices. Since then, several authors have obtained
the same concept by abstracting various combinatorial situations (see Korte, Lovász,
and Schrader [10]). In this section, a general cooperation structure is introduced,
which is a weakening of the antimatroid structure.

Let N be a finite set. A set system over N is a pair (N,F) where F ⊆ 2N is a
family of subsets. The sets belonging to F are called feasible. We will write S ∪ i and
S \ i instead of S ∪ {i} and S \ {i}, respectively.

Definition 2.1. A set system (N,A) is an antimatroid if
A1. ∅ ∈ A,
A2. for S, T ∈ A, we have S ∪ T ∈ A,
A3. for S ∈ A with S 
= ∅, there exists i ∈ S such that S \ i ∈ A.
The definition of antimatroid implies the following augmentation property : If

S, T ∈ A with |T | > |S| , then there exists i ∈ T \ S such that S ∪ i ∈ A. We call a
set system (N,F) normal if N =

⋃
S∈F S. If (N,A) is a normal antimatroid, then

property A2 implies that N ∈ A.
Definition 2.2. An augmenting system is a normal set system (N,F) with the

following properties:
P1. ∅ ∈ F ,
P2. for S, T ∈ F with S ∩ T 
= ∅, we have S ∪ T ∈ F ,
P3. for S, T ∈ F with S ⊂ T, there exists i ∈ T \ S such that S ∪ i ∈ F .
Remark. It follows from the definition that normal antimatroids are always aug-

menting systems.
Proposition 2.3. An augmenting system (N,F) is an antimatroid if and only

if F is closed under union.
Proof. The necessary condition follows from A2. Conversely, we only have to

prove A3. Let S ∈ F with S 
= ∅. By property P3 there exists a chain of feasible
subsets

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Ss−1 ⊂ Ss = S

such that Sk ∈ F and |Sk| = k for 0 ≤ k ≤ s. Hence there exists an element i ∈ S
such that S \ i = Ss−1 ∈ F .

Example. The following collections of subsets of N = {1, . . . , n}, given by F = 2N

and F = {∅, {1}, . . . , {n}} , are the maximum augmenting system and a minimal
augmenting system over N , respectively.

Example. In a communication graph G = (N,E) , the set system (N,F) given by
F = {S ⊆ N : (S,E(S)) is a connected subgraph of G} is an augmenting system.

Example. Gilles, Owen, and van den Brink [7] showed that the feasible coali-
tions system (N,F) derived from the conjunctive or disjunctive approach contains
the empty set and the ground set N and that it is closed under union. Algaba et
al. [1] showed that the coalitions systems derived from the conjunctive and disjunc-
tive approach were identified to poset antimatroids and antimatroids with the path
property, respectively. Thus, these coalitions systems are augmenting systems.

Convex geometries are a combinatorial abstraction of convex sets introduced by
Edelman and Jamison [6].

Definition 2.4. A set system (N,G) is a convex geometry if it satisfies the
following properties:

C1. ∅ ∈ G,
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C2. for S, T ∈ G, we have S ∩ T ∈ G,
C3. for S ∈ G with S 
= N , there exists i ∈ N \ S such that S ∪ i ∈ G.
Proposition 2.5. An augmenting system (N,F) is a convex geometry if and

only if F is closed under intersection and N ∈ F .
Proof. The necessary conditions follow from properties C2 and C3. To prove

sufficiency, note that (N,F) satisfies C1 and C2, i.e., it is a closure system over N .
Moreover, (N,F) satisfies property P3 and N ∈ F . Then for every S ∈ F with
S 
= N , there exists i ∈ N \ S such that S ∪ i ∈ F .

Definition 2.6. Let (N,F) be an augmenting system. For a feasible coalition
S ∈ F , we define the set S∗ = {i ∈ N \ S : S ∪ i ∈ F} of augmentations of S and the
set S+ = S ∪ S∗ = {i ∈ N : S ∪ i ∈ F} .

Proposition 2.7. Let (N,F) be an augmenting system. Then the interval
[S, S+]F = {C ∈ F : S ⊆ C ⊆ S+} is a Boolean algebra for every nonempty S ∈ F .

Proof. It is suffices to show that [S, S+]F = {C ⊆ N : S ⊆ C ⊆ S+}, i.e., for
every C ⊆ N such that S ⊆ C ⊆ S+ we have C ∈ F . If S∗ = ∅, then [S, S+]F = {S} .
Otherwise, S∗ = {i1, . . . , ip} and S ⊆ C ⊆ S+ implies C = S ∪ {i1, . . . , iq} for some
1 ≤ q ≤ p.We prove that C ∈ F by induction on q. For q = 1 we know that S∪{i1} ∈
F . Assume S ∪ {i1, . . . , ik} ∈ F . Since S ∪ {ik+1} ∈ F and (S ∪ {i1, . . . , ik}) ∩
(S ∪ {ik+1}) = S 
= ∅, property P2 yields S ∪ {i1, . . . , ik, ik+1} ∈ F .

Let (N,F) be a set system and let S ⊆ N be a subset. A feasible subset C ∈ F
with C ⊆ S is called a basis of S if C∪ i /∈ F for all i ∈ S \C. The maximal nonempty
feasible subsets of S are called components of S. Clearly, every component of S is a
basis of S. However, the converse is not true, as the following example shows.

Example. If N = {1, 2, 3} and F = {∅, {1} , {2} , {2, 3} , N} , then C = {1} is a
basis of N , but the only component of N is the ground set N.

Observe that if (N,A) is an antimatroid, then any subset S ⊆ N has a unique
basis given by the following operator int(S) =

⋃ {C ∈ A : C ⊆ S} . This feasible set
is also the unique component of S.

Proposition 2.8. Let (N,F) be an augmenting system and let S ⊆ N be a
subset. Then a nonempty feasible subset C ⊆ S is a basis of S if and only if C is a
component of S.

Proof. Let C ∈ F be a basis of S and suppose C is not a component of S,
i.e., there exists D ∈ F such that C ⊂ D ⊆ S. Then because of P3 there exists
i ∈ D \ C ⊆ S \ C such that C ∪ i ∈ F , which is a contradiction.

We denote by CF (S) the set of the components of a subset S ⊆ N . Observe that
the set CF (S) may be the empty set. This set will play a role in the concept of a
game restricted by an augmenting system.

Proposition 2.9. A set system (N,F) satisfies property P2 if and only if for
any S ⊆ N with CF (S) 
= ∅, the components of S form a partition of a subset of S.

Proof. We suppose that (N,F) satisfies P2 and let S1, S2 be components of S.
If S1 ∩ S2 
= ∅, then S1 ∪ S2 ∈ F and we have that Si ⊂ S1 ∪ S2 ⊆ S for i ∈ {1, 2}.
This contradicts the fact that S1 and S2 are components of S. Conversely, assume
for any S with CF (S) 
= ∅ that its components form a partition of a subset of S.
Suppose that (N,F) does not satisfy P2. Then there are A,B ∈ F , with A ∩ B 
= ∅
and A ∪ B /∈ F . Hence there must be a component C1 ∈ CF (A ∪ B) with A ⊆ C1

and a component C2 ∈ CF (A∪B) with B ⊆ C2 such that C1 
= C2. This contradicts
the fact that the components of A ∪B are disjoint.

Let N = {1, . . . , n} be a set of players with n > 2 and we consider a subset S
of starting players. If i ∈ S, then the set {i} is feasible. Each starting player i looks
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for a player k /∈ S to generate a new feasible coalition {i, k}. These coalitions with
cardinality 2 search for new players, which agree to join one by one. If we assume
that common elements of two feasible coalitions are intermediaries between the two
coalitions in order to establish the feasibility of its union, we obtain an augmenting
system (N,F). Since the individual players k /∈ S are not feasible, the family F is
not generated by the connected subgraphs of a graph. Moreover, if players i, j ∈ S,
then {i} , {j} ∈ S and {i, j} /∈ S and hence (N,F) is not an antimatroid.

Example. Let N = {1, 2, 3, 4} and we consider S1 = {1, 2, 4} and S2 = {1, 4}. By
using the above coalition formation model we can obtain the following augmenting
systems, represented in Figure 1.

{2, 3}

{1} {4} {1} {4}{2}

{}{}

{3, 4}{1, 2}

Fig. 1.

The sets of maximal feasible coalitions are partitions of the players into dis-
joint coalitions, that is, the coalition structures CS1 = {{1} , {4} , {2, 3}} and CS2 =
{{1, 2} , {3, 4}}. Coalition structure generation has been studied by Sandholm et al.
[14].

Example. Let us consider N = {1, 2, 3, 4} and

F = {∅, {1} , {4} , {1, 2} , {3, 4} , {1, 2, 3} , {2, 3, 4} , N} .

Since {1, 2, 3} and {2, 3, 4} are feasible, property P2 implies that the grand coalition
N is a feasible set; see Figure 2.

{1, 2, 3}

{1, 2}

{1}

{}

{4}

{3, 4}

{2, 3, 4}

{1, 2, 3, 4}

Fig. 2.
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Example. The set system given by N = {1, 2, 3, 4} and

F = {∅, {1} , {4} , {1, 2} , {1, 3} , {2, 4} , {3, 4} ,
{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4} , N}

is an augmenting system. Since {1, 4} /∈ F , the system (N,F) represented in Figure
3 is not an antimatroid.

{}

{1, 2}

{1, 2, 3}

{1, 2, 3, 4}

{1}

{3, 4}

{2, 3, 4}

{2, 4}

{1, 3, 4}

{1, 3}

{1, 2, 4}

{4}

Fig. 3.

3. Games restricted by augmenting systems.
Definition 3.1. Let v : 2N → R be a cooperative game and let (N,F) be an

augmenting system. The restricted game vF : 2N → R is defined by

vF (S) =
∑

T∈CF (S)

v(T ).

Remark. If (N,F) is the augmenting system given by the connected subgraphs
of a graph G = (N,E), then the game

(
N, vF

)
is a graph-restricted game which is

studied by Myerson [11] and Owen [12].
If S ∈ F , then vF (S) = v(S). Let us denote by ΓN the vector space of all

cooperative games (N, v), i.e., functions v : 2N → R such that v (∅) = 0. Ev-
ery cooperative game (N, v) is uniquely determined by the collection of its values
{v(S) : S ⊆ N, S 
= ∅}. Then ΓN will be identified with R

2n−1. For any S ⊆ N, S 
=
∅, we define the unanimity game

uS(T ) =

{
1 if S ⊆ T,
0 otherwise.

Every game is a unique linear combination of unanimity games (cf. Shapley [15]),

v =
∑
S⊆N

dSuS , where dS =
∑
T⊆S

(−1)|S|−|T |v(T ).

We shall call dS the dividend of S in the game v. Owen [12] showed the following
property: The unanimity games uS, where S is connected in the graph G, form a
basis of the graph-restricted games.

Let (N,F) be the system of connected subgraphs of a graph G = (N,E). Hami-
ache [8] proved a formula for computing the dividends in the game vF by using the
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values in the original game v. Next, we extend Hamiache’s formula and Owen’s prop-
erty to the case when (N,F) is an augmenting system.

Proposition 3.2. Let (N,F) be an augmenting system and let (N, v) be a game.
Then the restricted game

(
N, vF

)
satisfies vF =

∑
C∈F dCuC , where the dividend

dC =
∑

{S∈F :S⊆C⊆S+}
(−1)|C|−|S|v(S)

for every nonempty C ∈ F and dC = 0 otherwise.
Proof. The game vF satisfies for every C ⊆ N

vF (C) =
∑
T⊆N

dTuT (C) =
∑
T⊆C

dT ,

where dT the dividend of T in the game vF . Then, the Möbius inversion formula
implies (see Stanley [16]) that

dC =
∑
T⊆C

(−1)|C|−|T |vF (T ) .

It follows from vF (∅) = 0 that d∅ = 0. So we may assume that C 
= ∅. The
definition of vF implies that

dC =
∑
T⊆C

(−1)|C|−|T |


 ∑
S∈CF (T )

v(S)




=
∑

{S∈F :S⊆C}


 ∑

{T⊆C :S∈CF (T )}
(−1)|C|−|T |


 v (S) .

Let S ∈ F with S ⊆ C. We first show that

{T ⊆ C : S ∈ CF (T )} = {T ⊆ C : T \ S ⊆ C \ S+
}
.

We take T ⊆ C. If S ∈ CF (T ) , then by Proposition 2.8, S is a basis of T and
hence the set of its augmentations S∗ satisfies S∗ ∩T = ∅. Then for each i ∈ T \S we
have i ∈ C and i /∈ S ∪ S∗ = S+.

Conversely, let T ⊆ C be a set such that T \S ⊆ C \S+. Then for each i ∈ T \S
we have i /∈ S+ and hence S ∪ i /∈ F . Thus, the feasible set S is a basis of T and we
conclude that S ∈ CF (T ) .

Therefore, the coefficients of dC satisfy∑
{T⊆C :S∈CF (T )}

(−1)|C|−|T | =
∑

{T⊆C :S⊆T, T\S⊆C\S+}
(−1)|C|−|T |

= (−1)|C|−|S|


 ∑
R⊆C\S+

(−1)−|R|


 .

Next, we compute

∑
R⊆C\S+

(−1)−|R| =
∑

R⊆C\S+

(−1)|R| = (1− 1)|C\S+| =
{

1 if C \ S+ = ∅,
0 otherwise.
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Therefore, C \ S+ = ∅ ⇔ C ⊆ S+, and hence

dC =
∑

{S∈F :S⊆C, C\S+=∅}
(−1)|C|−|S|v (S)

=
∑

{S∈F :S⊆C⊆S+}
(−1)|C|−|S|v(S).

To complete the proof we observe that Proposition 2.7 implies that the set C ∈ F .
Otherwise C \ S+ 
= ∅, and so dC = 0 for all C /∈ F .

4. The Shapley and Banzhaf values. Let (N, v) be a game and let (N,F)
be an augmenting system. The Shapley value for player i in the restricted game vF

is given by

Φi
(
N, vF

)
=

∑
{S⊆N : i∈S}

(s− 1)!(n− s)!
n!

[
vF (S)− vF (S \ i)] ,

where n = |N | and s = |S|. This value is an average of the marginal contributions
vF (S)− vF (S \ i) of a player i to all coalitions S ∈ 2N \ {∅}. In this value, the sets S
of different size get different weight. The Banzhaf value for player i in the restricted
game vF is given by

β′
i

(
N, vF

)
=

∑
{S⊆N : i∈S}

1

2n−1

[
vF (S)− vF (S \ i)]

for all i ∈ N. If the number of players is n, then the function that measures the
worst case running time for computing these indices is in O (n2n) (see Deng and
Papadimitriou [4]). Moreover, to obtain the restricted game vF we need to compute
the set of the components CF (S) of every subset S ⊆ N. Then it is necessary to
consider all the feasible subsets of S, and hence the time complexity is O (t) , where

t =
n∑
s=0

(
n

s

)
2s = 3n.

The Shapley and Banzhaf values are linear mappings with respect to the charac-
teristic function, and the images of the unanimity games are, respectively (cf. Owen
[12]),

Φi (N,uS) =

{
1 /|S| if i ∈ S,
0 otherwise,

β′
i (N,uS) =

{
1
/
2|S\i| if i ∈ S,

0 otherwise.

In terms of dividends dS in game vF , we have that

Φi
(
N, vF

)
=

∑
{S⊆N : i∈S}

dS
|S| ,(1)

β′
i

(
N, vF

)
=

∑
{S⊆N : i∈S}

dS
2|S\i|

.
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In the next theorem, two explicit formulas, in terms of v, for the Shapley and
Banzhaf values of the players in the restricted game vF are proved. These formulas
generalize the results obtained by Bilbao [2] for games restricted by convex geometries.

Theorem 4.1. Let (N,F) be an augmenting system and let (N, v) be a game.
Then

Φi
(
N, vF

)
=

∑
{T∈F : i∈T}

(t− 1)! t∗!
t+!

v(T )−
∑

{T∈F : i∈T∗}

t! (t∗ − 1)!

t+!
v(T ),

β′
i

(
N, vF

)
=

∑
{T∈F : i∈T}

1

2t+−1
v(T )−

∑
{T∈F : i∈T∗}

1

2t+−1
v(T ),

where t = |T |, t∗ = |T ∗|, and t+ = |T+|.
Proof. By Proposition 3.2, we know that dS = 0 unless S ∈ F . We use the

formula (1) and Proposition 3.2 for computing

Φi
(
N, vF

)
=

∑
{S∈F : i∈S}

dS
|S|

=
∑

{S∈F : i∈S}

1

|S|


 ∑
{T∈F :T⊆S⊆T+}

(−1)|S|−|T |v(T )


 .

Reversing the order of summation and denoting s = |S| and t = |T |, we obtain

Φi
(
N, vF

)
=
∑
T∈F


 ∑
{S∈F : i∈S, T⊆S⊆T+}

(−1)s−t
s


 v(T )

=
∑
T∈F

ci(T )v(T ),

where

ci(T ) =
∑

{S∈F :T∪i⊆S⊆T+}

(−1)s−t
s

.

First, we suppose i ∈ T . By Proposition 2.7 the interval [T, T+] is a Boolean
algebra and hence the summation index is {S ⊆ N : T ⊆ S ⊆ T+}. Now we consider
S = T ∪R, where R = S \ T , r = |R|, and t∗ = |T ∗|. Then

ci(T ) =
∑
R⊆T∗

(−1)r
t+ r

=
t∗∑
r=0

(
t∗

r

)
(−1)r
t+ r

=

t∗∑
r=0

(
t∗

r

)
(−1)r

∫ 1

0

xt+r−1 dx

=

∫ 1

0

xt−1
t∗∑
r=0

(
t∗

r

)
(−x)r dx

=

∫ 1

0

xt−1(1− x)t∗ dx

=
(t− 1)! t∗!

t+!
.
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Next, assume that i /∈ T ; hence the index is {S ∈ F : T ∪ i ⊆ S ⊆ T+}. Then
i ∈ T+ \ T and hence i ∈ T ∗. Now the previous result yields (note that [T ∪ i, T+] is
a Boolean algebra)

ci(T ) = −
∑

{S⊆N :T∪i⊆S⊆T+}

(−1)s−(t+1)

s
= − t!(t

∗ − 1)!

t+!
.

Inserting the coefficients, we have

Φi
(
N, vF

)
=

∑
{T∈F : i∈T}

(t− 1)! t∗!
t+!

v(T )−
∑

{T∈F : i∈T∗}

(t)!(t∗ − 1)!

t+!
v(T ).(2)

The proof of the formula of the Banzhaf value is similar. The only difference is
that the coefficients are

ci(T ) =

t∗∑
r=0

(
t∗

r

)
(−1)r

(
1

2

)t+r−1

=

(
1

2

)t+−1

if i ∈ T,

ci(T ) = −
(
1

2

)t+−1

if i ∈ T ∗.

Remark. Notice that if F = 2N , then T ∗ = N \ T and T+ = N for every T ∈ F .
Thus, the formulas obtained in the above theorem are equal to the classical Shapley
and Banzhaf values for the game v. Moreover, equation (2) is equal to the equation
of Shapley [15].

Let us consider a set system (N,F). An element i of a feasible set S ∈ F is an
extreme point of S if S \ i ∈ F . The set of extreme points of S is denoted by ex(S).
The formulas for computing the Shapley and Banzhaf values of the players in the
restricted game vF can be further simplified when the player is an extreme point of
every feasible coalition. Before doing so, we will need a lemma.

Lemma 4.2. Let (N,F) be an augmenting system. If i ∈ ex(S) for all S ∈ F
which contains i with S 
= {i} , then (S \ i)+ = S+.

Proof. Note first that i ∈ (S \ i)+ and i ∈ S+. For every j ∈ (S \ i)+ with j 
= i,
we have (S \ i) ∪ j ∈ F . Then ((S \ i) ∪ j) ∩ S = S \ i 
= ∅ implies ((S \ i) ∪ j) ∪ S =
S ∪ j ∈ F and hence j ∈ S+. Conversely, for every j ∈ S+, j 
= i, we know that
S ∪ j ∈ F . Since i ∈ S ⊆ S ∪ j, the assumption implies that i ∈ ex(S ∪ j). Then
(S ∪ j) \ i = (S \ i) ∪ j ∈ F and thus j ∈ (S \ i)+.

Theorem 4.3. Let (N,F) be an augmenting system and let (N, v) be a game
such that v(i) = 0 for all i ∈ N . If i ∈ ex (S) for all S ∈ F that contains i, then

Φi
(
N, vF

)
=

∑
{S∈F : i∈S, |S|>1}

(s− 1)! s∗!
s+!

[v (S)− v(S \ i)] ,

β′
i

(
N, vF

)
=

∑
{S∈F : i∈S, |S|>1}

1

2s+−1
[v(S)− v(S \ i)] ,

where s = |S|, s∗ = |S∗|, and s+ = |S+|.
Proof. We remark first that if i satisfies the hypothesis, then

{S ∈ F : i ∈ S, |S| > 1} = {S ∈ F : i ∈ ex (S) , |S| > 1} .
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Taking T = S \ i we obtain {T ∈ F : i ∈ T ∗} = {S \ i : S ∈ F , i ∈ ex (S)} . Next, we
apply Theorem 4.1 and therefore, by Lemma 4.2,

Φi
(
N, vF

)
=

∑
{S∈F : i∈S}

(s− 1)! s∗!
s+!

v(S)−
∑

{T∈F : i∈T∗}

t! (t∗ − 1)!

t+!
v(T )

=
∑

{S∈F : i∈ex(S), |S|>1}

(s− 1)! s∗!
s+!

v(S)

−
∑

{S∈F : i∈ex(S), |S|>1}

(s− 1)! s∗!
s+!

v(S \ i)

=
∑

{S∈F : i∈S, |S|>1}

(s− 1)! s∗!
s+!

[v (S)− v(S \ i)]

(note that v(i) = 0 for all i ∈ N). The result for the Banzhaf value follows
similarly.

Remark. Let (N,F) be an augmenting system that is a convex geometry. Then
for every i ∈ ex (N) we have S \ i = (N \ i) ∩ S ∈ F for all S ∈ F such that i ∈ S.
Hence, if i ∈ ex (N) , then i ∈ ex (S) for all S ∈ F with i ∈ S.

Example. Let K1,n−1 be a star on n vertices and let 1 be the center of star.
The augmenting system of the connected subgraphs of K1,n−1 is given by F =
{S ⊆ N : 1 ∈ S or |S| = 1} . Then ex(N) = {2, . . . , n} , and for all S ∈ F such
that |S| > 1, we infer that 1 ∈ S, S∗ = N \ S, and S+ = N. Moreover, the set
{S ∈ F : 1 ∈ S∗, |S| > 1} = ∅. Using these properties, the following results can be
derived from Theorems 4.1 and 4.3:

1. If (N, v) is a game such that v(i) = 0 for all i ∈ N , then

Φ1

(
N, vF

)
=

∑
{S∈F : 1∈S, |S|>1}

(s− 1)!(n− s)!
n!

v(S).

2. If (N, v) is a game such that v(i) = 0 for all i ∈ N , then

Φi
(
N, vF

)
=

∑
{S∈F : i∈S, |S|>1}

(s− 1)!(n− s)!
n!

[v(S)− v(S \ i)]

for all i ∈ {2, . . . , n} .
Remark. The time complexity of the direct formulas showed in Theorems 4.1 and

4.3 is polynomial in the cardinality |F| .
Example. Let us consider an augmenting system (N,F) such that the family of

its maximal elements is a coalition structure CS = {T1, . . . , Tp}. Then the number
of feasible elements is

|F| = |T1|+ · · ·+ |Tp|+ 1 = |N |+ 1,

and hence |F| is polynomial in |N |. For instance, the augmenting systems represented
in Figure 1 satisfy |F| = 5.

Example. Let (N,F) be an augmenting system with exactly two maximal chains.
Then |F| = 2 (|N | − 1)+2 = 2 |N | , and hence |F| is polynomial in |N |. For instance,
the augmenting system represented in Figure 2 satisfies |F| = 8.
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5. The potential and the MLE. The potential function for cooperative games
was defined by Hart and Mas-Colell [9]. Given a game (N, v) and a coalition S ⊆ N ,
the subgame (S, v) is obtained by restricting v to 2S . Let Γ denote the set of all
games. The potential is a function P : Γ → R which assigns to each game (N, v) a
real number P (N, v) and satisfies the following recursive equations:

P (∅, v) = 0, P (S, v) =
1

|S|

[
v(S) +

∑
i∈S

P (S \ i, v)
]

for all nonempty S ⊆ N. Then themarginal contribution of i coincides with its Shapley
value P (N, v)−P (N \ i, v) = Φi (N, v) for all i ∈ N. Moreover, there are two explicit
formulas for the potential:

P (N, v) =
∑
S⊆N

dS
|S| , P (N, v) =

∑
S⊆N

(s− 1)!(n− s)!
n!

v(S),

where s = |S| and n = |N | . The explicit formula for the potential of vF can be
obtained by a method similar to the one that is used in Theorem 4.1.

Theorem 5.1. Let (N,F) be an augmenting system and let (N, v) be a game.
Then

P
(
N, vF

)
=
∑
S∈F

(s− 1)! s∗!
s+!

v(S),

where s = |S|, s∗ = |S∗| and s+ = |S+|.
The MLE of the game (N, v) is the function of n real variables (see Owen [13])

f(v) (q1, . . . , qn) =
∑
S⊆N

∏
j∈S qj dS , where dS is the dividend of S in the game

(N, v). Owen showed that

Φi(N, v) =

∫ 1

0

∂f(v)

∂qi
(t, . . . , t) dt,

β′
i(N, v) =

∂f(v)

∂qi

(
1

2
, . . . ,

1

2

)
.

Proposition 5.2. Let (N,F) be an augmenting system and let (N, v) be a game.
Then the MLE of vF is given by

f
(
vF
)
(q1, . . . , qn) =

∑
S∈F

∏
j∈S

qj


 ∑

{T∈F :T⊆S⊆T+}
(−1)|S|−|T |v(T )


 .

REFERENCES

[1] E. Algaba, J. M. Bilbao, R. van den Brink, and A. Jiménez-Losada, Cooperative games
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top k lists, our results imply polynomial-time constant-factor approximation algorithms for the rank
aggregation problem with respect to a large class of distance measures.

Key words. triangle inequality, polygonal inequality, metric, near metric, distance measures,
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1. Introduction. The notion of a “top k list” is ubiquitous in the field of in-
formation retrieval (IR). A top 10 list, for example, is typically associated with the
“first page” of results from a search engine. While there are several standard ways for
measuring the “top k quality” of an IR system (e.g., precision and recall at various
values of k), it appears that there is no well-studied and well-understood method for
comparing two top k lists for similarity/dissimilarity. Methods based on precision
and recall yield a way to compare two top k lists by comparing them both to “ground
truth.” However, there are two limitations of such approaches: First, these methods
typically give absolute (unary) ratings of top k lists, rather than give a relative, binary
measure of distance. Second, for IR in the context of the world-wide web, there is
often no clear notion of what ground truth is, so precision and recall are harder to
use.

These observations lead to the following question in discrete mathematics: How
do we define reasonable and meaningful distance measures between top k lists? We
motivate the study of this problem by sketching some applications.

Applications. The first group of applications we describe is in the comparison of
various search engines, or of different variations of the same search engine. What could
be a more natural way to compare two search engines than by comparing their visible
outputs (namely, their top k lists)? It is also important to compare variations (using
slightly different ranking functions) of the same search engine as an aid in the design of
ranking functions. In particular, we can use our methodology to test the effect on the
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top k lists of adding/deleting ranking heuristics to/from the search engine. Similar
issues include understanding the effect of augmenting the “crawl” data to add more
documents, of indexing more data types (e.g., PDF documents), etc. For a more
complex application in this group, consider a large-scale search engine. Typically,
its ranking function is a composite algorithm that builds on several simpler ranking
functions, and the following questions are of interest: What is the “contribution” of
each component to the final ranking algorithm (i.e., how similar is the top k composite
output to the top k of each of its components), and how similar is each component
to the others? A good quantitative way to measure these (which our methodology
supplies) could be a valuable tool in deciding which components to retain, enhance,
or delete so as to design a better ranking algorithm. Similarly, our methodology can
be used to compare a “metasearch” engine with each of its component search engines
in order to understand the degree to which the metasearch engine aligns itself with
each of its components. In section 9, we report our results on the comparisons of
seven popular Web search engines and on comparing a metasearch engine with its
components.

The second group of the applications can be classified as “engineering optimiza-
tions.” A fairly simple example is a system that draws its search results from several
servers; for the sake of speed, a popular heuristic is to send the query to the servers
and return the responses as soon as, say, 75% of the servers have responded. Naturally,
it is important to ensure that the quality of the results are not adversely affected by
this approximation. What one needs here are meaningful and quantitative measures
with which to estimate the difference in the top k lists caused by the approximation.
A more subtle example in the same category is the following (where our methodology
has already been successfully utilized). Carmel et al. [CCF+01] explored the effect
of pruning the index information of a search engine. Their experimental hypothesis,
which they verified using one of our distance measures, was that their pruning tech-
nique would have only small effects on the top k list for moderate values of k.1 Since
what a user sees is essentially a top k list, they concluded that they could prune the
index greatly, which resulted in better space and time performance, without much
effect on the search results. Kamvar et al. [KHMG03] have used one of our dis-
tance measures in evaluating the quality of an approximate version of the PageRank
ranking algorithm. Another scenario in a similar vein is in the area of approximate
near-neighbor searching, a very common technique for categorization problems. Here
an important goal is to understand the difference between approximate and exact
near-neighbor search; once again, since what matters the most are the top few re-
sults, our problem arises naturally.

Another application of comparing top k lists arises from the processing of data
logs to discover emerging trends (see [CCF02] for an example). For example, a search
engine could compute the top 100 queries each day and see how they differ from day to
day, from month to month, etc. Other examples include processing inventory logs and
sales logs in retail stores, logs of stocks traded each day, etc. In these cases, a spike
in the difference between day-to-day or hour-to-hour top k lists could trigger a closer
analysis and action (e.g., buy/sell shares, add inventory, etc.). For these settings, one
needs good notions of the difference between two given top k lists.

Finally, we consider the context of synthesizing a good composite ranking func-
tion from several simpler ones. In the rank aggregation problem [DKNS01], given

1In fact, our first author is a coauthor of [CCF+01] and the need for comparing top k lists that
arose in that paper is what led us to the research in this paper.
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several top k lists, the goal is to find a top k list that is a “good” consolidation of
the given lists. In [DKNS01] this problem is formulated by asking for an aggrega-
tion that has the minimum total distance with respect to the given lists, where the
distance is computed according to some distance measure of interest. The choice of
distance measure turns out to have a direct bearing on the complexity of computing
the best solution: some distance measures lead to NP-hard optimization problems,
while others admit polynomial-time solutions. A main algorithmic consequence of our
work is in enabling the design of efficient constant-factor approximation algorithms
for the aggregation problem with respect to a large class of distance measures. This is
achieved by identifying a class of distance measures that are within constant factors
of each other.

Results. We approach the problem of defining distance measures between top
k lists from many angles. We make several proposals for distance measures, based
on various motivating criteria—ranging from naive, intuitive ones to ones based on
rigorous mathematics. While the plethora of measures is good news (since it gives a
wide choice), it also poses the challenging question of how to understand their relative
merits, or how to make a sound choice among the many competing proposals.

One of our main contributions is a unified framework in which to catalog and or-
ganize various distance measures. Concretely, we propose the notion of an equivalence
class of distance measures and, in particular, we place many of the proposed distance
measures into one large equivalence class (which we dub the “big equivalence class”).
Our big equivalence class encompasses many measures that are intuitively appealing
(but whose mathematical properties are nebulous), as well as ones that were derived
via rigorous mathematics (but lacking in any natural, intuitive justification that a
user can appreciate). The main message of the equivalence class concept is that up to
constant factors (that do not depend on k), all distance measures in an equivalence
class are essentially the same.

Our equivalence classes have the property that if even one distance measure in a
class is a metric (in the usual mathematical sense), then each of the others in that
class is a “near metric.” To make the foregoing idea precise, we present two distinct
but seemingly unrelated definitions of a near metric. The first says that it satisfies a
relaxed version of the “polygonal inequality” (the natural extension of the standard
triangle inequality). The second says that there exists a metric with positive constant
multiples that bound our measure above and below. We prove the surprising result
that these two notions of near metric are, in fact, equivalent.

Our results have the following two consequences:
(1) The task of choosing a distance measure for IR applications is now considerably

simplified. The only conscious choice a user needs to make is about which equivalence
class to use, rather than which distance measure to use. Our personal favorite is
the big equivalence class that we have identified, mainly because of the rich variety of
underlying intuition and the mathematically clean and algorithmically simple methods
that it includes.

(2) We obtain constant-factor approximation algorithms for the rank aggregation
problem with respect to every distance measure in our big equivalence class. This is
achieved using the fact that the rank aggregation problem can be optimally solved in
polynomial time (via minimum cost perfect matching) for one of the distance measures
in this equivalence class.

As we noted, in section 9 we present an illustration of the applicability of our
methods in the context of search and metasearch. Based on the results for 750 user
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queries, we study the similarities between the top 50 lists of seven popular Web search
engines and also their similarity to the top 50 list of a metasearch engine built using
the seven search engines. The quantitative comparison of the search engines’ top 50
results brings some surprising qualitative facts to light. For example, our experiments
reveal that AOL Search and MSN Search yield very similar results, despite the fact
that these are competitors. Further analysis reveals that the crawl data for these
search engines (and also for the search engine HotBot) comes in part from Inktomi.
The fact that the top 50 results from HotBot are only moderately similar to that
of AOL Search and MSN Search suggests that while they all use crawl data from
Inktomi, HotBot probably uses a ranking function quite different from those of AOL
and MSN. We believe these studies make an excellent case for the applicability of
quantitative methods in comparing top k lists.

Methodology. A special case of a top k list is a “full list,” that is, a permu-
tation of all of the objects in a fixed universe. There are several standard methods
for comparing two permutations, such as Kendall’s tau and Spearman’s footrule (see
the textbooks [Dia88, KG90]). We cannot simply apply these known methods, since
they deal only with comparing one permutation against another over the same ele-
ments. Our first (and most important) class of distance measures between top k lists
is obtained by various natural modifications of these standard notions of distances
between permutations.

A fairly straightforward attempt at defining a distance measure is to compute the
intersection of the two top k lists (viewing them as sets). This approach has in fact
been used in several papers in IR [Lee95, Lee97, CCF+01]. In order to obtain a metric,
we consider the notion of the symmetric difference (union minus the intersection),
appropriately scaled. This, unfortunately, is not adequate for the top k distance
problem, since two top 10 lists that are reverses of each other would be declared to be
“very close.” We propose natural extensions of this idea that leads to a metric for top
k lists. Briefly, the idea is to truncate the top k lists at various points i ≤ k, compute
the symmetric difference metric between the resulting top i lists, and take a suitable
combination of them. This gives a second type of notion of the distance between top
k lists.

As we noted, our distance measure based on the intersection gives a metric. What
about our distance measures that are generalizations of metrics on permutations?
Some of these turn out to be metrics, but others do not. For each of these distance
measures d that is not a metric, we show that d is a “near metric” in two seemingly
different senses. Namely, d satisfies each of the following two properties.

Metric boundedness property. There is a metric d′ and positive constants c1 and
c2 such that for all x, y in the domain, c1d

′(x, y) ≤ d(x, y) ≤ c2d
′(x, y) for all x, y in

the domain.
Thus, metric boundedness says that d and some metric d′ are within constant

multiples of each other.
Relaxed polygonal inequality. There is a constant c such that for all n > 1 and

x, z, x1, . . . , xn−1 in the domain, d(x, z) ≤ c(d(x, x1) + d(x1, x2) + · · ·+ d(xn−1, z)).
As remarked earlier, we show the surprising fact that these two seemingly unre-

lated notions of being a “near metric” are the same. Note that the relaxed polygonal
inequality immediately implies the relaxed triangle inequality [FS98], which says that
there is a constant c such that d(x, z) ≤ c(d(x, y)+d(y, z)) for all x, y, z in the domain.
Relaxed triangle and polygonal inequalities suggest that the notion of “closeness” un-
der these measures are “reasonably transitive.” Interestingly enough, the equivalence
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of our two notions of “near metric” requires that we consider the relaxed polygo-
nal inequality rather than simply the relaxed triangle inequality; the relaxed triangle
inequality is not sufficient to imply the metric boundedness property.

Organization. In section 2, we review two metrics on permutations, which form
the basis for various distance measures that we define and study. In section 3, we
develop our new distance measures between top k lists. In section 4, we present
various notions of near metric, and show the equivalence between metric boundedness
and the relaxed polygonal inequality. In section 5, we define the notion of equivalence
of distance measures and show that all of our distance measures are in one large and
robust equivalence class, called the “big equivalence class.” Thus each of the distance
measures between top k lists introduced in section 3 is a metric or a near metric. In
section 6, we give an algorithmic application that exploits distance measures being
in the same equivalence class. In section 7, we discuss two approaches based on
Spearman’s rho and symmetric difference. In section 8, we discuss the interpolation
criterion—a natural and desirable property of a distance measure. In section 10, we
conclude the paper.

2. Metrics on permutations. The study of metrics on permutations is classi-
cal. The book by Kendall and Gibbons [KG90] provides a detailed account of various
methods. Diaconis [Dia88] gives a formal treatment of metrics on permutations. We
now review two well-known notions of metrics on permutations.

A permutation σ is a bijection from a set D = Dσ (which we call the domain,
or universe) onto the set [n] = {1, . . . , n}, where n is the size |D| of D. Let SD
denote the set of all permutations of D. For a permutation σ, we interpret σ(i) as
the position (or rank) of element i. We say that i is ahead of j in σ if σ(i) < σ(j).
Let P = PD = {{i, j} | i �= j and i, j ∈ D} be the set of unordered pairs of distinct
elements. Let σ1, σ2 be two members of SD.

Kendall’s tau metric between permutations is defined as follows. For each pair
{i, j} ∈ P of distinct members of D, if i and j are in the same order in σ1 and σ2,
then let K̄i,j(σ1, σ2) = 0; if i and j are in the opposite order (such as i being ahead of
j in σ1 and j being ahead of i in σ2), then let K̄i,j(σ1, σ2) = 1. Kendall’s tau is given
by K(σ1, σ2) =

∑
{i,j}∈P K̄i,j(σ1, σ2). The maximum value of K(σ1, σ2) is n(n−1)/2,

which occurs when σ1 is the reverse of σ2 (that is, when σ1(i) + σ2(i) = n + 1 for
each i). Kendall’s tau turns out to be equal to the number of exchanges needed in a
bubble sort to convert one permutation to the other.

Spearman’s footrule metric is the L1 distance between two permutations. For-
mally, it is defined by F (σ1, σ2) =

∑n
i=1 |σ1(i) − σ2(i)|. The maximum value of

F (σ1, σ2) is n2/2 when n is even, and (n + 1)(n − 1)/2 when n is odd. As with
Kendall’s tau, the maximum occurs when σ1 is the reverse of σ2. Later, we shall
discuss a variation of Spearman’s footrule called “Spearman’s rho.”

3. Measures for comparing top k lists. We now discuss modifications of
these metrics for the case when we have only the top k members of the ordering.
Formally, a top k list τ is a bijection from a domain Dτ (intuitively, the members of
the top k list) to [k]. We say that i appears in the top k list τ if i ∈ Dτ . Similar to
our convention for permutations, we interpret τ(i) (for i in Dτ ) as the rank of i in τ .
As before, we say that i is ahead of j in τ if τ(i) < τ(j). If τ is a top k list and σ is
a permutation on D ⊇ Dτ , then we say that σ is an extension of τ , which we denote
σ � τ , if σ(i) = τ(i) for all i ∈ Dτ .

Assume that τ1 and τ2 are top k lists. In this section, we give several measures
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for the distance between τ1 and τ2. We begin by recalling the definition of a metric
and formally defining a distance measure. A binary function d is called symmetric if
d(x, y) = d(y, x) for all x, y in the domain, and is called regular if d(x, y) = 0 if and
only if x = y. We define a distance measure to be a nonnegative, symmetric, regular
binary function. A metric is a distance measure d that satisfies the triangle inequality
d(x, z) ≤ d(x, y)+d(y, z) for all x, y, z in the domain. All of the measures of closeness
between top k lists considered in this paper are distance measures.

Global notation. Here we set up some global notation that we use throughout
the paper. When two top k lists τ1 and τ2 are understood, we write D = Dτ1∪Dτ2 ;Z =
Dτ1 ∩Dτ2 ;S = Dτ1 \Dτ2 ;T = Dτ2 \Dτ1 . Let z = |Z|. Note that |S| = |T | = k − z
and |D| = 2k − z.

Remark. An important feature of our work is that when we compare τ1 and τ2,
we do not assume that these are top k lists of elements from a fixed domain D. This
is a fairly natural requirement in many applications of our work. For example, if we
wish to compare the top 10 lists produced by two search engines, it is unreasonable to
expect any knowledge of the (possibly very large) universe to which elements of these
lists belong; in fact, we cannot even expect to know the size of this universe. The
drawback of our requirement is that it is one of the reasons why several very natural
distance measures that we define between top k lists fail to be metrics (cf. section
3.3).

3.1. Kendall’s tau. There are various natural ways to generalize Kendall’s tau
to measure distances between top k lists. We now consider some of them. We begin
by generalizing the definition of the set P. Given two top k lists τ1 and τ2, we define
P(τ1, τ2) = PDτ1∪Dτ2

to be the set of all unordered pairs of distinct elements in
Dτ1 ∪Dτ2 .

For top k lists τ1 and τ2, the minimizing Kendall distance Kmin(τ1, τ2) between
τ1 and τ2 is defined to be the minimum value of K(σ1, σ2), where σ1 and σ2 are each
permutations of Dτ1 ∪Dτ2 and where σ1 � τ1 and σ2 � τ2.

For top k lists τ1 and τ2, the averaging Kendall distance Kavg(τ1, τ2) between τ1
and τ2 is defined to be the expected value E(K(σ1, σ2)), where σ1 and σ2 are each
permutations of Dτ1 ∪ Dτ2 and where σ1 � τ1 and σ2 � τ2. Here E(·) gives the
expected value where all extensions are taken to be equally likely.

Next we consider an approach that we will show gives both the minimizing Kendall
distance and the averaging Kendall distance as special cases. Let p be a fixed param-
eter with 0 ≤ p ≤ 1. Similar to our definition of K̄i,j(σ1, σ2) for permutations σ1, σ2,

we define a penalty K̄
(p)
i,j (τ1, τ2) for top k lists τ1, τ2 for {i, j} ∈ P(τ1, τ2). There are

four cases.
Case 1 (i and j appear in both top k lists). If i and j are in the same order (such

as i being ahead of j in both top k lists), then let K̄
(p)
i,j (τ1, τ2) = 0; this corresponds

to “no penalty” for {i, j}. If i and j are in the opposite order (such as i being ahead

of j in τ1 and j being ahead of i in τ2), then let the penalty K̄
(p)
i,j (τ1, τ2) = 1.

Case 2 (i and j both appear in one top k list (say τ1), and exactly one of i or j,
say i, appears in the other top k list (τ2)). If i is ahead of j in τ1, then let the penalty

K̄
(p)
i,j (τ1, τ2) = 0, and otherwise let K̄

(p)
i,j (τ1, τ2) = 1. Intuitively, we know that i is

ahead of j as far as τ2 is concerned, since i appears in τ2 but j does not.
Case 3 (i, but not j, appears in one top k list (say τ1), and j, but not i, appears

in the other top k list (τ2)). Then let the penalty K̄
(p)
i,j (τ1, τ2) = 1. Intuitively, we
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know that i is ahead of j as far as τ1 is concerned and j is ahead of i as far as τ2 is
concerned.

Case 4 (i and j both appear in one top k list (say τ1), but neither i nor j appears
in the other top k list (τ2)). This is the interesting case (the only case where there is
really an option as to what the penalty should be). We call such pairs {i, j} special
pairs. In this case, we let the penalty K̄

(p)
i,j (τ1, τ2) = p.

Based on these cases, we now define K(p), the Kendall distance with penalty
parameter p, as follows:

K(p)(τ1, τ2) =
∑

{i,j}∈P(τ1,τ2)

K̄
(p)
i,j (τ1, τ2).

When p = 0, this gives an “optimistic approach.” It corresponds to the intuition
that we assign a nonzero penalty score to the pair {i, j} only if we have enough
information to know that i and j are in the opposite order according to the two top k
lists. When p = 1/2, this gives a “neutral approach.” It corresponds to the intuition
that we do not have enough information to know whether the penalty score should be
0 or 1, so we assign a neutral penalty score of 1/2. Later, we show that the optimistic
approach gives precisely Kmin and the neutral approach gives precisely Kavg.

The next lemma gives a formula, which we shall find useful later, for K(p).

Lemma 3.1. K(p)(τ1, τ2) = (k− z)((2 + p)k− pz + 1− p) +
∑
i,j∈Z K̄

(0)
i,j (τ1, τ2)−∑

j∈S τ1(j)−
∑
j∈T τ2(j).

Proof. We analyze the four cases in the definition of K(p)(τ1, τ2) and obtain
formulas for each of them in terms of our global notation. Case 1 is the situation
when for a pair {i, j}, we have i, j ∈ Z. In this case, the contribution of this pair to
K(p)(τ1, τ2) is ∑

i,j∈Z
K̄

(0)
i,j (τ1, τ2).(1)

Case 2 is the situation when for a pair {i, j}, one of i or j is in Z and the other is
in either S or T . Let us denote by i the element in Z and by j the element in S
or T . Let us now consider the case when i ∈ Z, j ∈ S. Let j1 < · · · < jk−z be the
elements in S. Fix an � ∈ {1, . . . , k − z} and consider the element j� and its rank
τ1(j�) in the first top k list τ1. There will be a contribution of 1 to K(p)(τ1, τ2) for
all i ∈ Z such that τ1(i) > τ1(j�), that is, all the elements i ∈ Z such that j� is
ahead of i in τ1; denote this net contribution of � to K(p)(τ1, τ2) by γ(�). We now
obtain an expression for γ(�). The total number of elements that j� is ahead of in τ1
is k − τ1(j�), and of these elements, �− 1 of them belong to S and the rest belong to
Z. This gives γ(�) = k−τ1(j�)− (�−1). Now, summing over all �, the contribution to

K(p)(τ1, τ2) is
∑k−z
�=1 γ(�) = (k − z)(k + z + 1)/2−∑j∈S τ1(j). Similarly, for the case

when i ∈ Z, j ∈ T , the contribution to K(p)(τ1, τ2) is (k−z)(k+z+1)/2−∑j∈T τ2(j).
Summing these, the term corresponding to Case 2 contributing to K(p)(τ1, τ2) is

(k − z)(k + z + 1)−
∑
j∈S

τ1(j)−
∑
j∈T

τ2(j).(2)

Case 3 is the situation when for a pair {i, j}, we have i ∈ S and j ∈ T . The total
contribution to K(p)(τ1, τ2) from this case is

|S| × |T | = (k − z)2.(3)
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Finally, Case 4 is the situation when for a pair {i, j}, we have either i, j ∈ S or
i, j ∈ T . The total contribution to K(p)(τ1, τ2) from this case is

p

(|S|
2

)
+ p

(|T |
2

)
= 2p

(
k − z

2

)
.(4)

Adding equations (1)–(4), we obtain

K(p)(τ1, τ2) = (k−z)((2+p)k−pz+1−p)+
∑
i,j∈Z

K̄
(0)
i,j (τ1, τ2)−

∑
j∈S

τ1(j)−
∑
j∈T

τ2(j).

Let A and B be finite sets of objects (in our case of interest, these objects are
permutations). Let d be a metric of distances between objects (at the moment, we are
interested in the case where d is the Kendall distance between permutations). The
Hausdorff distance between A and B is given by

dHaus(A,B) = max

{
max
σ1∈A

min
σ2∈B

d(σ1, σ2), max
σ2∈B

min
σ1∈A

d(σ1, σ2)

}
.

Although this looks fairly nonintuitive, it is actually quite natural, as we now explain.
The quantity minσ2∈B d(σ1, σ2) is the distance between σ1 and the set B. Therefore,
the quantity maxσ1∈A minσ2∈B d(σ1, σ2) is the maximal distance of a member of A
from the set B. Similarly, the quantity maxσ2∈B minσ1∈A d(σ1, σ2) is the maximal
distance of a member of B from the set A. Therefore, the Hausdorff distance between
A and B is the maximal distance of a member of A or B from the other set. Thus, A
and B are within Hausdorff distance s of each other precisely if every member of A
and B is within distance s of some member of the other set. The Hausdorff distance
is well known to be a metric.

Critchlow [Cri80] used the Hausdorff distance to define a distance measure be-
tween top k lists. Specifically, given a metric d that gives the distance between
permutations, Critchlow defined the distance between top k lists τ1 and τ2 to be

max

{
max
σ1
τ1

min
σ2
τ2

d(σ1, σ2), max
σ2
τ2

min
σ1
τ1

d(σ1, σ2)

}
.(5)

Critchlow assumed that there is a fixed domain D, and so σ1 and σ2 range over all
permutations with domain D. This distance measure is a metric, since it is a special
case of a Hausdorff metric.

We, too, are interested in considering a version of the Hausdorff distance. How-
ever, as remarked earlier, in this paper we do not assume a fixed domain. Therefore,
we define KHaus, the Hausdorff version of the Kendall distance between top k lists, to
be given by (5) with d(σ1, σ2) as the Kendall distance K(σ1, σ2), but where, unlike
Critchlow, we take σ1 and σ2 to be permutations of Dτ1 ∪Dτ2 .

Critchlow obtains a closed form for his version of (5) when d(σ1, σ2) is the Kendall
distance K(σ1, σ2). Specifically, if n is the size of the underlying domain D, and
d(σ1, σ2) = K(σ1, σ2), he shows that (5) is given by

(k − z)

(
n + k − k − z − 1

2

)
+
∑
i,j∈Z

K̄
(0)
i,j (τ1, τ2)−

∑
i∈S

τ1(i)−
∑
i∈T

τ2(i).(6)

By replacing n by 2k − z, we obtain a closed form for KHaus.
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Lemma 3.2.

KHaus(τ1, τ2) =
1

2
(k − z)(5k − z + 1) +

∑
i,j∈Z

K̄
(0)
i,j (τ1, τ2)−

∑
i∈S

τ1(i)−
∑
i∈T

τ2(i).

We show that the “optimistic approach” given by K(0) and the “neutral approach”
given by K(1/2) are exactly Kmin and Kavg, respectively. Furthermore, we show the
somewhat surprising result that the Hausdorff distance KHaus also equals K(1/2).

Proposition 3.3. Kmin = K(0).
Proof. Let τ1 and τ2 be top k lists. We must show that Kmin(τ1, τ2) = K(0)(τ1, τ2).

Define σ1 to be the extension of τ1 over D where the elements are, in order, the
elements of Dτ1 in the same order as they are in τ1, followed by the elements of T in
the same order as they are in τ2. For example, if k = 4, if the top 4 elements of τ1 are,
in order, 1, 2, 3, 4, and if the top 4 elements of τ2 are, in order, 5, 4, 2, 6, then the
ordering of the elements for σ1 is 1, 2, 3, 4, 5, 6. We similarly define the extension σ2
of τ2 by reversing the roles of τ1 and τ2. First, we show that Kmin(τ1, τ2) = K(σ1, σ2),
and then we show that K(σ1, σ2) = K(0)(τ1, τ2).

To show that Kmin(τ1, τ2) = K(σ1, σ2), it is clearly sufficient to show that if σ′
1

is an arbitrary extension of τ1 (over D) and σ′
2 is an arbitrary extension of τ2 (over

D), and if {i, j} is an arbitrary member of P(τ1, τ2), then

K̄i,j(σ1, σ2) ≤ K̄i,j(σ
′
1, σ

′
2).(7)

When {i, j} is not a special pair (that is, when {i, j} falls into the first three cases of

the definition of K̄
(p)
i,j (τ1, τ2)), we have equality in (7), since the ordering of i and j

according to σ1, σ2, σ
′
1, σ

′
2 are forced by τ1, τ2. When {i, j} is a special pair, we have

K̄i,j(σ1, σ2) = 0, and so again (7) holds.
We have shown that Kmin(τ1, τ2) = K(σ1, σ2). Hence, we need only show that

K(0)(τ1, τ2) = K(σ1, σ2). To show this, we need only show that K̄
(0)
i,j (τ1, τ2) =

K̄i,j(σ1, σ2) for every pair {i, j}. As before, this is automatic when {i, j} is not a

special pair. When {i, j} is a special pair, we have K̄
(0)
i,j (τ1, τ2) = 0 = K̄i,j(σ1, σ2).

This concludes the proof.
Proposition 3.4. Kavg = K(1/2) = KHaus.
Proof. Let τ1, τ2 be top k lists. Then

Kavg(τ1, τ2) = E(K(σ1, σ2))

= E


 ∑

{i,j}∈P(τ1,τ2)

K̄i,j(σ1, σ2)




=
∑

{i,j}∈P(τ1,τ2)

E
(
K̄i,j(σ1, σ2)

)
.(8)

We shall show that

E
(
K̄i,j(σ1, σ2)

)
= K̄

(1/2)
i,j (τ1, τ2).(9)

This proves that Kavg = K(1/2), since the result of substituting K̄
(1/2)
i,j (τ1, τ2) for

E(K̄i,j(σ1, σ2)) in (8) gives K(1/2)(τ1, τ2). Similar to before, when {i, j} is not a special
pair, we have K̄i,j(σ1, σ2) = K̄(1/2)(τ1, τ2), and so (9) holds. When {i, j} is a special
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pair, then K̄
(1/2)
i,j (τ1, τ2) = 1/2. So we are done with showing that Kavg = K(1/2) if we

show that when {i, j} is a special pair, then E(K̄i,j(σ1, σ2)) = 1/2. Assume without
loss of generality that i, j are both in Dτ1 but neither is in Dτ2 . The ordering of i, j
in σ1 is forced by τ1. Further, there is a one-to-one correspondence between those
permutations σ2 that extend τ2 with i ahead of j and those that extend τ2 with j
ahead of i (the correspondence is determined by simply switching i and j). Therefore,
for each choice of σ1, exactly half of the choices for σ2 have K̄i,j(σ1, σ2) = 0, and for
the other half, K̄i,j(σ1, σ2) = 1. So E(K̄i,j(σ1, σ2)) = 1/2, as desired.

We now show that KHaus = K(1/2). If we set p = 1/2 in our formula for K(p)

given in Lemma 3.1, we obtain the right-hand side of the equation in Lemma 3.2.
Thus, KHaus = K(1/2). We now give a direct proof that does not require the use of
Lemma 3.2 and hence does not require the use of Critchlow’s formula given by (6).

Let τ1, τ2 be top k lists. Then KHaus(τ1, τ2) is given by

max

{
max
σ1
τ1

min
σ2
τ2

K(σ1, σ2), max
σ2
τ2

min
σ1
τ1

K(σ1, σ2)

}
.

Let σ∗
1 be the permutation over Dτ1 ∪Dτ2 where σ∗

1 � τ1 and where σ∗
1(k + 1), . . . ,

σ∗
1(2k − z) are, respectively, the members of T in reverse order. Let σ∗

2 be the per-
mutation over Dτ1 ∪Dτ2 where σ∗

2 � τ2 and where σ∗
2(k + 1), . . . , σ∗

2(2k − z) are, re-
spectively, the members of S in order (not in reverse order). It is not hard to see that
KHaus(τ1, τ2) = K(σ∗

1 , σ
∗
2). So we need only show that K(σ∗

1 , σ
∗
2) = K(1/2)(τ1, τ2).

In the definition of K(p), let us consider the contribution of each pair {i, j} to
K(1/2)(τ1, τ2), as compared to its contribution to K(σ∗

1 , σ
∗
2). In the first three cases

in the definition of K(p), it is easy to see that {i, j} contributes exactly the same to
K(1/2)(τ1, τ2) as to K(σ∗

1 , σ
∗
2). Let us now consider Case 4, where {i, j} is a special

pair, that is, where both i and j appear in one of the top k lists τ1 or τ2, but neither
appears in the other top k list. If both i and j appear in τ1 but neither appears in
τ2, then the contribution to K(1/2)(τ1, τ2) is 1/2, and the contribution to K(σ∗

1 , σ
∗
2)

is 0. If both i and j appear in τ2 but neither appears in τ1, then the contribution to
K(1/2)(τ1, τ2) is 1/2 and the contribution to K(σ∗

1 , σ
∗
2) is 1. Since there are just as

many pairs {i, j} of the first type (where both i and j appear in τ1 but neither appears
in τ2) as there are of the second type (where both i and j appear in τ2 but neither
appears in τ1), the total contribution of all pairs {i, j} of Case 4 to K(1/2)(τ1, τ2) and
K(σ∗

1 , σ
∗
2) is the same. This proves that KHaus = K(1/2).

3.2. Spearman’s footrule. We now generalize Spearman’s footrule to several
methods for determining distances between top k lists, just as we did for Kendall’s
tau.

For top k lists τ1 and τ2, the minimizing footrule distance Fmin(τ1, τ2) between
τ1 and τ2 is defined to be the minimum value of F (σ1, σ2), where σ1 and σ2 are each
permutations of D and where σ1 � τ1 and σ2 � τ2.

For top k lists τ1 and τ2, the averaging footrule distance Favg(τ1, τ2) between τ1
and τ2 is defined to be the expected value E(F (σ1, σ2)), where σ1 and σ2 are each
permutations of Dτ1 ∪ Dτ2 and where σ1 � τ1 and σ2 � τ2. Again, E(·) gives the
expected value where all extensions are taken to be equally likely.

Let � be a real number greater than k. The footrule distance with location param-
eter �, denoted F (�), is obtained—intuitively—by placing all missing elements in each
of the lists at position � and computing the usual footrule distance between them.
More formally, given top k lists τ1 and τ2, define functions τ ′1 and τ ′2 with domain
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Dτ1 ∪Dτ2 by letting τ ′1(i) = τ1(i) for i ∈ Dτ1 and τ ′1(i) = � otherwise, and similarly
defining τ ′2. We then define F (�) by setting F (�)(τ1, τ2) =

∑
i∈Dτ1

∪Dτ2
|τ ′1(i)− τ ′2(i)|.

A natural choice for � is k + 1, and we make this choice in our experiments
(section 9). We denote F (k+1) simply by F ∗.

The next lemma gives a formula, which we shall find useful later, for F (�).
Lemma 3.5. F (�)(τ1, τ2) = 2(k − z)� +

∑
i∈Z |τ1(i) − τ2(i)| −

∑
i∈S τ1(i) −∑

i∈T τ2(i).
Proof.

F (�)(τ1, τ2) =
∑
i∈Z
|τ1(i)− τ2(i)|+

∑
i∈S
|τ1(i)− τ2(i)|+

∑
i∈T
|τ1(i)− τ2(i)|

=
∑
i∈Z
|τ1(i)− τ2(i)|+

∑
i∈S

(�− τ1(i)) +
∑
i∈T

(�− τ2(i))

= 2(k − z)� +
∑
i∈Z
|τ1(i)− τ2(i)| −

∑
i∈S

τ1(i)−
∑
i∈T

τ2(i).

Similar to our definition of KHaus, we define FHaus, the Hausdorff version of
the footrule distance between top k lists, to be given by (5) with d(σ1, σ2) as the
footrule distance F (σ1, σ2), where, as before, we take σ1 and σ2 to be permutations
of Dτ1 ∪Dτ2 .

Just as he did with the Kendall distance, Critchlow considered his version of (5)
when d(σ1, σ2) is the footrule distance F (σ1, σ2) and where there is a fixed domain of
size n. He obtained a closed formula given by

(k − z)(2n + 1− (k − z)) +
∑
i∈Z
|τ1(i)− τ2(i)| −

∑
i∈S

τ1(i)−
∑
i∈T

τ2(i).

By replacing n by 2k − z, we obtain a closed form for FHaus.
Lemma 3.6.

FHaus(τ1, τ2) = (k − z)(3k − z + 1) +
∑
i∈Z
|τ1(i)− τ2(i)| −

∑
i∈S

τ1(i)−
∑
i∈T

τ2(i)

= F ( 3k−z+1
2 )(τ1, τ2).

The last equality is obtained by formally substituting � = (3k− z + 1)/2 into the
formula for F (�) given by Lemma 3.5. Thus, intuitively, FHaus(τ1, τ2) is a “dynamic”
version of F (�), where � = (3k − z + 1)/2 actually depends on τ1 and τ2. Since
Fmin = Favg = FHaus (Proposition 3.7), this gives us a formula for Fmin and Favg
as well. Note that � = (3k − z + 1)/2 is the average of k + 1 and 2k − z, where
the latter number is the size of D = Dτ1 ∪ Dτ2 . Since taking � = (3k − z + 1)/2
corresponds intuitively to “placing the missing elements at an average location,” it is
not surprising that the resulting formula gives Favg.

Unlike the situation with Kmin and Kavg, the next proposition tells us that Fmin

and Favg are the same. Furthermore, the Hausdorff distance FHaus shares this common
value.

Proposition 3.7. Fmin = Favg = FHaus.
Proof. Let τ1 and τ2 be top k lists. Let σ1, σ

′
1, σ2, σ

′
2 be permutations of D =

Dτ1 ∪Dτ2 , where σ1 and σ′
1 extend τ1 and where σ2 and σ′

2 extend τ2. We need only
show that F (σ1, σ2) = F (σ′

1, σ
′
2), that is, that the value of F (σ1, σ2) is independent

of the choice of σ1, σ2. Therefore, we need only show that F (σ1, σ2) = F (σ1, σ
′
2),
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where σ1 is held fixed, since by symmetry (where σ′
2 is held fixed) we would then have

F (σ1, σ
′
2) = F (σ′

1, σ
′
2), and hence F (σ1, σ2) = F (σ1, σ

′
2) = F (σ′

1, σ
′
2), as desired.

Now F (σ1, σ2) =
∑
i∈D |σ1(i)− σ2(i)|. So we need only show that

∑
i∈D
|σ1(i)− σ2(i)| =

∑
i∈D
|σ1(i)− σ′

2(i)|.(10)

Now ∑
i∈D
|σ1(i)− σ2(i)| =

∑
i∈Dτ2

|σ1(i)− σ2(i)|+
∑
i∈S
|σ1(i)− σ2(i)|,(11)

and similarly

∑
i∈D
|σ1(i)− σ′

2(i)| =
∑
i∈Dτ2

|σ1(i)− σ′
2(i)|+

∑
i∈S
|σ1(i)− σ′

2(i)|.(12)

Now σ2(i) = σ′
2(i) for i ∈ Dτ2 . Hence,

∑
i∈Dτ2

|σ1(i)− σ2(i)| =
∑
i∈Dτ2

|σ1(i)− σ′
2(i)|.(13)

From (11), (12), and (13), it follows that to prove (10), and hence complete the proof,
it is sufficient to prove

∑
i∈S
|σ1(i)− σ2(i)| =

∑
i∈S
|σ1(i)− σ′

2(i)|.(14)

If i ∈ S, then σ1(i) ≤ k < σ2(i). Thus, if i ∈ S, then σ1(i) < σ2(i), and similarly
σ1(i) < σ′

2(i). So it is sufficient to prove

∑
i∈S

(σ1(i)− σ2(i)) =
∑
i∈S

(σ1(i)− σ′
2(i))

and hence to prove

∑
i∈S

σ2(i) =
∑
i∈S

σ′
2(i).(15)

But both the left-hand side and the right-hand side of (15) equal
∑|D|
�=k+1 �, and hence

are equal. This completes the proof that Fmin = Favg = FHaus.

3.3. Metric properties. We have now introduced three distinct measures of
closeness between top k lists: (1) K(p), which has Kmin and Kavg = KHaus as special
cases for certain choices of p; (2) Fmin, which equals Favg and FHaus; and (3) F (�).
Perhaps the most natural question, and the main subject of our investigation, is to
ask whether or not they are metrics.

As a preview to our main results, we begin by observing that while F (�) is a
metric, none of the other distance measures that we have defined (namely, K(p) and
Fmin, hence also Kmin,Kavg,KHaus, Favg, FHaus) is a metric.
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Proposition 3.8. The distance measure F (�) is a metric for every choice of the
location parameter �.

Proof. We need only show that the triangle inequality holds. Let τ1, τ2, τ3 be top k
lists. Let n = |Dτ1∪Dτ2∪Dτ3 |. Define an n-dimensional vector v1 corresponding to τ1
by letting v1(i) = τ1(i) for i ∈ Dτ1 and � otherwise. Similarly, define an n-dimensional
vector v2 corresponding to τ2 and an n-dimensional vector v3 corresponding to τ3. It
is easy to see that F (�)(τ1, τ2) is the L1 distance between v1 and v2 and similarly for
F (�)(τ1, τ3) and F (�)(τ2, τ3). The triangle inequality for F (�) then follows immediately
from the triangle inequality for the L1 norm between two vectors in n-dimensional
Euclidean space.

The other two distinct distance measures, namely K(p) and Fmin, are not metrics,
as we now show. Let τ1 be the top 2 list where the top 2 items in order are 1,2; let τ2
be the top 2 list where the top 2 items in order are 1,3; let τ3 be the top 2 list where
the top 2 items in order are 3, 4. It is straightforward to verify that K(p)(τ1, τ2) = 1,
K(p)(τ1, τ3) = 4 + 2p, and K(p)(τ2, τ3) = 2. So the triangle inequality fails, because
K(p)(τ1, τ3) > K(p)(τ1, τ2) + K(p)(τ2, τ3) for every p ≥ 0. Therefore, K(p) is not a
metric, no matter what the choice of the penalty parameter p is; in particular, by
Propositions 3.3 and 3.4, neither Kmin nor Kavg is a metric.

The same counterexample shows that Fmin is not a metric. In this case, it is easy
to verify that Fmin(τ1, τ2) = 2, Fmin(τ1, τ3) = 8, and Fmin(τ2, τ3) = 4. So the triangle
inequality fails, because Fmin(τ1, τ3) > Fmin(τ1, τ2) + Fmin(τ2, τ3).

The fact that Fmin (and hence Favg and FHaus) are not metrics shows that they
are not special cases of F (�), since F (�) is a metric. This is in contrast to the situation
with Kendall distances, where Kmin, Kavg, and KHaus are special cases of K(p). (As
we noted earlier, the versions of FHaus and KHaus defined by Critchlow [Cri80] are
indeed metrics, since the domain is fixed in his case.)

4. Metrics, near metrics, and equivalence classes. Motivated by the fact
that most of our distance measures are not metrics (except for the somewhat strange
measure F (�)), we next consider a precise sense in which each is a “near metric.”
Actually, we shall consider two seemingly different notions of being a near metric,
which our distance measures satisfy, and obtain the surprising result that these notions
are actually equivalent.

Our first notion of near metric is based on “relaxing” the triangle inequality (or
more generally, the polygonal inequality) that a metric is supposed to satisfy.

Definition 4.1 (relaxed inequalities). A binary function d satisfies the c-triangle
inequality if d(x, z) ≤ c(d(x, y) + d(y, z)) for all x, y, z in the domain. A binary
function d satisfies the c-polygonal inequality if d(x, z) ≤ c(d(x, x1) + d(x1, x2) +
· · ·+ d(xn−1, z)) for all n > 1 and x, z, x1, . . . , xn−1 in the domain.

The notion of c-triangle inequality, to our knowledge, appears to be rarely studied.
It has been used in a paper on pattern matching [FS98] and in the context of the
traveling salesperson problem [AB95, BC00]. We do not know if the c-polygonal
inequality has ever been studied.

Definition 4.2 (relaxed metrics). A c-relaxedt metric is a distance measure
that satisfies the c-triangle inequality. A c-relaxedp metric is a distance measure that
satisfies the c-polygonal inequality.

Of course, every c-relaxedp metric is a c-relaxedt metric. Theorem 4.7 below says
that there is a c-relaxedt metric that is not a c′-relaxedp metric for any constant c′.
We shall focus here on the stronger notion of being a c-relaxedp metric.

The other notion of near metric that we now discuss is based on bounding the
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distance measure above and below by positive constant multiples of a metric.
Definition 4.3 (metric boundedness). A (c1, c2)-metric-bounded distance mea-

sure is a distance measure d for which there is a metric d′ and positive constants c1
and c2 such that c1d

′(x, y) ≤ d(x, y) ≤ c2d
′(x, y).

Note that without loss of generality, we can take c1 = 1 (by replacing the metric
d′ by the metric c1d

′). In this case, we say that d is c2-metric bounded.
The next theorem gives the unexpected result that our two notions of near metric

are equivalent (and even with the same value of c).
Theorem 4.4 (main result 1). Let d be a distance measure. Then d is a c-

relaxedp metric if and only if d is c-metric-bounded.
Proof. ⇐= Assume that d is a c-relaxedp metric. Define d′ by taking

d′(x, z) = min
�

min
y0,...,y� | y0=x and y�=z

�−1∑
i=0

d(yi, yi+1).(16)

We now show that d′ is a metric.
First, we have d′(x, x) = 0, since d(x, x) = 0. From (16) and the polygonal

inequality with constant c, we have d′(x, z) ≥ (1/c)d(x, z). Hence, d′(x, z) �= 0 if
x �= z. Symmetry of d′ follows immediately from symmetry of d. Finally, d′ satisfies
the triangle inequality, since

d′(x, z) = min
�

min
y0,...,y� | y0=x and y�=z

�−1∑
i=0

d(xi, xi+1)

≤ min
�1

min
y0,...,y�1 | y0=x and y�1=y

�1−1∑
i=0

d(yi, yi+1)

+ min
�2

min
z0,...,z�1 | z0=y and z�2=z

�2−1∑
i=0

d(zi, zi+1)

= d′(x, y) + d′(y, z).

Therefore, d′ is a metric.
We now show that d is c-metric-bounded. By (16), it follows easily that d′(x, z) ≤

d(x, z). By (16) and the polygonal inequality with constant c, we have d(x, z) ≤
cd′(x, z).

=⇒ Assume that d is c-metric-bounded. Then 0 = d′(x, x) ≤ d(x, x) ≤ cd′(x, x) =
0. Therefore, d(x, x) = 0. If x �= y, then d(x, y) ≥ d′(x, y) > 0. We now show that d
satisfies the c-polygonal inequality.

d(x, z) ≤ cd′(x, z)

≤ c(d′(x, x1) + d′(x1, x2) + · · ·+ d′(xn−1, z)) since d′ is a metric

≤ c(d(x, x1) + d(x1, x2) + · · ·+ d(xn−1, z)) since d′(x, y) ≤ d(x, y).

Since also d is symmetric by assumption, it follows that d is a c-relaxedp
metric.

Inspired by Theorem 4.4, we now define what it means for a distance measure
to be “almost” a metric, and a robust notion of “similar” or “equivalent” distance
measures.
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Definition 4.5 (near metric). A distance measure between top k lists is a near
metric if there is a constant c, independent of k, such that the distance measure is a
c-relaxedp metric (or, equivalently, is c-metric-bounded).

2

Definition 4.6 (equivalent distance measures). Two distance measures d and
d′ between top k lists are equivalent if there are positive constants c1 and c2 such that
c1d

′(τ1, τ2) ≤ d(τ1, τ2) ≤ c2d
′(τ1, τ2) for every pair τ1, τ2 of top k lists.3

It is easy to see that this definition of equivalence actually gives us an equivalence
relation (reflexive, symmetric, and transitive). It follows from Theorem 4.4 that a
distance measure is equivalent to a metric if and only if it is a near metric.

Our notion of equivalence is inspired by a classical result of Diaconis and Graham
[DG77], which states that for every two permutations σ1, σ2, we have

K(σ1, σ2) ≤ F (σ1, σ2) ≤ 2K(σ1, σ2).(17)

(Of course, we are dealing with distances between top k lists, whereas Diaconis and
Graham dealt with distances between permutations.)

Having showed that the notions of c-relaxedp metric and c-metric-boundedness
are identical, we compare these to the notions of c-relaxedt metric and the classical
topological notion of being a topological metric, that is, of generating a metrizable
topology.

Theorem 4.7. Every c-relaxedp metric is a c-relaxedt metric, but not conversely.
In fact, there is a c-relaxedt metric that is not a c′-relaxedp metric for any constant
c′.

Proof. It is clear that every c-relaxedp metric is a c-relaxedt metric. We now
show that the converse fails. Define d on the space [0, 1] by taking d(x, y) = (x− y)2.
It is clear that d is a symmetric function with d(x, y) = 0 if and only if x = y. To
show the 2-triangle inequality, let α = d(x, z), β = d(x, y), and γ = d(y, z). Now√
α ≤ √β +

√
γ, since the function d′ with d′(x, y) = |x− y| is a metric. By squaring

both sides, we get α ≤ β + γ + 2
√
βγ. But

√
βγ ≤ (β + γ)/2 by the well-known fact

that the geometric mean is bounded above by the arithmetic mean. We therefore
obtain α ≤ 2(β+γ), that is, d(x, z) ≤ 2(d(x, y) +d(y, z)). So d is a 2-relaxedt metric.

Let n be an arbitrary positive integer, and define xi to be i/n for 1 ≤ i ≤ n− 1.
Then d(0, x1)+d(x1, x2)+ · · ·+d(xn−1, 1) = n(1/n2) = 1/n. Since this converges to 0
as n goes to infinity, and since d(0, 1) = 1, there is no constant c′ for which d satisfies
the polygonal inequality. Therefore, d is a c-relaxedt metric that is not a c′-relaxedp
metric for any constant c′.

Theorem 4.8. Every c-relaxedt metric is a topological metric, but not conversely.
The converse fails even if we restrict attention to distance measures.

Proof. By the topological space induced by a binary function d, we mean the
topological space whose open sets are precisely the union of sets (“ε-balls”) of the form
{y | d(x, y) < ε}. A topological space is metrizable if there is a metric d that induces
the topology. A topological metric is a binary function d such that the topology
induced by d is metrizable.

There is a theorem of Nagata and Smirnov [Dug66, pp. 193–195] that a topological
space is metrizable if and only if it is regular and has a basis that can be decomposed

2It makes sense to say that the constant c is independent of k, since each of our distance measures
is actually a family, parameterized by k. We need to make an assumption that c is independent of
k, since otherwise we are simply considering distance measures over finite domains, where there is
always such a constant c.

3As before, the constants c1 and c2 are assumed to be independent of k.
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into an at most countable collection of neighborhood-finite families. The proof of
the “only if” direction can be modified in an obvious manner to show that every
topological space induced by a relaxedt metric is regular and has a basis that can be
decomposed into an at most countable collection of neighborhood-finite families. It
follows that a topological space is metrizable if and only if it is induced by a c-relaxedt
metric. That is, every c-relaxedt metric is a topological metric.

We now show that the converse fails even if we restrict attention to distance
measures (binary nonnegative functions d that are symmetric and satisfy d(x, y) = 0
if and only if x = y). Define d on the space [1,∞) by taking d(x, y) = |y−x|max{x,y}.
It is not hard to verify that d induces the same topology as the usual metric d′ with
d′(x, y) = |x− y|. The intuition is that (1) the ε-ball {y | d(x, y) < ε} is just a minor
distortion of an ε-ball {y | dm(x, y) < ε}, where dm(x, y) = |x − y|m for some m that
depends on x (in fact, with m = x), and (2) the function dm locally induces the same
topology as the usual metric d′ with d′(x, y) = |x− y|. Condition (2) holds since the
ball {y | |x− y|m < ε} is the same as the ball

{
y | |x− y| < ε1/m

}
. So d is a topological

metric. We now show that d is not a c-relaxedt metric.
Let x = 1, y = n + 1, and z = 2n + 1. We shall show that for each constant c,

there is n such that

d(x, z) > c(d(x, y) + d(y, z)).(18)

This implies that d is not a relaxedt metric. When we substitute for x, y, z in (18),
we obtain

(2n + 1)2n+1 > c((n + 1)n+1 + (n + 1)2n+1).(19)

But it is easy to see that (19) holds for every sufficiently large n.
Thus, we have metric⇒ c-relaxedp metric⇒ c-relaxedt metric⇒ topo-

logical metric, and none of the reverse implications hold.

5. Relationships between measures. We now come to the second main result
of the paper, where we show that all of our distance measures we have discussed are
in the same equivalence class, that is, are bounded by constant multiples of each
other both above and below. The connections are proved via two proof methods. We
use direct counting arguments to relate F ∗ with Fmin, to relate the K(p) measures
with each other, and to relate the F (�) measures with each other. The more subtle
connection between Kmin and Fmin—which provides the link between the measures
based on Kendall’s tau and the measures based on Spearman’s footrule—is proved by
applying Diaconis and Graham’s inequalities (17) for permutations σ1, σ2.

Theorem 5.1 (main result 2). The distance measures Kmin, Kavg, KHaus, K
(p)

(for every choice of p), Fmin, Favg, FHaus, and F
(�) (for every choice of �) are all in

the same equivalence class.
The fact that F (�) is a metric now implies that all our distance measures are near

metrics.
Corollary 5.2. Each of K(p) and Fmin (thus also Kmin,Kavg,KHaus, Favg, FHaus)

is a near metric.
We discuss the proof of this theorem shortly. We refer to the equivalence class

that contains all of these distance measures as the big equivalence class. The big
equivalence class seems to be quite robust. As we have seen, some members of the
big equivalence class are metrics.

In later sections, we shall find it convenient to deal with normalized versions of
our distance measures by dividing each distance measure by its maximum value. The
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normalized version is then a distance measure that lies in the interval [0, 1].4 The
normalized version is a metric if the original version is a metric, and is a near metric
if the original version is a near metric. It is easy to see that if two distance measures
are in the same equivalence class, then so are their normalized versions.

Theorem 5.1 is proven by making use of the following theorem (Theorem 5.3),
along with Propositions 3.3, 3.4, and 3.7. The bounds in Theorem 5.3 are not tight;
while we have improved some of them with more complicated proofs, our goal here
is simply to prove enough to obtain Theorem 5.1. If we really wished to obtain
tight results, we would have to compare every pair of the distance measures we have
introduced, such as K(p) versus F (�) for arbitrary p, �.

Theorem 5.3. Let τ1, τ2 be top k lists.
(1) Kmin(τ1, τ2) ≤ Fmin(τ1, τ2) ≤ 2Kmin(τ1, τ2);
(2) F ∗(τ1, τ2) ≤ Fmin(τ1, τ2) ≤ 2F ∗(τ1, τ2);

(3) K(p)(τ1, τ2) ≤ K(p′)(τ1, τ2) ≤ ( 1+p
′

1+p )K(p)(τ1, τ2) for 0 ≤ p ≤ p′ ≤ 1;

(4) F (�)(τ1, τ2) ≤ F (�′)(τ1, τ2) ≤ ( �
′−k
�−k )F (�)(τ1, τ2) for k < � ≤ �′.

Proof. (1) For the first inequality of part (1), let σ1, σ2 be permutations so that
σ1 � τ1, σ2 � τ2, and Fmin(τ1, τ2) = F (σ1, σ2). Then Fmin(τ1, τ2) = F (σ1, σ2) ≥
K(σ1, σ2) ≥ Kmin(τ1, τ2), using the first inequality in (17) and the fact that Kmin is
the minimum over all extensions σ1 of τ1 and σ2 of τ2.

For the second inequality of part (1), let σ1, σ2 be permutations so that σ1 �
τ1, σ2 � τ2, and Kmin(τ1, τ2) = K(σ1, σ2). Then Kmin(τ1, τ2) = K(σ1, σ2) ≥
(1/2)F (σ1, σ2) ≥ (1/2)Fmin(τ1, τ2) using the second inequality in (17) and the fact
that Fmin is minimum over all extensions σ1 of τ1 and σ2 of τ2.

(2) Let σ1, σ2 be permutations so that σ1 � τ1, σ2 � τ2, and Fmin(τ1, τ2) =
F (σ1, σ2). For s ∈ {1, 2}, let vs be a vector such that vs(i) = τs(i) if i ∈ Dτs and
vs(i) = k + 1 otherwise. Given τ1, τ2, recall that F ∗(τ1, τ2) is exactly the L1 distance
between the corresponding vectors v1, v2. If i ∈ Z = Dτ1 ∩Dτ2 , then |v1(i)− v2(i)| =
|σ1(i) − σ2(i)|. If i ∈ S = Dτ1 \ Dτ2 , then |v1(i) − v2(i)| = |τ1(i) − (k + 1)| =
|σ1(i) − (k + 1)| ≤ |σ1(i) − σ2(i)|, since σ2(i) ≥ k + 1 > τ1(i) = σ1(i). The case of
i ∈ T = Dτ2 \Dτ1 is similar. Thus, for every i, we have |v1(i)−v2(i)| ≤ |σ1(i)−σ2(i)|.
It follows by definition that F ∗(τ1, τ2) ≤ F (σ1, σ2) = Fmin(τ1, τ2). This proves the
first inequality.

We now prove the second inequality. First, we have

Fmin(τ1, τ2) =
∑
i∈Z
|σ1(i)− σ2(i)|+

∑
i∈S
|σ1(i)− σ2(i)|+

∑
i∈T
|σ1(i)− σ2(i)|.(20)

On the other hand, we have

F ∗(τ1, τ2) =
∑
i∈Z
|τ1(i)− τ2(i)|+

∑
i∈S
|τ1(i)− (k + 1)|+

∑
i∈T
|(k + 1)− τ2(i)|.(21)

Furthermore, if z = |Z|, note that

4For metrics on permutations, such as Kendall’s tau and Spearman’s footrule, it is standard
to normalize them to lie in the interval [−1, 1], with −1 corresponding to the situation where the
permutations are the reverse of each other and with 1 corresponding to the situation where the permu-
tations are equal. However, this normalization immediately precludes one from studying metric-like
properties.
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∑
i∈S
|τ1(i)− (k + 1)| ≥

k∑
r=z+1

|r − (k + 1)|

= (k − z) + · · ·+ 1

=
(k − z)(k − z + 1)

2
.(22)

By symmetry, we also have
∑
i∈T |(k + 1)− τ2(i)| ≥ (k − z)(k − z + 1)/2.

For i ∈ Z, we have |σ1(i)− σ2(i)| = |τ1(i)− τ2(i)|, and so∑
i∈Z
|σ1(i)− σ2(i)| =

∑
i∈Z
|τ1(i)− τ2(i)|.(23)

Since σ2(i) ≥ k + 1 and τ1(i) ≤ k if and only if i ∈ S, we have, for i ∈ S, that
|τ1(i) − σ2(i)| = |τ1(i) − (k + 1)| + (σ2(i) − (k + 1)). Furthermore, since σ2 is a
permutation, the list of values σ2(i), i ∈ S, is precisely k + 1, . . . , 2k − z. Summing
over all i ∈ S yields∑

i∈S
|σ1(i)− σ2(i)| =

∑
i∈S
|τ1(i)− σ2(i)|

= 0 + 1 + · · ·+ (k − z − 1) +
∑
i∈S
|τ1(i)− (k + 1)|

=
(k − z − 1)(k − z)

2
+
∑
i∈S
|τ1(i)− (k + 1)|

≤ 2
∑
i∈S
|τ1(i)− (k + 1)| by (22).(24)

Similarly, we also have∑
i∈T
|σ1(i)− σ2(i)| ≤ 2

∑
i∈T
|(k + 1)− τ2(i)|.(25)

Now, using (20)–(25), we have Fmin(τ1, τ2) ≤ 2F ∗(τ1, τ2).
(3) From the formula given in Lemma 3.1, we have

K(p′)(τ1, τ2)−K(p)(τ1, τ2) = (k − z)(p′ − p)(k − z − 1).(26)

The first inequality is immediate from (26), since k ≥ z.
We now prove the second inequality. If K(p)(τ1, τ2) = 0, then τ1 = τ2, so

also K(p′)(τ1, τ2) = 0, and the second inequality holds. Therefore, assume that
K(p)(τ1, τ2) �= 0. Divide both sides of (26) by K(p)(τ1, τ2) to obtain

K(p′)(τ1, τ2)

K(p)(τ1, τ2)
= 1 +

(k − z)(p′ − p)(k − z − 1)

K(p)(τ1, τ2)
.(27)

Since 1+p′

1+p = 1 + p′−p
1+p , the second inequality would follow from (27) if we show

K(p)(τ1, τ2) ≥ (k − z)(k − z − 1)(1 + p).(28)

In the derivation of the formula for K(p)(τ1, τ2) in the proof of Lemma 3.1, we saw
that the contribution from Case 3 is (k − z)2 and the contribution from Case 4
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is p(k − z)(k − z − 1). Hence, K(p)(τ1, τ2) ≥ (k − z)2 + p(k − z)(k − z − 1) ≥
(k − z)(k − z − 1) + p(k − z)(k − z − 1) = (k − z)(k − z − 1)(1 + p), as desired.

(4) From the formula given in Lemma 3.5, we have

F (�′)(τ1, τ2)− F (�)(τ1, τ2) = 2(k − z)(�′ − �).(29)

The first inequality is immediate from (29), since k ≥ z.
We now prove the second inequality. If F (�)(τ1, τ2) = 0, then τ1 = τ2, so

also F (�′)(τ1, τ2) = 0, and the second inequality holds. Therefore, assume that
F (�)(τ1, τ2) �= 0. Divide both sides of (29) by F (�)(τ1, τ2) to obtain

F (�′)(τ1, τ2)

F (�)(τ1, τ2)
= 1 +

2(k − z)(�′ − �)

F (�)(τ1, τ2)
.(30)

Since �′−k
�−k = 1 + �′−�

�−k , the second inequality would follow from (30) if we show

F (�)(τ1, τ2) ≥ 2(k − z)(�− k).(31)

To see (31), observe that |S|+ |T | = 2(k−z) and each element in S and T contributes
at least �− k (which is positive since k < �) to F (�)(τ1, τ2).

6. An algorithmic application. In the context of algorithm design, the notion
of near metrics has the following useful application. Given r ranked lists τ1, . . . , τr
(either full lists or top k lists) of “candidates,” the rank aggregation problem [DKNS01]
with respect to a distance measure d is to compute a list τ (again, either a full list or
another top k list) such that

∑r
j=1 d(τj , τ) is minimized.

This problem arises in the context of IR, where possible results to a search query
may be ordered with respect to several criteria, and it is useful to obtain an ordering
(often a top k list) that is a good aggregation of the rank orders produced. It is argued
in [DKNS01] that Kendall’s tau and its variants are good measures to use, both in the
context of full lists and top k lists. Our experiments at the IBM Almaden Research
Center (see also section 9.1) have confirmed that, in fact, producing an ordering
with small Kendall’s tau distance yields qualitatively excellent results. Unfortunately,
computing an optimal aggregation of several full or top k lists is NP-hard for each of
the Kendall measures. In this context, our notion of an equivalence class of distance
measures comes in handy.

Proposition 6.1. Let C be an equivalence class of distance measures. If there is
at least one distance measure d in C so that the rank aggregation problem with respect
to d has a polynomial-time exact or constant-factor approximation algorithm, then for
every d′ in C, there is a polynomial-time constant-factor approximation algorithm for
the rank aggregation problem with respect to d′.

Proof. Given τ1, . . . , τr, let τ denote an aggregation with respect to d that is
within a factor c ≥ 1 of a best possible aggregation π with respect to d, that is,∑
j d(τj , τ) ≤ c

∑
j d(τj , π). Let c1, c2 denote positive constants such that for all σ, σ′

(top k or full lists, as appropriate) c1d(σ, σ′) ≤ d′(σ, σ′) ≤ c2d(σ, σ′). Also, let π′

denote a best possible aggregation with respect to d′. Then we have∑
j

d′(τj , τ) ≤
∑
j

c2d(τj , τ) ≤ c
∑
j

c2d(τj , π)

≤ cc2
∑
j

d(τj , π
′) ≤ cc2

c1

∑
j

d′(τj , π′).
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Via an application of minimum-cost perfect matching, the rank aggregation prob-
lem can be solved optimally in polynomial time for any of the F (�) metrics. Together
with Theorem 5.1, this implies polynomial-time constant-factor approximation algo-
rithms for the rank aggregation problem with respect to the Kendall measures.

7. Other approaches.

7.1. Spearman’s rho. Spearman’s rho is the L2 distance between two permu-
tations. Formally,

ρ(σ1, σ2) =

(
n∑
i=1

|σ1(i)− σ2(i)|2
)1/2

and it can be shown that ρ(·, ·) is a metric.5 The maximum value of ρ(σ1, σ2) is

(n(n+ 1)(2n+ 1)/3)
1
2 , which occurs when σ1 is the reverse of σ2. Spearman’s rho is a

popular metric between permutations. Analogous to the footrule case, we can define
the notions of ρmin, ρavg, and ρ(�). They are not in the big equivalence class for the
following reason. Consider the case where k = n, that is, where we are considering
full lists, which are permutations of all of the elements in a fixed universe. In this
case, we need only consider ρ, since ρmin, ρavg, and ρ(�) all equal ρ. But the maximum

value of F ∗ is Θ(n2) and that of ρ is Θ(n
3
2 ). Therefore, ρmin, ρavg, and ρ(�) cannot be

in the same equivalence class as F ∗. What if we consider normalized versions of our
distance measures, as discussed after Theorem 5.1? We now show that the normalized
versions of ρmin, ρavg, and ρ(�) are not in the normalized version of the big equivalence
class. If d is a distance measure, we will sometimes denote the normalized version of
d by ḋ.

Proposition 7.1. The distance measures ρmin, ρavg, and ρ(�) do not belong to
the big equivalence class, even if all distance measures are normalized.

Proof. As before, we consider full lists. We will show that Ḟ ∗ and ρ̇ do not bound
each other by constant multiples. We will present a family of pairs of full lists, one for
each n, such that Ḟ ∗(σ1, σ2) = Θ(1/n) and ρ̇(σ1, σ2) = Θ(1/n

3
4 ). For every n, let r =

�√n�. Assume n is large enough so that n ≥ 2r. Define the permutation σ1 so that the
elements in order are 1, . . . , n, and define the permutation σ2 so that the elements in
order are r+1, . . . , 2r, 1, . . . , r, 2r+1, . . . , n. The unnormalized versions of Spearman’s
footrule and Spearman’s rho can be easily calculated to be F ∗(σ1, σ2) = 2r2 = Θ(n)

and ρ(σ1, σ2) = (2r)
3
2 = Θ(n

3
4 ). As we noted, the maximum value of F ∗ is Θ(n2) and

that of ρ is Θ(n
3
2 ). Therefore, Ḟ ∗(σ1, σ2) = Θ(1/n) and ρ̇(σ1, σ2) = Θ(1/n

3
4 ). Thus

Ḟ ∗ and ρ̇ cannot bound each other by constant multiples, so ρ̇min, ρ̇avg, and ρ̇(�) do
not belong to the normalized version of the big equivalence class.

7.2. The intersection metric. A natural approach to defining the distance
between two top k lists τ1 and τ2 is to capture the extent of overlap between Dτ1 and
Dτ2 . We now define a more robust version of this distance measure. For 1 ≤ i ≤ k,
let τ (i) denote the restriction of a top k list to the first i items. Let

δ
(w)
i (τ1, τ2) = |D

τ
(i)
1

∆D
τ
(i)
2

|/(2i).

Finally, let

5Spearman’s rho is usually defined without the exponent of 1
2
, that is, without the square root.

However, if we drop the exponent of 1
2
, then the resulting distance measure is not a metric, and is

not even a near metric.
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δ(w)(τ1, τ2) =
1

k

k∑
i=1

δ
(w)
i (τ1, τ2).

(Here, ∆ represents the symmetric difference. Thus, X∆Y = (X \ Y ) ∪ (Y \X).) It
is straightforward to verify that δ(w) lies between 0 and 1, with the maximal value of
1 occurring when Dτ1 and Dτ2 are disjoint. In fact, δ(w), as defined above, is just one

instantiation of a more general paradigm: any convex combination of the δ
(w)
i ’s with

strictly positive coefficients yields a metric on top k lists.
We now show that the distance measure δ(w) is a metric.
Proposition 7.2. δ(w)(·, ·) is a metric.
Proof. It suffices to show that δ

(w)
i (·, ·) is a metric for 1 ≤ i ≤ k. To show

this, we show that for any three sets A,B,C, we have |A∆C| ≤ |A∆B| + |B∆C|.
For x ∈ A∆C, assume without loss of generality that x ∈ A and x /∈ C. We have
two cases: if x ∈ B, then x ∈ B∆C and if x /∈ B, then x ∈ A∆B. Either way,
each x ∈ A∆C contributes at least one to the right-hand side, thus establishing the
inequality.

Since δ(w) is bounded (by 1), and F ∗ is not bounded, it follows that δ(w) is not
in the big equivalence class. Of course, δ(w) is normalized; we now show that δ(w) is
not in the normalized version of the big equivalence class.

Proposition 7.3. δ(w) does not belong to the equivalence class, even if all dis-
tance measures are normalized.

Proof. Let τ1 be the top k list where the top k elements in order are 1, 2, . . . , k,
and let τ2 be the top k list where the top k elements in order are 2, . . . , k, 1. The nor-
malized footrule can be calculated to be Ḟ ∗(τ1, τ2) = Θ(1/k), whereas δ(w)(τ1, τ2) =

(1/k)
∑k
i=1 1/i = Θ((ln k)/k). Therefore, δ(w) and Ḟ ∗ cannot bound each other by

constant multiples, and so δ(w) does not belong to the normalized version of the big
equivalence class.

7.3. Goodman and Kruskal’s gamma. Goodman and Kruskal [GK54] have
defined a “correlation statistic” for rank orders (and partial orders), which can be
used to define a distance measure for top k lists. Let τ1 and τ2 be top k lists. As
before, let P(τ1, τ2) = PDτ1∪Dτ2

be the set of all unordered pairs of distinct elements
in Dτ1 ∪ Dτ2 . Let C be the set of all pairs {i, j} ∈ P(τ1, τ2) where both τ1 and τ2
implicitly or explicitly place one of i or j above the other (τ1 and τ2 can differ on this
placement). In other words, C consists of all pairs {i, j} ∈ P(τ1, τ2) such that (1)
either i or j is in Dτ1 and (2) either i or j is in Dτ2 . Note that C consists exactly of
all pairs {i, j} that occur in the first three cases in our definition of K(p). Now define
γ(τ1, τ2) to be the fraction of pairs {i, j} ∈ C where τ1 and τ2 disagree on whether i
is ahead of j.

Goodman and Kruskal defined this quantity for rank orders τ1 and τ2 that are
more general than top k lists, namely, “bucket orders,” or total orders with ties.6

However, this quantity is not well defined for all pairs of bucket orders, since the set
C as defined above can be empty in general. In ongoing work, we are exploring the
issue of bucket orders in more detail. Here we simply remark that if τ1 and τ2 are
top k lists, then C is always nonempty, and so we do obtain a meaningful distance
measure on top k lists via this approach.

6As with Kendall’s tau and Spearman’s footrule (see footnote 4), Goodman and Kruskal’s gamma
is traditionally normalized to lie in the interval [−1, 1], although we shall not do so, so that we can
discuss metric properties.
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We now show that γ is not a metric. Let τ1 be the top 4 list where the top 4
items in order are 1,2,3,4; let τ2 be the top 4 list where the top 4 items in order are
1,2,5,6; and let τ3 be the top 4 list where the top 4 items in order are 5,6,7,8. It is
straightforward to verify that γ(τ1, τ3) = 1, γ(τ1, τ2) = 4/13, and γ(τ2, τ3) = 8/13. So
the triangle inequality fails, because γ(τ1, τ3) > γ(τ1, τ2) + γ(τ2, τ3).

We now show that γ belongs to the normalized version of our big equivalence
class and is therefore a near metric. Let τ1 and τ2 be top k lists, and let C be as
earlier. Let c = |C|, and let s be the number of pairs {i, j} ∈ C where τ1 and τ2
disagree on whether i is ahead of j. Thus, γ(τ1, τ2) = s/c. Note that since c ≤ k2,
we have s/c ≥ s/k2 = Kmin(τ1, τ2)/k

2, which equals the normalized Kmin distance
between τ1 and τ2. Finally, note that since c ≥ (k2), we have s/c ≤ s/

(
k
2

) ≤ 4s/k2 (for
k ≥ 2). Therefore, s/c is at most 4 times the normalized Kmin distance between τ1
and τ2 if k ≥ 2. (It is easy to see that γ and the normalized version of Kmin are both
0 or both 1 when k = 1.)

8. The interpolation criterion. In practical situations where one compares
two top k lists, it would be nice if the distance value has some natural real-life inter-
pretation associated with it. There are three possible extreme relationships between
two top k lists: (a) they are identical, (b) they contain the same k elements in the
exact opposite order, or (c) they are disjoint. We feel that it is desirable that the
value in case (b) be about halfway between the values in cases (a) and (c).

Let d denote any one of our distance measures between top k lists τ1 and τ2. Anal-
ogous to the normalization given in footnote 4 of section 5, let us obtain a normalized
version ν that maps the distance values into the interval [−1, 1] so that

(a) ν(τ1, τ2) = 1 if and only if τ1 = τ2;
(b) ν(τ1, τ2) = −1 if and only if Dτ1 and Dτ2 are disjoint, that is, Z = ∅.

Clearly, this can be achieved via a linear map of the form ν(τ1, τ2) = a · d(τ1, τ2) + b.
The question now is, How close to zero is ν(τ1, τ2) when τ1 and τ2 contain the same
k elements in the exact opposite order?

It turns out that the answer is asymptotic (in k) to p/(1+p) for K(p). Therefore,
it is asymptotic to 0 for Kmin = K(0). In fact, for Kmin, it is Θ(1/k). For Fmin, it is
1
2 , and for F (�), with � = k + 1

2 + α, it is Θ( α
k+α ). In fact, for F (k+ 1

2 ), where α = 0,

it is Θ(1/k2). Thus, from this viewpoint, the preferable distance measures are Kmin

and F (k+β) for β = o(k) (which includes F ∗).

9. Experiments.

9.1. Comparing Web search engines. As we mentioned earlier, one of the im-
portant applications of comparing top k lists is to provide an objective way to compare
the output of different search engines. We illustrate the use of our methods by compar-
ing the outputs of seven popular Web search engines: AltaVista (www.altavista.com),
Lycos (www.lycos.com), AllTheWeb (www.alltheweb.com), HotBot (www.hotbot.com),
NorthernLight (www.northernlight.com), AOL Search (search.aol.com), and MSN
Search (search.msn.com). Comparing the output in this manner will shed light both
on the similarities between the underlying indices and the ranking functions used by
search engines. We selected Kmin as the measure of comparison between the search
engines. This choice is arbitrary, and as we argued earlier, we could just as well have
chosen any other measure from the big equivalence class.

We made use of 750 queries, that were actually made by real users to a metasearch
engine developed at the IBM Almaden Research Center [DKNS01]. For each of these
queries, and for each of the seven Web search engines we are considering, we obtained
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Table 1
Kmin distances between search engines for k = 50.

AltaVista Lycos AllTheWeb HotBot NorthernLight AOL Search MSN Search

AltaVista 0.000 0.877 0.879 0.938 0.934 0.864 0.864
Lycos 0.877 0.000 0.309 0.888 0.863 0.796 0.790

AllTheWeb 0.879 0.309 0.000 0.873 0.866 0.782 0.783
HotBot 0.938 0.888 0.873 0.000 0.921 0.516 0.569

NorthernLight 0.934 0.863 0.866 0.921 0.000 0.882 0.882
AOL Search 0.864 0.796 0.782 0.516 0.882 0.000 0.279
MSN Search 0.864 0.790 0.783 0.569 0.882 0.279 0.000

the top 50 list.7 We then computed the normalized Kmin distance between every pair
of search engine outputs. Finally, we averaged the distances over the 750 queries.
The results are tabulated in Table 1. The values are normalized to lie between 0 and
1, with smaller values representing closer matches. Note, of course, that the table is
symmetric about the main diagonal.

Several interesting conclusions can be derived from this table. Some of the conclu-
sions are substantiated by the alliances between various search engines. (For a detailed
account of the alliances, see www.searchenginewatch.com/reports/alliances.html.)

(1) AOL Search and MSN Search yield very similar results! The reason for this
(surprising) behavior is twofold: both AOL Search and MSN Search index similar
sets of pages and probably use fairly similar ranking functions. These conclusions are
substantiated by the fact that AOL Search uses search data from OpenDirectory and
Inktomi, and MSN Search uses LookSmart and Inktomi. HotBot uses DirectHit and
Inktomi and can be seen to be moderately similar to AOL Search and MSN Search.

(2) Lycos and AllTheWeb yield similar results. Again, the reason for this is
because Lycos gets its main results from DirectHit and AllTheWeb.

(3) AltaVista and NorthernLight, since they use their own crawling, indexing, and
ranking algorithms, are far away from every other search engine. This is plausible
for two reasons: either they crawl and index very different portions of the Web or
their ranking functions are completely unrelated to the ranking functions of the other
search engines.

(4) The fact that Kmin is a near metric allows us to draw additional interesting
inferences from the tables (together with observations (1) and (2) above). For exam-
ple, working through the alliances and partnerships mentioned above, and exploiting
the transitivity of “closeness” for a near metric, we obtain the following inference.
The data services LookSmart and OpenDirectory are closer to each other than they
are to DirectHit. Given that DirectHit uses results from its own database and from
OpenDirectory, this suggests that the in-house databases in DirectHit and OpenDi-
rectory are quite different. A similar conclusion is again supported by the fact that
Lycos and HotBot are far apart, and their main results are powered by OpenDirectory
and DirectHit, respectively.

9.2. Evaluating a metasearch engine. Recall that a metasearch engine com-
bines the ranking of different search engines to produce an aggregated ranking. There
are several metasearch engines available on the Web (for a list of popular ones, see the
site searchenginewatch.com). Metasearch engines are quite popular for their coverage,
resistance to spam, and ability to mitigate the quirks of crawl. As we mentioned ear-
lier, our methods can be used to evaluate the behavior of a metasearch engine. Such

7For some queries, we had to work with a slightly smaller value of k than 50, since a search
engine returned some duplicates.
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Table 2
Kmin distance of our metasearch engine to its sources for k = 50.

AltaVista Lycos AllTheWeb HotBot NorthernLight AOL Search MSN Search

0.730 0.587 0.565 0.582 0.823 0.332 0.357

an analysis will provide evidence to whether the metasearch is highly biased towards
any particular search engine or is reasonably “close” to all the search engines.

For our purposes, we use a metasearch engine that we developed. Our metasearch
engine uses a Markov chain approach to aggregate various rankings. The underlying
theory behind this method can be found in [DKNS01]. We used a version of our
metasearch engine that combines the outputs of the seven search engines described
above. We measured the average Kmin distance of our metasearch engine’s output to
the output of each of the search engines for the same set of 750 queries. The results
are tabulated in Table 2. From this table and Table 1, we note the following. There
is a strong bias towards the AOL Search/MSN Search cluster, somewhat less bias
towards Lycos, AllTheWeb, and HotBot, and very little bias towards AltaVista and
NorthernLight. This kind of information is extremely valuable for metasearch design
(and is beyond the scope of this paper). For example, the numbers show that the
output of our metasearch engine is a reasonable aggregation of its sources—it does
not simply copy its components, nor does it exclude any component entirely. Finally,
the degree to which our metasearch engine aligns itself with a search engine depends
on the various reinforcements among the outputs of the search engines.

9.3. Correlations among the distance measures. The following experiment
is aimed at studying the “correlations” between the distance measures. We seek to
understand how much information the distance measures reveal about each other.
One of the goals of this experiment is to find empirical support for the following belief
motivated by our work in this paper: the distance measures within an equivalence
class all behave similarly, whereas different equivalence classes aim to capture different
aspects of the distance between two lists.

Let I denote the top k list where the top k elements in order are 1, 2, . . . , k.
For a distance measure d(·, ·) and a top k list τ with elements from the universe

{1, 2, . . . , 2k}, let d̂(τ) = d(τ, I). If τ is a randomly chosen top k list, then d̂(τ) is a
random variable.

Let d1 and d2 denote two distance measures. Consider the experiment where
a random top k list τ is picked. Informally, the main question we ask here is the
following: if we know d̂1(τ) (namely, the distance, according to d1, of τ to the list I),

to what extent can we predict the value of d̂2(τ)? To address this question, we use
two basic notions from information theory.

Recall that the entropy of a random variable X is

H(X) = −
∑
x

Pr[X = x] log Pr[X = x].

If we truncate the precision to two digits and use logarithms to the base 10 in the
entropy definition, then for each d, the quantity H(d̂(τ)) is a real number between 0
and 2. In words, when τ is picked at random, then there is up to “2 digits worth of
uncertainty in the value of d̂(τ).”
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Table 3
Conditional entropy values for pairs of distance measures. The entry (d1, d2) of the table may

be interpreted as the average uncertainty in d̂2(τ), assuming we know d̂1(τ).

δ δ(w) ρ(k+1) γ F ∗ Fmin Kmin Kavg K(1)

δ 0.000 1.409 1.469 1.415 1.203 1.029 1.235 1.131 0.991

δ(w) 0.580 0.000 1.193 1.282 0.863 0.945 1.087 1.091 1.043

ρ(k+1) 0.530 1.083 0.000 1.057 0.756 0.834 0.670 0.773 0.760
γ 0.503 1.197 1.082 0.000 1.039 1.025 0.533 0.525 0.507
F ∗ 0.497 0.985 0.989 1.246 0.000 0.434 0.848 0.845 0.819
Fmin 0.388 1.132 1.131 1.297 0.499 0.000 0.885 0.748 0.650
Kmin 0.490 1.170 0.863 0.700 0.808 0.780 0.000 0.454 0.500
Kavg 0.421 1.210 1.002 0.729 0.841 0.680 0.490 0.000 0.354

K(1) 0.361 1.240 1.068 0.789 0.894 0.660 0.615 0.433 0.000

The conditional entropy of a random variable X with respect to another random
variable Y is

H(X | Y ) =
∑
y

Pr[Y = y]H(X | Y = y).

Informally, the conditional entropy measures the uncertainty in X, assuming that we
know the value of Y . In our case, we ask the question: For a random τ , if we know
the value of d̂1(τ), how much uncertainty is left in the value of d̂2(τ)?8

For all pairs of our distance measures d1 and d2, we measure H(d̂2(τ) | d̂1(τ)), and
present the results in Table 3. We consider a universe of 20 elements and let k = 10.
(These choices enable us to exhaustively enumerate all possible top k lists and perform

our experiments on them.) The entry (d1, d2) in this table denotes H(d̂2(τ) | d̂1(τ)).

Therefore, the closer the value is to 2, the less information d̂1 reveals about d̂2. The
value of 1 is an interesting case, since this roughly corresponds to saying that on the
average, given d̂1(τ), one can predict the leading digit of d̂2(τ).

Some conclusions that can be drawn from the table are the following:
(1) Every distance measure reveals a lot of information about symmetric difference

δ. A reason for this is that δ uses only 10 distinct values between 0 and 1, and is not
sharp enough to yield finer information. This suggests that the other measures are
preferable to symmetric difference.

(2) The distance measure ρ(k+1) reveals much information about the other mea-
sures, as is evident from the row for ρ(k+1); on the other hand, as can be seen from the
column for ρ(k+1), the other measures do not reveal much information about ρ(k+1).
The weighted symmetric difference metric δ(w) seems fairly unrelated to all the others.

(3) The measures in the big equivalence class all appear to have a stronger cor-
relation to themselves than to the ones not in the class. In fact, each of the footrule
measures Fmin, F

∗ is strongly correlated with the other footrule measures, as is evi-
dent from the entries corresponding to their submatrix. Similarly, the Kendall mea-
sures Kmin,Kavg,K

(1) are all strongly correlated. This suggests that the footrule and

8We chose conditional entropy instead of statistical notions like correlation for the following
reason. Correlation (covariance divided by the product of standard deviations) measures linear
relationships between random variables. For example, if X = αY + β for some constants α and β,
then the correlation between X and Y is zero. On the other hand, consider X = αY 2+βY +γ; even
though given the value of Y , there is absolutely no uncertainty in the value of X, their correlation
is not zero. Conditional entropy, however, can measure arbitrary functional relationships between
random variables. If X = f(Y ) for any fixed function f , then H(X | Y ) = 0.
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Kendall measures form two “mini”-equivalence classes that sit inside the big equiva-
lence class.

(4) The distance measure γ reveals much information about the Kendall measures,
and vice versa. This is to be expected, since γ is very similar to Kmin, except for the
normalization factor.

10. Conclusions. We have introduced various distance measures between top
k lists and have shown that these distance measures are equivalent in a very natural
sense. We have also introduced a robust notion of “near metric,” which we think
is interesting in its own right. We have shown that each of our distance measures
that is not a metric is a near metric. Our results have implications for IR (since
we can quantify the differences between search engines, by measuring the difference
between their outputs). Our results also have implications for algorithm design (since
we can use our machinery to obtain polynomial-time constant-factor approximation
algorithms for the rank aggregation problem).

Acknowledgments. We thank Moni Naor and Gagan Aggarwal for helpful sug-
gestions.
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CORRECTION TO “COMPARING TOP k LISTS”

SIAM J. DISCRETE MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 17, No. 2, pp. vii–vii

The beginning of section 3 of “Comparing Top k Lists,” SIAM Journal on Dis-
crete Mathematics, 17 (2003), pp. 134–160, by Ronald Fagin, Ravi Kumar, and D.
Sivakumar, should read as follows:
We now discuss modifications of these metrics for the case when we have only the top
k members of the ordering. Formally, a top k list τ is a bijection from a domain Dτ

(intuitively, the members of the top k list) to [k].

vii
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Abstract. An acyclic homomorphism of a digraph D into a digraph F is a mapping φ : V (D) →
V (F ) such that for every arc uv ∈ E(D), either φ(u) = φ(v) or φ(u)φ(v) is an arc of F , and for
every vertex v ∈ V (F ), the subgraph of D induced on φ−1(v) is acyclic. For each fixed digraph
F we consider the following decision problem: Does a given input digraph D admit an acyclic
homomorphism to F? We prove that this problem is NP-complete unless F is acyclic, in which case
it is polynomial time solvable. From this we conclude that it is NP-complete to decide if the circular
chromatic number of a given digraph is at most q, for any rational number q > 1. We discuss the
complexity of the problems restricted to planar graphs. We also refine the proof to deduce that
certain F -coloring problems are NP-complete.
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1. Introduction. Let H be a fixed graph. An H-coloring of a graph G is a
graph homomorphism G→ H, i.e., a mapping φ : V (G)→ V (H) such that φ(u)φ(v)
is an edge of H whenever uv is an edge of G. This notion generalizes k-coloring since a
Kk-coloring of G is precisely a standard k-coloring of G. For a fixed integer k ≥ 3, to
decide the existence of a k-coloring for a given graph G is one of the basic NP-complete
problems. This result has been generalized to H-colorings by Hell and Nešetřil [10],
who proved that, for a fixed graph H, to decide the existence of an H-coloring for a
given graph G is NP-complete if H is not bipartite (and is polynomially solvable if H
is bipartite).

Let C(k, d) be the graph with vertex set {0, . . . , k−1} in which distinct vertices i, j
are adjacent if and only if d ≤ |i−j| ≤ k−d. The circular chromatic number χc(G) of
a graph G is the minimum of all rational numbers k/d (where k and d ≤ k are positive
integers) such that there exists a homomorphism G → C(k, d) (the minimum must
exist [5]). Thus χc(G) ≤ k

d if and only if there exists a homomorphism G→ C(k, d),
and the result of [10] implies that for every given rational number q > 2, it is also NP-
complete to decide if a given graph G has χc(G) ≤ q. (See also [5, 8, 9]; in particular,
it is known to be hard to decide if a graph G with χ(G) = n has χc(G) ≤ n − 1

k for
any integers k ≥ 2, n ≥ 3 [9].)

The theory of circular colorings of graphs has become an important branch of
chromatic graph theory with many exciting results and new techniques. We refer to
the survey article by Zhu [15]. Recently, one of the authors [14] has extended the
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notion of circular colorings to graphs with weighted edges, which can be specialized
to also yield a notion of the circular chromatic number χc(D) of a digraph [4].

Let D be a digraph. (All digraphs will be assumed to have no loops.) A vertex
set A ⊆ V (D) is acyclic if the induced subgraph D[A] is acyclic. A partition of V (D)
into k acyclic sets is called a k-coloring of D. The minimum integer k for which there
exists a k-coloring of D is called the chromatic number χ(D) of the digraph D. (Note
that χ(D) ≤ |V (D)| since D has no loops.) Bokal et al. [4] proved that (in contrast
with the undirected case) it is NP-complete to decide whether an input digraph D
has χ(D) ≤ 2.

Let F be a fixed digraph. An F -coloring of a digraph D is a digraph homo-
morphism D → F , i.e., a mapping φ : V (D) → V (F ) such that φ(u)φ(v) is an arc
of F whenever uv is an arc of D. The F -coloring problem asks whether or not an
input digraph D admits an F -coloring [1, 2, 3, 12, 13]. In contrast to the case of
graphs, no complexity classification of F -coloring problems is known or conjectured.
In fact, it is not even known if each F -coloring problem is polynomial time solvable
or NP-complete, and if such a dichotomy result were true, then a much more gen-
eral dichotomy for all constraint satisfaction problems would also hold [6]. There
is, however, a conjecture [2] proposing a classification of the complexity of F -coloring
problems when each vertex of F has a positive indegree as well as a positive outdegree.
Our last result, Theorem 3.1, verifies a special case of this conjecture.

A graph G defines a natural digraph D(G) with the same vertices as G, in which
uv is an arc if and only if u and v are adjacent in G. Note that D(G) is a symmetric
digraph, i.e., the reversal of each arc is an arc. It is easy to see that a mapping
f : V (G) → V (H) is a homomorphism of the graph G to the graph H if and only
if it is a homomorphism of the digraph D(G) to the digraph D(H). (We say that
the definition of digraph homomorphisms is consistent with the definition of graph
homomorphisms.)

We introduce a different kind of digraph homomorphism and obtain a complete
classification of the corresponding F -coloring problems.

An acyclic homomorphism of a digraph D into a digraph F is a mapping φ : V (D)
→ V (F ) such that

(i) for every arc uv ∈ E(D), either φ(u) = φ(v) or φ(u)φ(v) is an arc of F , and
(ii) for every vertex v ∈ V (F ), the subgraph of D induced on φ−1(v) is acyclic.

It is easy to check that the composition of acyclic homomorphisms is again an
acyclic homomorphism. It is also easy to see that this definition is also consistent
with the definition of graph homomorphisms, i.e., that a mapping f is a graph homo-
morphism of G to H if and only if it is an acyclic digraph homomorphism of D(G) to
D(H).

An acyclic homomorphism of D to F will also be called an acyclic F -coloring of
D. For a fixed digraph F , the acyclic F -coloring problem asks whether or not an
input digraph D admits an acyclic F -coloring.

We now define a digraph analogue of C(k, d): The digraph �C(k, d) has the vertex

set V (�C(k, d)) = {0, . . . , k−1}, and from each vertex i ∈ V (�C(k, d)) there are arcs to

i+d, i+d+1, . . . , i+k−1, with arithmetic modulo k. Notice that �C(n, n−1) 
 �Cn
is the directed n-cycle.

One can again define the circular chromatic number χc(D) of the digraph D [4]
as the minimum of all rational numbers k/d (where k and d ≤ k are positive integers)

such that there exists an acyclic homomorphism D → �C(k, d). If k and d are positive

integers with k ≥ d, then χc(�C(k, d)) = k
d .
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It is not difficult to see [4] that

χ(D)− 1 < χc(D) ≤ χ(D).

It follows from [4] that it is NP-complete to decide if χc(D) ≤ 2. This suggests
that deciding if χc(D) ≤ q should be NP-complete for every q ≥ 2, but it gives no
insight on what may hold for q < 2.

In this paper we verify that the acyclic F -coloring problem is NP-complete, unless
F is acyclic, in which case it is polynomial time solvable. This implies, in particular,
that to decide if χc(D) ≤ q is also NP-complete for every fixed rational number
q > 1. Refining this proof, we also conclude that certain F -coloring problems are
NP-complete, verifying special cases of two conjectures from [1, 2].

2. Acyclic homomorphisms and colorings. We begin by disposing of the
easy positive direction.

Proposition 2.1. Suppose F is an acyclic digraph. Then a digraph D admits
an acyclic F -coloring if and only if D is itself acyclic.

Proof. If D is acyclic, any constant mapping (all vertices of D map to one vertex
of F ) is an acyclic homomorphism. Conversely, if D contains a directed cycle C,
then any acyclic homomorphism of D to a digraph G takes C to a directed cycle in
G.

For the negative results, we observe that all acyclic F -coloring problems are in
the class NP, with the mapping φ itself being a concise certificate.

Recall that �C2 = �C(2, 1) denotes the directed two-cycle. Note that D admits an

acyclic homomorphism to �C2 if and only if χ(D) ≤ 2. Therefore our first negative
result follows from [4].

Proposition 2.2. The acyclic �C2-coloring problem is NP-complete.

Proof. We shall present a brief proof, slightly adapting the proof in [4], because
we shall need to refer to the details of it in the next section. We shall give a poly-
nomial time reduction from the NP-complete problem of 2-colorability of 3-uniform
hypergraphs (also known as the not-all-equal 3-satisfiability problem without negated
variables). For such a hypergraph X we construct a digraph D consisting of one ver-
tex x for each vertex x of X and three vertices ae, be, ce for each hyperedge e = abc
of X. The arcs of D are xxe and xex for each vertex x of X and each hyperedge
e containing x, and aebe, bece, ceae for each hyperedge e of X. We claim that X is
2-colorable if and only if D admits an acyclic �C2-coloring, i.e., can be colored with two
colors so that each color class is acyclic. Given a 2-coloring of X, we can apply the
same colors to the vertices x of D and the opposite color to all vertices xe for edges
e containing x. There will be no monochromatic directed cycle. Moreover, whenever
D is colored with two colors without a monochromatic directed cycle, the coloring of
the vertices x yields a 2-coloring of X.

Recall that D(G) is the symmetric digraph associated with the graph G. On the
other hand, each digraph D is also associated with a natural graph H(D) which has
the same vertices as D, and in which two vertices u, v are adjacent if and only if both
uv and vu are arcs of D. Note that the symmetric digraph D(H(F )) is obtained
from F by removing all arcs uv for which the reversal vu is not an arc. We call this
digraph the symmetric part of F . It is again easy to see that if a mapping is a digraph
homomorphism of D to F , then it is also a graph homomorphism of the symmetric
part of D to the symmetric part of G.
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Our second negative result follows from [10].

Proposition 2.3. If the symmetric part of F contains an odd cycle, then the
acyclic F -coloring problem is NP-complete.

Proof. If the symmetric part of F contains an odd cycle, then H(F ) is nonbipar-
tite, and hence it is NP-complete to decide if an input graph G admits a homomor-
phism to H(F ) [10]. On the other hand, we claim that G admits a homomorphism to
H(F ) if and only if D(G) admits an acyclic homomorphism to F . Any homomorphism
of G to H(F ) is clearly also an acyclic homomorphism of D(G) to F . Thus consider
an acyclic homomorphism φ of D(G) to F . Since D(G) is a symmetric digraph, φ is in
fact an acyclic homomorphism of D(G) to the symmetric part of F , i.e., to D(H(F )).
Therefore φ is a homomorphism of G to H(F ).

We are now ready for our first main result.

Theorem 2.4. If F contains a directed cycle, then the acyclic F -coloring problem
is NP-complete.

Proof. Let k be the minimum length of a directed cycle in F . We first assume that
k ≥ 3, i.e., that the symmetric part of F is empty. Let F ′ be the digraph obtained
from F by adding an arc uv whenever there is in F a directed path from u to v of
length at most k−1. Let D′ be the digraph obtained from D by replacing each arc xy
by a directed path of length k − 1 from x to y. We claim that there exists an acyclic
homomorphism of D to F ′ if and only if there exists an acyclic homomorphism of D′

to F .

Suppose first that φ is an acyclic homomorphism of D′ to F . Each arc xy of D
corresponds to a path of length k− 1 from x to y in D′, which is taken by the acyclic
homomorphism φ to a path of length at most k − 1 in F . (This follows from the
definition of an acyclic homomorphism and the fact that there are no directed cycles
of length less than k in F .) Thus φ(x) = φ(y) or φ(x)φ(y) is an arc of F ′. Moreover,
for every v ∈ V (F ′), the set φ−1(v) ∩ V (D) is a subset of φ−1(v) in D′ and hence
is acyclic in D′. Observe that if φ(x) = φ(y) = v, then φ maps to v all vertices of
D′ on the (k − 1)-path from x to y. Therefore, the set φ−1(v) ∩ V (D) induces an
acyclic subgraph of D. Thus φ restricted to V (D) is an acyclic homomorphism of D
to F ′. Conversely, suppose that φ is an acyclic homomorphism of D to F ′. Then it is
easy to see that the mapping φ can be extended to all vertices v ∈ V (D′) \ V (D) (on
the added directed paths of length k − 1) so that the resulting mapping is an acyclic
homomorphism of D′ to F .

This argument is a polynomial reduction from the problem of acyclic F ′-coloring
to the problem of acyclic F -coloring. Since F contains a directed cycle of length k, the
digraph F ′ contains k ≥ 3 vertices in a complete directed digraph, i.e., the symmetric
part of F ′ contains a triangle. By Proposition 2.3 the acyclic F ′-coloring problem,
and hence also the acyclic F -coloring problem, is NP-complete.

It remains to deal with the case when the symmetric part of F is bipartite but not
empty. Suppose H(F ) has " ≥ 1 edges. For any digraph D we construct, in polynomial
time, a digraph D(�) consisting of disjoint copies D(i, j) of D for all pairs i < j, with
i, j = 0, 1, . . . , ", and of special vertices a0, a1, . . . , a�, b0, b1, . . . , b�. Moreover, each
vertex of D(i, j) has an arc from ai and bi, and to aj and bj , and there are also arcs
aibi, biai for all i = 0, 1, . . . , " amongst the special vertices (see Figure 2.1).

We claim that D has an acyclic �C2-coloring if and only if D(�) has an acyclic
F -coloring. Indeed, if D has an acyclic �C2-coloring, then all D(i, j) can be acyclically
�C2-colored by the same �C2, and this coloring extends to the special vertices as well
by coloring all ai with one color and all bi with the other. Conversely, if D(�) has an
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aj al

Fig. 2.1. The digraph D(�).

acyclic F -coloring, then two pairs ai, bi and aj , bj must map to the same two vertices
u, v belonging to an edge of H(F ) by the pigeon-hole principle. This means that
each vertex c of D(i, j) must also map to u or v, otherwise u, v, and φ(c) would form
a symmetric triangle, contrary to the assumption that H(F ) is bipartite. Thus we

obtain a �C2-coloring of D. This amounts to a polynomial reduction of the problem
of acyclic �C2-coloring (which is NP-complete by Proposition 2.2) to the problem of
acyclic F -coloring, and hence the latter problem is also NP-complete.

Corollary 2.5. For every fixed rational number q > 1, it is NP-complete to
decide if χc(D) ≤ q.

Proof. We have χc(D) ≤ k
d if and only if D admits an acyclic homomorphism to

�C(k, d), and as long as d < k, �C(k, d) is not acyclic.

For graphs, it has been shown in [9] that it is NP-hard to decide whether a graph
G of chromatic number n satisfies χc(G) ≤ n− 1

k for any positive integers k ≥ 2 and
n ≥ 3. One can ask similar questions for circular chromatic numbers of digraphs. We
only remark that it is NP-hard to decide if χc(D

′) ≤ 3
2 even knowing that χ(D′) = 2:

Consider the digraph F = �C3 = �C(3, 2), and apply the proof of Theorem 2.4, with
k = 3. The digraph F ′ will be the symmetric triangle, and acyclic F ′-colorability is
NP-complete. From that proof we know that an input digraph D has an acyclic F ′-
coloring if and only if the digraph D′ (which has chromatic number 2) has an acyclic
F -coloring, i.e., has χc(D

′) ≤ 3
2 .

It would also be interesting to know how the complexity of the acyclic F -coloring
problem changes when the inputs are restricted. Typical restrictions may involve
maximum degree, or planarity, etc. (For undirected graphs we direct the reader to
[11] for a survey.) We first make the following observation.

Corollary 2.6. The acyclic �C3-coloring problem is NP-complete even when
restricted to planar digraphs.

Proof. Let F = �C3. Since the shortest directed cycle in F has length three, we
can apply the above reduction from the problem of acyclic F ′-coloring to the problem
of acyclic F -coloring. In this case F ′ is the symmetric triangle; since 3-coloring is
NP-complete for planar graphs [7], the corollary follows.

We also have a similar result for acyclic �C2-coloring.

Theorem 2.7. The acyclic �C2-coloring problem is NP-complete even when re-
stricted to planar digraphs.

Proof. We reduce the problem of planar 3-satisfiability. An instance of 3-satisfiabil-
ity is planar if its associated graph is planar. (The associated graph has a vertex C for
each clause and a vertex x for each variable; there is an edge joining x and C if variable
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Fig. 2.2. Construction of D around the clause C = ¬x ∨ y ∨ ¬z.

x occurs in clause C, positively or negatively.) It is well known that 3-satisfiability is
NP-complete even when restricted to connected planar instances [7].

Thus suppose we have an instance of planar 3-satisfiability, and consider the
planar embedding of its (connected) associated graph G. We shall transform G to

a digraph D which is �C2-colorable if and only if the instance was satisfiable. The
digraph D will contain all the vertices (C and x) of G in the same position in the
plane as in G. If C was joined to x, y, z (in this clockwise order) in G, we surround it
with a directed six-cycle xCc1yCc2zCc3xC , joined to C by the symmetric set of arcs
Cc1, c1C,Cc2, c2C,Cc3, c3C. The new vertices ci, called dummy vertices, are distinct
for each clause C. Further, we replace each edge xC of G by the symmetric arcs
xxC , xCx if x occurs negatively in C, or the symmetric path of length two xx′

C , x
′
Cx,

x′
CxC , xCx

′
C if x occurs positively in C. It is clear that the digraph constructed

so far is planar. Now consider, for each vertex x corresponding to a variable, the
six-cycles corresponding to the clauses C in which x occurs (positively or negatively),
in their circular order of the planar embedding. For any two consecutive six-cycles
there exist two dummy vertices c, c′ which can be joined without destroying the planar
embedding; we add the symmetric path of length two cc′′, c′′c, c′′c′, c′c′′. This is our
planar digraph D. This construction around the clause C = ¬x ∨ y ∨ ¬z and with
consecutive neighbors C and C ′ around x is represented in Figure 2.2.

We now claim that D admits an acyclic �C2-coloring if and only if the original
instance was satisfiable. Indeed, given a satisfying truth assignment, color each vertex
corresponding to a variable x by 0 if x is false and by 1 if x is true, and do the same
for all vertices xC . Furthermore, color all dummy vertices by 0, and color all clause
vertices C by 1. It is easy to see that all the auxiliary vertices x′

C and c′′ can be

colored as well so that the result is an acyclic �C2-coloring of D. Conversely, suppose
we have an acyclic �C2-coloring of D. Because of the two-cycles CciC, all dummy
vertices in any one six-cycle must obtain the same color; because of the symmetric
paths of length two between dummy vertices of consecutive six-cycles, all dummy
vertices must obtain the same color, say color 0. (Recall that we have assumed that
G is connected.) It is now easy to see that the coloring defines a satisfying truth
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assignment. (Because of the 6-cycles xCc1yCc2zCc3xC , at least one of the vertices
xC , yC , or zC has color 1.)

3. A refinement for F -colorings. For a digraph F , let F p denote the digraph
obtained by replacing each vertex of F by the transitive tournament T on 1, 2, . . . , p.
(The arcs of T are all pairs ij with i < j.) There is an arc in F p from a vertex in
the copy of T corresponding to u to a vertex in the copy of T corresponding to v if
and only if there is an arc from u to v in F . Then it follows from the definitions
that a digraph D admits an acyclic homomorphism to F if and only if it admits a
homomorphism to F p with p = |V (D)|.

We let similarly Fω be obtained from F by replacing each vertex by the countable
transitive tournament on 1, 2, . . . . Theorem 2.4 shows that if F is not acyclic, then
the Fω-coloring problem (appropriately defined for mappings of finite digraphs to a
finitely described fixed infinite graph) is intractable. We now refine the result to prove
that already the F 2-coloring problem is intractable. More precisely, assume for each
vertex v of F , we have an integer pv ≥ 2. Let F ∗ be a digraph obtained the same
way from F by replacing each v with the transitive tournament on pv vertices and
defining the arcs between these tournaments as above.

Theorem 3.1. If F is not acyclic, then the F ∗-coloring problem is NP-complete.
Proof. If the symmetric part of F contains an odd cycle, then the symmetric

part of F ∗ also contains an odd cycle (and we need only each pv ≥ 1 here), and the
F ∗-coloring problem is NP-complete by exactly the same proof as in Proposition 2.3.
(Just substitute F ∗ for F and omit all the occurrences of the word “acyclic.”)

If the symmetric part of F is empty, then assume as above that the length of the
shortest directed cycle in F is k, where k ≥ 3. Suppose first that k is odd. Let F ′ be
the digraph on the same vertex set as F ∗ and with an arc uv whenever there is in F ∗

a directed path from u to v of length k+1
2 . A proof similar to the proof of Theorem

2.4 shows that there is a polynomial time reduction from the F ′-coloring problem to
the F ∗-coloring problem. (Take D′ to be the digraph obtained from D by replacing
each arc xy by a directed path of length k+1

2 from x to y. We are using the “indicator
construction,” Lemma 1 from [10].) We now note that F ′ contains symmetric pairs
of arcs joining vertices at distance k+1

2 and k−1
2 in the original directed k-cycle in F ,

and hence the symmetric part of F ′ contains an odd cycle.
If k is even, we proceed in exactly the same way using directed paths of length

k
2 + 1. In this case the symmetric part of F ′ also contains a nonbipartite graph when

k ≥ 6. (There are symmetric pairs of arcs joining vertices at distance k
2 − 1, k

2 , and
k
2 + 1.) For k = 4 we extend our attention to the eight vertices of F 2, a subgraph of
F ∗, on which the symmetric part of F ′ is easily seen to have a nonbipartite subgraph.
(Indeed, suppose the original 4-cycle in F is 1, 2, 3, 4, and let a1, b1, a2, b2, a3, b3, a4, b4
be the corresponding vertices of F 2. Then, using directed paths of length 3, F ′

contains the symmetric five-cycle a1b2b4a2b3.)
It remains to prove that
• if F has a nonempty and bipartite symmetric part, then F ∗-coloring is NP-

complete.
We proceed by contradiction, assuming that F has a nonempty bipartite symmet-

ric part and that F ∗-coloring is not NP-complete. We may assume that S∗-coloring
is NP-complete for any proper subgraph S of F which has a nonempty bipartite
symmetric part.

This part of the proof uses the “subindicator construction,” Lemma 2 of [10].
To review it briefly, in the special case that we shall need, we define a digraph to
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be a core if it does not admit a homomorphism to a proper subgraph. If a digraph
F is not a core, then it contains a unique, up to isomorphism, subgraph S which is
a core; this subgraph S is called the core of F . It is clear that a digraph admits an
F -coloring if and only if it admits an S-coloring. (Thus the F -coloring and S-coloring
problems are equivalent.) Let J be a fixed digraph with specified vertices v and w.
The subindicator construction, with respect to J , transforms a given core digraph S,
with a specified vertex u, to the subgraph S− induced by the vertex set V − defined
as follows: Let R be the digraph obtained from the disjoint union of J and S by
identifying vertices u and v. Then a vertex x of S belongs to V − just if there is a
homomorphism f of R to S such that f(y) = y for all vertices y of S, and f(w) = x.
Lemma 2 of [10] gives, for a core S, a polynomial time reduction of the S−-coloring
problem to the S-coloring problem.

It follows from our assumptions that F ∗ is a core, otherwise the core of F ∗ would
be some digraph S∗ of a proper subgraph S of F which has a nonempty bipartite
symmetric part, and hence both the S∗-coloring and the F ∗-coloring problems would
be NP-complete.

We first claim that every vertex of F is incident with an edge of H(F ). Otherwise,
consider the subindicator J consisting of three vertices v, w, and z and two arcs wz, zw.
If F contained a vertex x which is not incident with an edge of H(F ), then all the px
vertices of F ∗ in the transitive tournament replacing x would be missing from (F ∗)−

(the vertex u of F ∗ can be chosen arbitrarily). Thus (F ∗)− would be some S∗ where S
is a proper subgraph of F which has a nonempty bipartite symmetric part, and hence
again both the S∗-coloring and the F ∗-coloring problems would be NP-complete.

Next we claim that F cannot have a vertex a and arcs ax, ay such that xy is an
edge of H(F ). If this were the case, then consider the subindicator J consisting of
two vertices v and w and the arc vw, and let u be the last vertex in the transitive
tournament of F ∗ replacing the vertex a of F . Then the digraph (F ∗)− is missing
all the pa vertices of the tournament replacing a but contains the symmetric pairs of
arcs arising from x and y. Hence (F ∗)− is some S∗ where S is a proper subgraph of
F which has a nonempty bipartite symmetric part, and we obtain a contradiction as
before.

Finally, we claim that F is a symmetric digraph. Otherwise there would be an
arc ab in F such that ba is not an arc of F . Consider the subindicator J consisting
of three vertices v, s, w and three arcs vs, sw,ws, and let u be the first vertex in the
transitive tournament of F ∗ replacing the vertex a of F . We first observe that all the
pb vertices of F ∗ replacing b are missing from (F ∗)−: Indeed, since there are no arcs
from these pb vertices to the pa vertices of F ∗ replacing a, the only way the vertex w
of R can map to one of these pb vertices, say vertex y, is if there are in F some arcs
ux, xy, yx, contradicting the preceding claim. Now we recall that each vertex of F is
incident with an edge of H(F ); thus there are in F some arcs ac, ca. It follows that
(F ∗)− contains the symmetric pairs of arcs arising from the tournaments replacing a
and c. This once again contradicts the minimality of F .

Since F is a bipartite symmetric digraph, the core of F must be �C2, and we
need only to consider F = �C2. In this case F ∗-coloring is NP-complete by the same
argument as given in the proof of Proposition 2.2. One needs only to note that in
any coloring of the digraph D with two colors, each monochromatic set of vertices
is not only acyclic: it is a disjoint union of isolated arcs. This means that F ∗, with
its at least two vertices in a transitive tournament replacing each vertex, has the
property that the hypergraph X admits a 2-coloring if and only if the digraph D has
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an F ∗-coloring. Therefore F ∗-coloring is NP-complete.
This result verifies a special case of Conjecture 5.1 in [1] and of Conjecture 6.1 in

[2]. In particular, Conjecture 6.1 of [2] states that, for connected digraphs F which
have all indegrees and all outdegrees at least one, F -coloring is NP-complete unless
the core of F is �Ck for some integer k (in which case it is known to be polynomial
time solvable).

Note that we do not know what the complexity of F ∗-coloring is when F is
acyclic. Certainly, the problem can be polynomial time solvable: For instance, if
F is a transitive tournament, then F ∗ is also a transitive tournament, and so D is
F ∗-colorable if and only if it is acyclic and has height no greater than |V (F ∗)| (the
height of F ∗). Similarly, the problem can be NP-complete: For instance, there are
acyclic triangle-free digraphs F (even oriented trees F [12]) such that F -coloring is
NP-complete. Then F p-coloring is also NP-complete, since an input digraph D is
F -colorable if and only if Dp is F p-colorable. One only needs to notice that the fact
that F is triangle-free implies that the 2p-vertex tournaments of Dp corresponding to
edges of D must map to the 2p-vertex tournaments of F p corresponding to the edges
of F .
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Abstract. Techniques are presented for computing upper and lower bounds on the number
of errors that can be corrected by list decoders for general block codes and, specifically, for Reed–
Solomon (RS) codes. The list decoder of Guruswami and Sudan implies such a lower bound (referred
to here as the GS bound) for RS codes. It is shown that this lower bound, given by means of the
code’s length, the minimum Hamming distance, and the maximal allowed list size, in fact applies to
all block codes. Ranges of code parameters are identified where the GS bound is tight for worst-case
RS codes, in which case the list decoder of Guruswami and Sudan provably corrects the largest
possible number of errors.

On the other hand, ranges of parameters are provided for which the GS lower bound can be
strictly improved. In some cases the improvement applies to all block codes with a given minimum
Hamming distance, while in others it applies only to RS codes.
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1. Introduction. An (n,M, d) (block) code C over an alphabet F of size q is
an M -subset of Fn with minimum Hamming distance d between any two different
codewords. In cases where F is a finite field and C is a linear subspace of Fn, namely,
k = logq M = dim C, we refer to C as an [n, k, d] code. An (n,M, d) code is called
maximum-distance separable (MDS) [11, Ch. 11] if d = n+1− logq M , thus satisfying
the Singleton bound [3, p. 88] with equality; in particular, k = logq M must be an
integer.

An [n, k, d] (generalized) Reed–Solomon (RS) code over a finite field F = GF(q)
is a linear MDS code that consists of all words (vectors) of the form (f(α1) f(α2) · · ·
f(αn)), where α1, α2, . . . , αn are prescribed distinct elements of F , which are com-
monly referred to as the code locators, and f(x) ranges over all polynomials of degree
less than k = n−d+1 over F .

Denote by dH(v1,v2) the Hamming distance between two words v1,v2 ∈ Fn. A
list-� decoder with a decoding radius τ for a code C ⊆ Fn is a mapping D : Fn −→ 2C

such that (i) |D(v)| ≤ � for every v ∈ Fn, and (ii) c ∈ D(v) if and only if c ∈ C and
dH(c,v) ≤ τ . In other words, given a received word v ∈ Fn, the decoder D returns
all the codewords in C that are at Hamming distance at most τ from v, and the size
of that list is guaranteed to be at most �. The decoding radius τ therefore stands for
the largest number of errors that are corrected by D.

Denote by ∆�(C) the largest decoding radius of any list-� decoder for a code
C ⊆ Fn. The value ∆�(C) is the largest integer value R such that all Hamming
spheres of radius R in Fn contain at most � codewords of C.
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Hereafter, by an admissible quadruple (�, n, d, q), we mean that �, n, d, and q are
positive integers such that 1 ≤ d ≤ n. By an RS-admissible quadruple (�, n, d, q), we
mean an admissible quadruple for which, in addition, n ≤ q and q is a power of a
prime.

Given an admissible quadruple (�, n, d, q), we define

∆�(n, d; q) = min
C

∆�(C) ,(1)

where the minimum is taken over all (n,M, d) block codes over an alphabet of size q.
For an RS-admissible quadruple (�, n, d, q), we also define

∆RS
� (n, d; q) = min

C
∆�(C) ,(2)

where the minimum is taken over all [n, k, d] RS codes over GF(q). Studying these
two quantities is the subject of this paper. Taking the minimum in (1) or (2) results
in the value ∆�(C) of the “worst” code C in the respective family. In particular, we
are interested here in the attainable performance of list-� decoders of RS codes (i.e.,
in the largest number of errors that can be corrected by such decoders), independent
of the particular choice of the code locators. From the practical side, this is justified
by the structure of existing RS decoding algorithms, which are typically not tailored
to specific selection of code locators. When n = q, the minimum in the definition of
∆RS

� (n, d; q) is taken over one set of code locators; in fact, this is also the case when
n = q−1, where one can assume that all the code locators are nonzero (see [11, p. 305,
Problem 7]).

Clearly, the quantities ∆�(n, d; q
m) and ∆RS

� (n, d; qm) are nondecreasing with �
and nonincreasing with m, and for every admissible quadruple (�, n, d, q),

∆�(n, d; q) ≤ ∆RS
� (n, d; q) .

It is well known that

∆1(n, d; q) = ∆RS
1 (n, d; q) = 
(d−1)/2�

(independent of q).

1.1. The Guruswami–Sudan bound. Guruswami and Sudan present in [7] a
list-� decoding algorithm for [n, k, d] RS codes over GF(q) (see also the earlier work
of Sudan [13]). The decoding radius of their decoder depends on the parameters
(�, n, d, q), as summarized in Theorem 1.1 below. We first introduce several notations
that are required not only for the statement of their result, but also in our analysis
throughout this paper.

Given � ≥ 1, partition the real interval [0, 1) into the � subintervals

[0, ρ2), [ρ2, ρ3), . . . , [ρ�, 1) ,(3)

where

ρr = ρr(�) =
r(r−1)
�(�+1)

, r = 1, 2, . . . , �+1 .(4)

Given integers n and d such that 1 ≤ d ≤ n, define the relative minimum distance
δ = d/n. Let r = r(δ) be the unique index such that 1− δ ∈ [ρr, ρr+1). Also define

τ�(n, d) =
1

(�+ 1)r

((
�+1
2

)
d− (�+1−r

2

)
n
)

.(5)
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The mapping δ → τ�(n, nδ) is piecewise-linear and continuous over [0, 1) for every
fixed n. It can be easily verified that τ�(n, d) < d for every value of �, assuming d ≤ n.
One can also verify that, when 1− δ ≥ ρ�,

τ�(n, d) = d/2 .

By its definition, τ�(n, d) is an integer if and only if

(�+1)r divides
(
�+1
2

)
d− (�+1−r

2

)
n .(6)

The following result follows from [7] and is proved in the appendix.
Theorem 1.1. For every RS-admissible quadruple (�, n, d, q), the list-� decoder

in [7] for an [n, k, d] RS code over GF(q) has a decoding radius �τ�(n, d)� − 1; so,

∆RS
� (n, d; q) ≥ �τ�(n, d)� − 1 .(7)

1.2. Main results. In this paper, we first generalize the result of [7] by showing
that �τ�(n, d)�−1, referred to as the GS bound, is a lower bound on the list-� decoding
radius of every (n,M, d) block code, as stated in Theorem 1.2.

Theorem 1.2. Let (�, n, d, q) be an admissible quadruple. Then

∆�(n, d; q) ≥ �τ�(n, d)� − 1 .(8)

Theorem 1.2, which is similar to a result by Johnson [11, Ch. 17, Thm. 2], is proved
in section 2.1 by using combinatorial arguments, while the result in Theorem 1.1 is
based on algebraic analysis. When d/n ≤ 2/(�+1) (= 1− ρ�), (8) becomes

∆�(n, d; q) ≥ 
(d−1)/2� = ∆1(n, d; q) .

In a recent work [9], Justesen and Høholdt compute RS-admissible quadruples
(�, n, d, q) for which there exist (n, qn−d+1, d) MDS and RS codes over F = GF(q)
that attain the GS bound. A key ingredient in their technique is constructing what
we call here a failing list of codewords. By a failing list of size �+1, we mean a set of
�+1 words, {c0, c1, . . . , c�} ⊆ Fn, such that the following two conditions hold:

• dH(cs, ct) ≥ d for every 0 ≤ s < t ≤ �, and
• there is some v ∈ Fn such that dH(cs,v) ≤ �τ�(n, d)� for every 0 ≤ s ≤ �.

One can easily see that a failing list of size �+1 is contained in an (n,M, d) code
C if and only if ∆�(C) attains the GS bound. Several families of MDS codes and RS
codes that contain such failing lists are presented in [9]; their constructions are based
on block designs, and in each of these constructions, the relative minimum distance δ
is such that 1−δ = ρr(�).

In this work, we introduce a combinatorial configuration, akin to block designs,
that defines a structure of failing lists which covers the whole range of rational δ
values (and not just those for which 1 − δ = ρr(�)). Furthermore, we prove that
for triples (�, n, d) that satisfy the divisibility condition (6), our structure completely
characterizes the failing lists of size �+1 in any given (n,M, d) code over any alphabet
F . This, in turn, provides sufficient and necessary conditions on the existence of such
failing lists (see Proposition 2.3 in section 2).

It turns out that our necessary conditions imply that there is a range of parameters
where the GS bound is not tight for any code. For example, Proposition 1.3 below
indicates the nonexistence of failing lists in cases where the alphabet size is small.
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Proposition 1.3. Let (�, n, d, q) be an admissible quadruple, let r be the unique
integer such that 1− d/n ∈ [ρr, ρr+1), and assume that (6) holds. Then ∆�(n, d; q) ≥
τ�(n, d) if either of the following conditions holds:

• 1− d/n = ρr and q < �+1−r, or
• 1− d/n > ρr and q < �+2−r.

Proposition 1.3 is proved in section 2.4, where additional cases are indicated
in which the GS bound is not tight. These cases are found by connecting the
(non)existence of failing lists to the (non)existence of constant-weight codes and of
block designs. (In contrast, Justesen and Høholdt identify triples (�, n, d) for which
the GS bound is tight for MDS codes over sufficiently large fields; see (the proof of)
Theorem 4 in [9].)

The remaining results in our paper deal with RS codes. Here, we use the identity
k−1 = n−d, and we slightly modify the common definition of rate of an [n, k, d] MDS
code and use it for the value (k−1)/n = 1 − δ; as it turns out, this value fits more
conveniently into our analysis. The intervals [ρr, ρr+1) are thus referred to as rate
intervals.

First, we obtain sufficient and necessary conditions for the existence of failing lists
in RS codes (see Lemma 3.1 in section 3). Using our sufficient conditions, we identify
families of RS codes (other than those obtained in [9]) that attain the GS bound. For
triples (�, n, k) that correspond to the first and last subintervals in (3) (specifically,
(k−1)/n ≤ 2/(�(�+1)) or (k−1)/n ≥ 1− (2/(�+1))), we find a variety of finite fields
GF(q) over which there are [n, k, d] RS codes that attain the GS bound. These results
are summarized in Propositions 1.4 and 1.5 below and are proved later on (with all
subsequent results that are stated in this section) in section 4.

Proposition 1.4 covers the high-rate range (i.e., small values of d/n) and identifies
quadruples (�, n, d, q) for which a list-� decoder for the worst [n, k, d] RS code, and
hence for the worst (n,M, d) code, does no better than a list-1 (“classical”) decoder.

Proposition 1.4. Let the RS-admissible quadruple (�, n, d, q), other than (3, 2, 1,
2), satisfy

d/n ≤ 2

�+1

(
= 1− ρ�

)
.

Assume in addition that when d > 1, the integer �(d−1)/2� divides either q−1 or q.
Then

∆RS
� (n, d; q) = �τ�(n, d)� − 1 = 
(d−1)/2� = ∆RS

1 (n, d; q) .

We show in section 4.3 that there are infinitely many RS-admissible quadruples
that satisfy the conditions of Proposition 1.4.

Proposition 1.5 covers the low-rate range (the leftmost subinterval in (3), namely,
high values of d/n) and makes use of the following definition. A subsetX of an Abelian
group is called a weak Sidon set if every four distinct elements θ1, θ2, θ3, θ4 ∈ X satisfy
θ1 + θ2 �= θ3 + θ4 (see [1], [4], [6], [12]). The notation Zm will stand for the ring of
integers modulo m.

Proposition 1.5. For a prime p, let the RS-admissible quadruple (�, n, d, q=ph)
satisfy

(
1− ρ2 =

)
1− 2

�(�+1)
≤ d/n < 1 .
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Assume in addition that either
(a) n−d | q−1 and the additive group of Z(q−1)/(n−d) contains a weak Sidon set

of size �+1, or
(b) n−d = pb for some integer b and Z

h−b
p contains a weak Sidon set of size �+1.

Then

∆RS
� (n, d; q) = �τ�(n, d)� − 1 = ��n/(�+1)− �(n−d)/2� − 1 .

Based on known properties of Sidon sets, we show in section 4.5 that each of
the two cases, (a) and (b), in Proposition 1.5 covers infinitely many RS-admissible
quadruples.

Observe that we have excluded the case d = n (the repetition code) from Propo-
sition 1.5. Here we have

∆RS
� (n, n; q) = �τ�(n, n)� − 1 = �(�n/(�+1))� − 1

only when � < q; there are �+1 codewords at Hamming distance ≤ ��n/(�+1)� from a
word v in which each of some �+1 elements of GF(q) occurs at least 
n/(�+1)� times.
When � ≥ q we obviously have ∆RS

� (n, n; q) = n.
Consider now the intermediate subintervals in (3), i.e., the midrate range

2

�+1
<

d

n
< 1− 2

�(�+1)
;

this range is nonempty for � ≥ 3. The treatment of this range seems to be more
elaborate than the extreme (rightmost and leftmost) subintervals. Hence, our results
for the midrate range are quite partial; yet, they demonstrate that the techniques
that are developed in this paper are applicable not only to the extreme subintervals.
These results are presented in section 4.4.

The propositions presented in this introduction section, together with those pre-
sented in sections 4.1 and 4.4, imply, for example, that

lim inf
q→∞ ∆3(n, k; q) = �τ3(n, k)� − 1

for all 1 ≤ k ≤ n ≤ 15, except possibly for (n, k) ∈ {(4, 2), (10, 3), (14, 6), (15, 7)}.
Verifying this statement is left to the reader.

On the other hand, as part of our treatment of the midrate range, we also find
RS-admissible quadruples (�, n, d, q) for which the GS lower bound is not tight. The
next two propositions provide two examples of such quadruples.

Proposition 1.6. Let q ≥ 11 be a power of an odd prime. Then,

∆RS
4 (10, 7; q) ≥ τ4(10, 7) = 4 .

In contrast, we show in section 4.4 that ∆RS
4 (10, 7; q) = τ4(10, 7)−1 = 3 when q is

even. Moreover, it follows from Theorem 4 in [9] that ∆4(10, 7; q) = τ4(10, 7)− 1 = 3
for every large enough field size q.

Proposition 1.7. For every h ≥ 4,

∆RS
10 (11, 9; 2

h) ≥ τ10(11, 9) = 6 .

This work is organized as follows. In section 2, we develop the tools for synthe-
sizing and analyzing failing lists in general codes. Theorem 1.2, Proposition 1.3, and
some other combinatorial conditions on the tightness of the GS bound are proved us-
ing these tools. Specific tools for RS codes are then introduced in section 3. Finally,
section 4 contains the proofs for Propositions 1.4–1.7.
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2. Failing lists in general codes. Throughout this section, we fix the alphabet
F of size q, the length n and minimum Hamming distance d < n of an (n,M, d) code
over F , and a list size �. We let r be the unique integer such that 1−d/n ∈ [ρr, ρr+1),
and we use the notation 〈n〉 for the set {1, 2, . . . , n}.

2.1. Lower bound on ∆�(n, d ; q).
Proof of Theorem 1.2. Assume to the contrary that there is an (n,M, d) code

C for which ∆�(C) < �τ�(n, d)�−1. It follows that there is a set of �+1 codewords,
L = {c0, c1, . . . , c�} ⊆ C, and a word v ∈ Fn such that dH(cs,v) ≤ �τ�(n, d)� for
every 0 ≤ s ≤ �.

For every µ ∈ 〈n〉, denote by xµ the number of words in L that agree with v on
the µth position. On the one hand, it is clear that

n∑
µ=1

xµ > (�+1)(n− τ�(n, d)) .(9)

On the other hand, the number of different (unordered) pairs {cs, ct} ⊆ L that agree
on their µth coordinate is at least

(
xµ

2

)
. Since dH(cs, ct) ≥ d for every 0 ≤ s < t ≤ �,

it follows that the total number of agreement coordinates, when ranging over all pairs
{cs, ct} ⊆ L, cannot exceed

(
�+1
2

)
(n−d); therefore,

n∑
µ=1

(
xµ

2

) ≤ (�+1
2

)
(n−d) .(10)

Define

y = 1
r

((
�+1
2

)
(n−d)− (r2)n) .(11)

By the definition of the parameter r, we get that 0 ≤ y < n. It can be easily verified
that the right-hand side of (9) equals rn+y. Denote t = 
y�+1. It follows from (9)
that

n∑
µ=1

xµ ≥ rn+ t .(12)

Regard x1, x2, . . . , xn as integer variables that are constrained to satisfy (12). By [11,
p. 526], the minimum of the sum

∑n
µ=1

(
xµ

2

)
is

1
2 (t(r+1)

2 + (n−t)r2 − (rn+t)) =
(
r
2

)
n+ rt >

(
r
2

)
n+ ry =

(
�+1
2

)
(n−d) ,

contradicting (10).
The above proof is essentially a generalization of the proofs of Theorems 2 and 3

in [11, Ch. 17] to any finite alphabet; Theorem 2 therein is the Johnson bound on the
size of a binary constant-weight code, and Theorem 3 follows from the Johnson bound
by using arguments that take into account that the parameters we optimize over are
integers. It turns out that a similar proof technique can be applied in our case, where
nonbinary codes are considered. (In [5, Thm. 4.2 (part 2)], the proof technique of
the Johnson bound is refined for nonbinary codes. It uses the observation that two
codewords cs and ct in a nonbinary code can both disagree with a given word v on
a given position i while they also disagree with each other on position i. However,
the proof in [5] does not take into account that some of the parameters involved are
integer-valued. A further improvement on both Theorem 1.2 and [5, Thm. 4.2 (part 2)]
has been recently reported in [14].)
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2.2. (�, r)-configurations. We define an (�, r)-configuration as a set L of �+1
words in Fn such that for every position µ ∈ 〈n〉 the following holds: there are exactly
r or r+1 words in L that agree on that position by taking the same value, cµ, and the
remaining �+1−r (respectively, �−r) words are all distinct on that position; neither
does any of them take there the value cµ.

We now repeat the definition with slightly more detail. Let S1, S2, . . . , S(�+1
r )

be

all the distinct subsets of {0, 1, . . . , �} of size r, and let S′
1, S

′
2, . . . , S

′
(�+1
r+1)

be all the

distinct subsets of {0, 1, . . . , �} of size r+1. A partition vector of 〈n〉 is an (ordered)
list of

(
�+2
r+1

)
=
(
�+1
r

)
+
(
�+1
r+1

)
disjoint subsets,(

I1, I2, . . . , I(�+1
r )

, I ′1, I
′
2, . . . , I

′
(�+1
r+1)

)
,

whose union is 〈n〉. A partition vector P is said to be proper if I ′j = ∅ for all j.
The existence of a proper (�, r)-configuration over F implies q ≥ �+1−r, where the
existence of a nonproper configuration implies the weaker inequality q ≥ �+2−r.

We will hereafter abbreviate notation and write (Ii)i‖(I ′j)j for a partition vec-
tor; a proper partition vector will also be written as (Ii)i. Given a partition vec-
tor P = (Ii)i‖(I ′j)j , an (�, r)-configuration with respect to P is a set of �+1 words
L = {c0, c1, . . . , c�} ⊆ Fn that satisfies the following two conditions:

• For every i = 1, 2, . . . ,
(
�+1
r

)
, the words in Li = {cs}s∈Si are identical on the

positions indexed by Ii, while none of the words in L \ Li agrees on any of
those positions with any other word in L.

• The same as the previous condition, with I ′j replacing Ii and L′
j = {cs}s∈S′

j

replacing Li for j = 1, 2, . . . ,
(
�+1
r+1

)
.

The existence of an (�, r)-configuration L with respect to a partition vector P =
(Ii)i‖(I ′j)j implies the existence of an incidence structure D(L) = (L,B,M) (see [2,
Ch. 1]) with �+1 “points,” corresponding to the codewords in L, and a multiset B
of n (not necessarily distinct) “blocks.” The (�+1) × n incidence matrix M, which
represents the incidence relation, is defined as follows:

Ms,µ =




1 if µ ∈ Ii and s ∈ Si for some i,
1 if µ ∈ I ′j and s ∈ S′

j for some j,
0 otherwise.

s ∈ {0, 1, . . . , �}, µ ∈ 〈n〉,

Using the terminology of [2], D(L) is an incidence structure with possibly repeated
blocks and up to two block sizes, r and r+1; when the partition elements Ii and Ij are
all of size ≤ 1, no repeated blocks appear, and when P is a proper partition vector,
only the block size r is allowed.

Lemma 2.1 below provides sufficient conditions for an (�, r)-configuration L to
form a failing list.

Lemma 2.1. Let L = {c0, c1, . . . , c�} be an (�, r)-configuration with respect to a
partition vector (Ii)i‖(I ′j)j of 〈n〉 that satisfies both∑

i : {s,t}⊆Si

|Ii| +
∑

j : {s,t}⊆S′
j

|I ′j | ≤ n−d , 0 ≤ s < t ≤ � ,(13)

and ∑
i : s∈Si

|Ii| +
∑

j : s∈S′
j

|I ′j | ≥ n− �τ�(n, d)� , 0 ≤ s ≤ � .(14)
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Then L is a failing list; each word in L is at Hamming distance at most �τ�(n, d)�
from the majority-vote word v ∈ Fn that agrees on any position in Ii (respectively,
I ′j) with the words in Li (respectively, L′

j).
Proof. By (13), every two words in L agree on at most n−d positions and, thus,

dH(cs, ct) ≥ d for every 0 ≤ s < t ≤ �. In addition, by (14), the Hamming distance
of each word in L from the word v is not greater than �τ�(n, d)�. It follows that L is
a failing list.

The following corollary describes a case with certain symmetry where Lemma 2.1
can be applied. This special case is later used to indicate RS codes that contain failing
lists.

Corollary 2.2. Suppose there are integers γ > 0 and γ′ ≥ 0 that satisfy(
�+1
r

)
γ +

(
�+1
r+1

)
γ′ = n and

(
�−1
r−2

)
γ +

(
�−1
r−1

)
γ′ = n−d(15)

(here τ�(n, d) is an integer and its value is given by
(
�
r

)
γ +

(
�

r+1

)
γ′). Let L =

{c0, c1, . . . , c�} be an (�, r)-configuration with respect to a partition vector (Ii)i‖(I ′j)j
of 〈n〉, where |Ii| = γ and |I ′j | = γ′. Let v ∈ Fn be the majority-vote word. Then L is
a failing list in which dH(cs, ct) = d for every 0 ≤ s < t ≤ � and dH(cs,v) = τ�(n, d)
for every 0 ≤ s ≤ �.

We point out that the failing lists described in [9], corresponding to cases where
the relative minimum distance is 1 − ρr, have a combinatorial structure which is
a special case of the (�, r)-configuration in Corollary 2.2, obtained when γ′ = 0.
As indicated in [9], the incidence structure D(L) in this case is a replication of
the trivial (complete) balanced incomplete block design (BIBD) with parameters
(�+1, r, (n−d)/γ). In such a BIBD, the n=

(
�+1
r

)
blocks correspond to all the dis-

tinct r-subsets of the point set L, each pair of points appears in exactly (n−d)/γ=(�r)
blocks, and each single point appears in exactly (n−τ�(n, d))/γ=

(
�

r−1

)
blocks.

Example 2.1. Figure 1 presents a (3, 2)-configuration of four words of length
10 over GF(11) and the respective majority-vote word v. The words c0, c1, c2, c3 are
codewords of a [10, 4, 7] RS code whose code locators are 0, 5, 6, 4, 2, 1, 7, 3, 9, 8. The
configuration forms a failing list since every two codewords agree on n−d = 3 positions
and v agrees with every codeword on τ3(10, 7) = 4 positions. Note that, for every two
distinct s, t ∈ {0, 1, 2, 3}, there is a unique position on which only cs and ct agree,
and, for every three distinct s, t, u ∈ {0, 1, 2, 3}, there is a unique position on which
only cs, ct, and cu agree. This list thus corresponds to the structure described in
Corollary 2.2, where γ = γ′ = 1.

c0 = 0 0 0 0 0 0 0 0 0 0
c1 = 0 0 2 3 0 4 4 5 10 1
c2 = 0 8 0 3 1 0 3 5 6 8
c3 = 6 0 0 3 8 5 0 1 10 8

v = 0 0 0 3 0 0 0 5 10 8

Fig. 1. (3, 2)-configuration over GF(11).

Example 2.2. Figure 2 presents a (4, 3)-configuration of five codewords of a
[10, 4, 7] RS code over GF(16) (the field is represented as polynomials over GF(2)
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modulo x4 + x + 1, and the four polynomial coefficients of each element are written
in hexadecimal notation). The rate, 1− d/n = 3/10, equals the boundary rate ρ3(4).
This configuration follows the structure described in Corollary 2.2, where γ = 1 and
γ′ = 0, and it therefore forms a failing list. It can be easily verified that indeed
every two codewords agree on n−d = 3 positions and v agrees with every codeword
on τ4(10, 7) = 4 positions. The list structure here corresponds to the (complete)
BIBD(5, 3, 3) (which has 10 blocks), and we show in what follows (Lemma 4.4) that,
in fact, every failing list of five codewords in a (10,M, 7) code over any alphabet F
must have the form of a BIBD(5, 3, 3). It follows that such a failing list cannot be
realized over the binary alphabet, and by Propositions 4.3 and 1.6, it can be realized
in RS codes over GF(q) if and only if q is a power of 2 not smaller than 16.

c0 = 0 0 0 0 0 0 0 0 0 0
c1 = 0 0 0 9 f 2 a 4 f b
c2 = 0 9 1 0 0 b a 4 7 c
c3 = a 0 5 0 a 0 a a f c
c4 = c 4 0 f 0 0 1 4 f c

Fig. 2. (4, 3)-configuration over GF(16).

Fix a list size � and a rational number δ ∈ (0, 1]. We claim that one can always
extend � to some admissible quadruple (�, n, d, q) with d/n = δ such that �+1 words
that form a failing list are contained in Fn (where F is an alphabet of size q). Indeed,
replacing d by nδ in (15) (where r is uniquely determined by δ and �) transforms (15)
into a set of two homogeneous equations in the three unknowns γ, γ′, and n. A
nontrivial integer solution must then exist. For any value of q greater than �+2−r,
we can find �+1 words in Fn that form an (�, r)-configuration with respect to some
partition vector P = (Ii)i‖(I ′j)j of 〈n〉, where |Ii| = γ for 1 ≤ i ≤ (�+1

r

)
, and |I ′j | = γ′

for 1 ≤ j ≤ (�+1
r+1

)
. By Corollary 2.2, this is a failing list.

2.3. Necessary conditions on the existence of failing lists. Proposition 2.3
below motivates our interest in failing lists that form (�, r)-configurations. It states
that when τ�(n, d) is an integer, namely, when (6) holds, every failing list of size �+1
is necessarily an (�, r)-configuration. The sufficient condition for the existence of a
failing list, as stated in Lemma 2.1, thus turns out to be necessary in cases where (6)
holds.

Proposition 2.3. Let �, r, n, and d be integers for which (6) holds, and let L
be a failing list of size �+1 that is contained in an (n,M, d) code over F .

N1. The list L is an (�, r)-configuration with respect to some partition vector
P = (Ii)i‖(I ′j)j of 〈n〉 that satisfies conditions (13)–(14) with equality.

N2. P is proper (i.e., exactly r out of the �+1 words in L agree on every position)
if and only if 1− d/n = r(r−1)/(�(�+1)) = ρr.

N3. If 1− d/n = r(r−1)/(�(�+1)), then q ≥ �+1−r. Otherwise, q ≥ �+2−r.
Remark. Property N3 above is a restatement of Proposition 1.3.
Proof. Let L = {c0, c1, . . . , c�} be a failing list with the given parameters, and

let v be the word in Fn for which dH(cs,v) ≤ τ = τ�(n, d) for every s ∈ {0, 1, . . . , �}.
As in the proof of Theorem 1.2, we denote by xµ, µ ∈ 〈n〉, the number of words in L
that agree with v on the µth position. By arguments similar to those in the proof of
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Theorem 1.2, we get that

n∑
µ=1

xµ ≥ (�+1)(n− τ)(16)

and
n∑

µ=1

(
xµ

2

) ≤ (�+1
2

)
(n−d) .(17)

Let y be as in (11). Under the assumption that (6) holds, y must be an integer.
When 1 − d/n = ρr, we get y = 0; otherwise, 0 < y < n. Regard x1, x2, . . . , xn as
integer variables that are constrained to satisfy (16) with equality. By [11, p. 526], the
minimum of the sum

∑n
µ=1

(
xµ

2

)
is attained when (and only when) y of the variables

take the value r+1 while the rest take the value r; such an assignment satisfies (17)
with equality. Since the minimum could only increase if we constrained the sum∑n

µ=1 xµ to be larger, we have thus characterized the only feasible solutions to (16)–
(17).

We now define the partition vector P that is stated in the lemma. For every subset
Si (respectively, S

′
j) of {0, 1, . . . , �} of size r (respectively, r+1), let Ii (respectively,

I ′j) be the set of positions on which the words in Li = {cs : s ∈ Si} (respectively,
Lj = {cs : s ∈ S′

j})—and only these words—agree with v.
Since the union of

⋃
i Ii and

⋃
j I

′
j is necessarily 〈n〉, it follows that P = (Ii)i‖(I ′j)j

is a partition vector. We have∑
i : {s,t}⊆Si

|Ii| +
∑

j : {s,t}⊆S′
j

|I ′j | ≤ n− dH(cs, ct) , 0 ≤ s < t ≤ � ,(18)

and ∑
i : s∈Si

|Ii| +
∑

j : s∈S′
j

|I ′j | = n− dH(cs,v) , 0 ≤ s ≤ � .(19)

Since L is a failing list, we can bound the right-hand side of (18) from above by n−d
and the right-hand side of (19) from below by n − τ . This, in turn, implies that
conditions (13)–(14) hold. Furthermore, since (16)–(17) hold with equality, we obtain

1
2

∑
0≤s<t≤�

( ∑
i : {s,t}⊆Si

|Ii| +
∑

j : {s,t}⊆S′
j

|I ′j |
)

=

n∑
µ=1

(
xµ

2

)
=
(
�+1
2

)
(n−d)

and

�∑
s=0

( ∑
i : s∈Si

|Ii| +
∑

j : s∈S′
j

|I ′j |
)

=

n∑
µ=1

xµ = (�+1)(n− τ) .

It follows that conditions (13)–(14) hold with equality, and so does (18). The equality
in (18) implies that when xµ = r (respectively, xµ = r+1), there are exactly

(
r
2

)
(respectively,

(
r+1
2

)
) different pairs of words in L that agree on their µth coordinate.

In particular, a word in L \ Li (respectively, L \ L′
j) does not agree on any position

in Ii (respectively, I ′j) with any other word in L. We conclude that L is an (�, r)-
configuration with respect to the partition vector P, and property N1 is thus proved.
Recalling that y=0 when 1− d/n = ρr, property N2 is proved as well. Property N3 is
implied by properties N1–N2 and by the definition of an (�, r)-configuration.
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2.4. Constant-weight codes, block designs, and failing lists. One neces-
sary condition on the existence of failing lists is given in Proposition 2.4 below by
means of constant-weight codes. If F is an additive group, then an (n, d, w) constant-
weight code over F is a subset of Fn such that the Hamming weight (i.e., the number
of nonzero components) of every codeword is w and the minimum Hamming distance
between different codewords is d (see also [11, p. 524]).

Proposition 2.4. Let (�, n, d, q) be an admissible quadruple, let r be the unique
integer such that 1−d/n ∈ [ρr, ρr+1), and assume that (6) holds. Suppose that a failing
list is contained in some (n,M, d) code over an additive group F of size q. Then a
(possibly different) failing list forms an (n, d, τ�(n, d)) constant-weight code C̄ over F ,
consisting of �+1 codewords. The Hamming distance between different codewords in
C̄ is exactly d.

Proof. Let L = {cs}�s=0 be the failing list, and let v be as in the proof of
Proposition 2.3. By property N1 of that proposition, the set {c0−v, c1−v, . . . , c�−v}
forms the required constant-weight code over F .

Let L be a failing list as in Proposition 2.3. We consider the incidence structure
D(L) = (L,B,M) as a generalization of a BIBD(�+1, r, n−d), referred to as a quasi-
BIBD and denoted QBIBD(�+1, r, n−d;n). For an introduction on BIBDs, see [2], [8,
Ch. 10], and [11, sect. 2.5]. In a QBIBD, similarly to a BIBD, every pair of points
appears in exactly n−d blocks (the incidence structure is pairwise balanced), and each
single point appears in exactly n−τ�(n, d) blocks. However, in a QBIBD, y blocks are
of size r + 1, where y is defined by (11), and the remaining n−y > 0 blocks are of
size r. In addition, repeated blocks are allowed in a QBIBD.

Note that the number of blocks n appears as a parameter in the definition of a
QBIBD since it is not uniquely determined by the other three parameters. However,
the following connection between the parameters must hold:(

r
2

)
n ≤ (�+1

2

)
(n−d) < (r+1

2

)
n .(20)

When the left inequality in (20) holds with equality (i.e., the code relative minimum
distance is 1− ρr), the n blocks are all of size r.

Some useful properties of a BIBD, such as Fisher’s inequality (see, for example,
[2, p. 81]), also hold for a QBIBD, as stated in the following lemma. The proof
is essentially the same as in the case of a BIBD, and it is included for the sake of
completeness.

Lemma 2.5. In a QBIBD(�+1, r, n−d;n), there are at least �+1 distinct blocks.
In particular, �+1 ≤ n.

Proof. Let D(L) = (L,B,M) be an incidence structure of a QBIBD(�+1, r, n−d;n).
The entries of the (�+1)× (�+1) matrixMMT are given by

(MMT )s,t =

{
n−τ�(n, d) if s = t,
n−d if s �= t,

and, so,

detMMT = (d−τ�(n, d))� · (�(n−d)+n− τ�(n, d)) �= 0 .

It follows that MMT contains at least �+1 linearly independent—and hence
distinct—columns.

The following corollary is implied by Proposition 2.3 and Lemma 2.5.
Corollary 2.6. Let �, r, n, and d be integers for which (6) holds. Then a

failing list of size �+1 is contained in an (n,M, d) code over some alphabet F only
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if there exists a QBIBD(�+1, r, n−d;n). In particular, �+1 ≤ n whenever a failing
list L exists.

The next lemma deals with the special case n = �+1.
Lemma 2.7. A QBIBD(n, r, n−d;n) is a (symmetric) BIBD(n, r, n−d).
Proof. By Lemma 2.5, the n blocks are all distinct. Now, in a QBIBD(n, r, n−d;n),

each point appears in n−τ�(n, d) blocks and, so, τ�(n, d) is an integer. The divisibility
condition (6), which necessarily holds here, becomes

2r divides r(r+1) + (n−1)(n−d) .
By (20), we also require that

r(r−1) ≤ (n−1)(n−d) < r(r+1) .

The above two constraints are satisfied only if (n−1)(n−d) = r(r−1), implying that
the n distinct blocks are all of the same size r. The QBIBD is thus a BIBD.

Proposition 2.8 below deals with list sizes � ≥ n−1. In particular, it states that
when � = n−1, the GS bound can be attained only when there is a symmetric BIBD
with parameters (n, r, n−d). Such a design consists of n “points” and n “blocks” of
size r, where each pair of distinct points appears in exactly n−d blocks.

Proposition 2.8. Let �, r, n, d, q be as in Proposition 2.4.
B1. If n = �+1, then ∆�(n, d; q) = τ�(n, d)−1 only when there is a

BIBD(n, r, n−d) with r(r−1) = (n−1)(n−d).
B2. If n < �+1, then ∆�(n, d; q) ≥ τ�(n, d).
Proof. Combine Corollary 2.6 and Lemma 2.7.
Necessary conditions on the parameters of a symmetric BIBD were given by

Bruck, Chowla, and Ryser (see [2, p. 100] or [8, p. 133]). It follows from Proposition 2.8
that whenever these conditions are not satisfied by (n, r, n−d), no (n,M, d) code at-
tains the GS bound with equality. For example, since there is no BIBD(22, 7, 2), we
obtain for every alphabet size q

∆21(22, 20; q) ≥ 15 = τ21(22, 20) .

Similarly,

∆42(43, 42; q) ≥ 36 = τ42(43, 42) .

3. Realizing failing lists in RS codes. Throughout this section we fix the
finite field F = GF(q), the list size �, and an [n, k, d] RS code C over F with a set
of code locators {α1, α2, . . . , αn} ⊆ F . We let r be the unique integer such that
1− δ = (k−1)/n ∈ [ρr, ρr+1).

Suppose that C contains a set L = {c0, c1, . . . , c�} which is an (�, r)-configuration
with respect to some partition vector P for which (13)–(14) are satisfied. Without loss
of generality, assume that c0 is the zero codeword (otherwise, subtract c0 from each
cs to obtain another (�, r)-configuration with respect to P). For every two indexes
s, t such that 0 ≤ s < t ≤ �, the difference cs−ct is a codeword that is obtained
by evaluating a polynomial of degree ≤ k−1 at the code locators. We denote this
polynomial by as,t · fs,t(x), where as,t ∈ F \ {0} and fs,t(x) is a monic polynomial of
degree ≤ k−1.

For every subset Si ⊆ {0, 1, . . . , �} of size r and every subset S′
j of size r+1, define

ASi(x) =
∏
µ∈Ii

(x− αµ) and AS′
j
(x) =

∏
µ∈I′

j

(x− αµ) .(21)
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By the definition of an (�, r)-configuration with respect to a partition vector, it follows
that the polynomials fs,t(x) are given by

fs,t(x) =
∏

i : {s,t}⊆Si

ASi
(x) ·

∏
j : {s,t}⊆S′

j

AS′
j
(x)(22)

(a product over an empty set is defined as 1). A necessary condition on the existence
of the configuration L in C is

as,t · fs,t(x) = a0,s · f0,s(x)− a0,t · f0,t(x) , 0 < s < t ≤ � .(23)

Conversely, suppose that P = (Ii)i‖(I ′j)j is a partition vector that satisfies (13)–
(14), and let the polynomials fs,t(x) be defined by (22). If there are nonzero constants
as,t ∈ F that satisfy (23), then an (�, r)-configuration with respect to P exists. Based
on Lemma 2.1 and Proposition 2.3, the following lemma is obtained.

Lemma 3.1. Let (Ii)i‖(I ′j)j be a partition vector of 〈n〉 that satisfies (13)–(14)
and let the polynomials fs,t(x), 0 ≤ s < t ≤ �, be defined by (22).

(a) If there are
(
�+1
2

)
nonzero constants as,t ∈ F such that (23) holds, then C

contains a failing list that consists of the zero codeword and the � codewords

(f(α1) f(α2) · · · f(αn)) , f(x) ∈ {a0,s · f0,s(x)}�s=1 .

(b) In cases where (6) holds, the sufficient conditions in part (a) for the existence
of a failing list of size �+1 are also necessary, and each polynomial fs,t(x) has degree
k−1.

3.1. The difference condition and simple sets of polynomials. Three
monic polynomials f(x) =

∑
i fix

i, g(x) =
∑

i gix
i, and h(x) =

∑
i hix

i are said

to satisfy the difference condition if there are f̃ , g̃, h̃ ∈ F \ {0} for which
h̃ · h(x) = f̃ · f(x)− g̃ · g(x) .(24)

Observe that every three polynomials in (23) must satisfy the difference conditions.
Lemma 3.2. Three distinct monic polynomials of the same degree e, f(x) =∑

i≤e fix
i, g(x) =

∑
i≤e gix

i, and h(x) =
∑

i≤e hix
i, satisfy the difference condition

if and only if

(fi − hi)(fj − gj) = (fi − gi)(fj − hj) for every 0 ≤ i, j ≤ e .(25)

Proof. The difference condition is satisfied if and only if there are f̃ , g̃, h̃ ∈ F \{0}
for which

h̃ · hi = f̃ · fi − g̃ · gi, 0 ≤ i ≤ e ,(26)

and since f(x), g(x), and h(x) are monic polynomials of the same degree e, we obtain,
in particular, that

h̃ = f̃ − g̃ .(27)

A nontrivial solution for f̃ , g̃, h̃ exists if and only if the following matrix is singular
for every 0 ≤ i ≤ j ≤ e: 

 1 −1 −1
fi −gi −hi
fj −gj −hj


 .

This matrix, in turn, is singular if and only if (25) holds.
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Now, the values of f̃ , g̃, h̃ must be all nonzero in every nontrivial solution of (24),
as required by the difference condition; by (27), it is impossible that exactly two of
them are zero, and if only one is zero, then, by combining (26) and (27), we obtain
that two out of three polynomials f(x), g(x), and h(x) are identical; this, however,
contradicts our assumption that these polynomials are distinct.

Our constructions that realize (22)–(23) will have a special structure defined next.
A set of polynomials of degree e over F is simple over a set U ⊆ F if the following
three conditions hold:

S1. Each polynomial has e simple roots in U .
S2. Every two distinct polynomials in the set are relatively prime.
S3. The polynomials differ only in the ith coefficient for some i. For example,

they differ only in their constant term.
Corollary 3.3. Every three polynomials in a simple set satisfy the difference

condition.
Proof. Let f(x), g(x), and h(x) be three polynomials of degree e in a simple set.

By property S3 of simple sets, (fi − hi)(fj − gj) = (fi − gi)(fj − hj) = 0 for every
distinct i, j such that 0 ≤ i, j ≤ e. Obviously, for i = j we have (fi − hi)(fj − gj) =
(fi − gi)(fj − hj). By Lemma 3.2, the difference condition is satisfied.

3.2. Rates above 2/(�(�+1)). Lemma 3.4 below provides a sufficient condi-
tion on the existence of failing lists of size �+1 in C. The statement of the lemma
makes use of the following notation. Let P = (Ii)i‖(I ′j)j be a partition vector of
〈n〉 and let fs,t(x), 0 ≤ s < t ≤ �, be defined by (22). For every s, t, u such that
0 ≤ s < t < u ≤ �, define

gs,t,u(x) = gcd(fs,t(x), fs,u(x), ft,u(x))(28)

=
∏

i : {s,t,u}⊆Si

ASi(x) ·
∏

j : {s,t,u}⊆S′
j

AS′
j
(x).

Lemma 3.4. Let P = (Ii)i‖(I ′j)j be a partition vector of 〈n〉 for which (13)–
(14) hold, and let fs,t(x) and gs,t,u(x) be the polynomials defined by (22) and (28),
respectively. A failing list of size �+1 is contained in C if the following two conditions
hold:

• For every 0 ≤ s < t ≤ �, the polynomials f0,s(x), f0,t(x), and fs,t(x) satisfy
the difference condition, and
• gs,t,u(x) does not divide f0,s(x) for every 0 < s < t < u ≤ �.

Proof. We show that the sufficient conditions of Lemma 3.1(a) hold. If f0,s(x),
f0,t(x), and fs,t(x) satisfy the difference condition, then, by definition, there must be
nonzero a0,s, a0,t, as,t ∈ F such that

as,t · fs,t(x) = a0,s · f0,s(x) − a0,t · f0,t(x) .(29)

For the case where � = 2, we are done.
Turning to larger values of �, we need to show that the same coefficient a0,s mul-

tiplies f0,s(x) in (23), independently of t. Given s ∈ 〈�−2〉, consider any indexes t and
u such that s < t < u ≤ �. There must be nonzero a0,s, a0,t, as,t ∈ F satisfying (29)
and, by the same arguments, there must be nonzero a0,u, at,u, as,u, a

′
0,s ∈ F such that

at,u · ft,u(x) = a0,t · f0,t(x) − a0,u · f0,u(x) and(30)

as,u · fs,u(x) = a′0,s · f0,s(x) − a0,u · f0,u(x) .(31)
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Subtracting (31) from the sum of (29) and (30) results in

as,t · fs,t(x) + at,u · ft,u(x) − as,u · fs,u(x) = (a0,s − a′0,s) · f0,s(x) .(32)

Clearly, gs,t,u(x) divides the left-hand side of (32). However, according to the as-
sumptions of the lemma, gs,t,u(x) does not divide f0,s(x). We therefore conclude
that a′0,s = a0,s, i.e., the same coefficient a0,s does indeed multiply f0,s(x) in (23),
independently of t.

Corollaries 3.5 and 3.6 below are derived from Lemma 3.4 and are used in section 4
to indicate families of RS codes that contain failing lists of size �+1. Corollary 3.5
covers only the high-rate range (k−1)/n ≥ 1 − (2/(�+1)) (= ρ�), while Corollary 3.6
applies to (k−1)/n > 2/(�(�+1)) (= ρ2).

Corollary 3.5. Let the positive integer triple (�, n, k) be such that (k−1)/n ≥
1 − (2/(�+1)). A failing list is contained in C if there is some partition vector P =
(I1, I2, . . . , I�+1, I

′
1) of 〈n〉 such that the following hold:

(a) (13)–(14) are satisfied, with equality in (13), and
(b) for every 0 ≤ s < t ≤ � in (22), the respective polynomials f0,s(x), f0,t(x),

and fs,t(x), each of degree k−1, are distinct and satisfy the difference condition.
Proof. We show that whenever r = � > 2, for every 0 < s < t < u ≤ � the

polynomial gs,t,u(x) in (28) does not divide f0,s(x). The existence of a failing list will
then follow from Lemma 3.4.

Without loss of generality we can assume that the sets Si are defined so that
S1 = {1, 2, . . . , �}. For every 0 < s < t < u, the polynomial gs,t,u(x) does not divide
f0,s(x) if and only if degAS1

(x) > 0. Assume to the contrary that degAS1
(x) = 0.

Since AS1(x) = fs,t(x)/g0,s,t(x), it then follows that deg g0,s,t(x) = k−1; therefore,
f0,s(x) = g0,s,t(x) = f0,t(x), contradicting our assumption that f0,s(x) and f0,t(x) are
distinct.

Corollary 3.6. Let the positive integer triple (�, n, k) be such that (k−1)/n >
2/(�(�+1)), and let r > 1, γ > 0, and γ′ ≥ 0 be integers for which (15) holds. Let
P = (Ii)i‖(I ′j)j be a partition vector of 〈n〉 in which |Ii| = γ and |I ′j | = γ′, and let
fs,t(x) and gs,t,u(x) be the polynomials defined by (22) and (28), respectively. Suppose
that for every 0 ≤ s < t ≤ �, there is a polynomial divisor λs,t(x) of g0,s,t(x) for which
the set {f0,s(x)/λs,t(x), f0,t(x)/λs,t(x), fs,t(x)/λs,t(x)} is simple over the set of code
locators of C. Then C contains a failing list of size �+1.

Proof. By Lemma 3.4, it suffices to show that gs,t,u(x) does not divide f0,s(x) for
every 0 < s < t < u ≤ �. If 2 < r ≤ �, there is a nonempty partition element Ii in P
that corresponds to a subset Si ⊆ {0, 1, . . . , �} such that {s, t, u} ⊆ Si while 0 /∈ Si.
In this case, ASi

(x) divides gs,t,u(x), but it does not divide f0,s(x); therefore, gs,t,u(x)
does not divide f0,s(x), as required.

Assume now that 2 = r < �. Since (k−1)/n > 2/(�(�+1)), there must exist a
nonempty partition element I ′j in P that corresponds to a subset S′

j = {s, t, u} of
{0, 1, . . . , �}. Since |I ′j | = γ′ > 0, the polynomial AS′

j
(x) divides gs,t,u(x) but not

f0,s(x); thus, gs,t,u(x) does not divide f0,s(x), as required.

3.3. The low-rate range: 0 < (k−1)/n ≤ 2/(�(�+1)). Suppose that
the rate of C satisfies (k−1)/n < ρ2 = 2/(�(�+1)) and that C contains an (�, 1)-
configuration L. At most two out of the �+1 words in L agree on every position
and, so, (22) becomes fs,t(x) = fs,t(x)/g0,s,t(x) = AS′

j
(x) for S′

j = {s, t}. Sup-

pose now that (k−1)/n = ρ2 and that L is an (�, 2)-configuration; here, fs,t(x) =
fs,t(x)/g0,s,t(x) = ASi(x) for Si = {s, t}. In both cases, the set {fs,t(x)}s,t already
satisfies conditions S1 and S2 for being simple over the set of code locators of C.
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However, it turns out that when � > 2 in any of those two cases, taking the set
{fs,t(x)}s,t to be simple over the set of code locators does not guarantee the existence
of multipliers {as,t}s,t for which (23) holds. An auxiliary condition on the coefficients
of {fs,t(x)}s,t is needed in this case, as stated in the following lemma.

Lemma 3.7. Let the positive integer triple (�, n, k) be such that (k−1)/n ≤
2/(�(�+1)). Suppose there exists a set {f∗

0,1(x), f
∗
0,2(x), . . . , f

∗
�−1,�(x)} of

(
�+1
2

)
distinct

polynomials of degree k−1 over F that is simple over a subset U of size
(
�+1
2

)
(k−1)

of the set of code locators of C. Let e be the (unique) coefficient index in which the
polynomials differ, and denote by ψs,t the eth coefficient of f∗

s,t(x). Assume that when

� > 2, the coefficients ψs,t satisfy the
(
�−1
2

)
equations

(ψ1,s−ψ0,1)(ψ1,t−ψ0,t)(ψs,t−ψ0,s)(33)

= (ψ1,s−ψ0,s)(ψ1,t−ψ0,1)(ψs,t−ψ0,t) , 1 < s < t ≤ �.

Then there exist nonzero a0,1, a0,2, . . . , a0,� ∈ F such that the zero word and the �
words

(f(α1) f(α2) · · · f(αn)) , f(x) ∈ {a0,s · f∗
0,s(x)}�s=1

form a failing list in C.
Proof. Our proof is based on Lemma 3.1(a). To this end, we first find a partition

vector P = (Ii)i‖(I ′j)j of 〈n〉 that satisfies (13)–(14), and that allows us to express the
polynomials f∗

s,t(x) in the form (22). When (k−1)/n = ρ2, we select P to be proper,
and for every Si = {s, t} we let Ii = {µ : f∗

s,t(αµ) = 0}.
When (k−1)/n < ρ2, we select P = (Ii)i‖(I ′j)j so that for S′

j = {s, t} the partition
element I ′j is given by {µ : f∗

s,t(αµ) = 0}. Each of the �+1 partition elements Ii,
which correspond to singleton subsets Si, contains at least 
(n−|U |)/(�+1)� of the
remaining elements of 〈n〉. Since the various polynomials f∗

s,t(x) are all distinct, P
is indeed a partition vector. It is also clear that P satisfies (13) with equality. As
for (14), for every s = 0, 1, . . . , �,

∑
i:s∈Si

|Ii| +
∑

j:s∈S′
j

|I ′j | ≥ �(k−1) +
⌊
n−|U |
�+1

⌋
= n−

⌈
�n
�+1 − �(k−1)

2

⌉
= n− �τ�(n, k)� .

Given the partition vector P, we have f∗
s,t(x) = fs,t(x), where fs,t(x) are given

by (22). By Lemma 3.1(a), all we still need to show is that there are nonzero coeffi-
cients as,t, 0 ≤ s < t ≤ �, for which (23) holds. We distinguish between three cases,
according to the value of � (omitting the obvious case � = 1).

Case 1 (� = 2). The three polynomials f0,1(x), f0,2(x), and f1,2(x) satisfy condi-
tion S3 of a simple set; therefore, by Lemma 3.2, they satisfy the difference condition.

Case 2 (� = 3). Since f0,1(x), f0,2(x), . . . , f2,3(x) satisfy condition S3, the set of
linear equations (23) has a nontrivial solution for the unknowns a0,1, a0,2, . . . , a2,3 if
and only if there is a nontrivial solution for the following set of equations:



1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 −1 0 0 −1

ψ0,1 −ψ0,2 0 −ψ1,2 0 0
ψ0,1 0 −ψ0,3 0 −ψ1,3 0

0 ψ0,2 −ψ0,3 0 0 −ψ2,3







a0,1

a0,2

a0,3

a1,2

a1,3

a2,3




= 0 .(34)
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However, the determinant of the matrix in (34) is zero if and only if

(ψ1,2 − ψ0,1)(ψ1,3 − ψ0,3)(ψ2,3 − ψ0,2) = (ψ1,2 − ψ0,2)(ψ1,3 − ψ0,1)(ψ2,3 − ψ0,3) ;

this is condition (33) for � = 3. Furthermore, if one of the elements a0,1, a0,2, . . . , a2,3

is zero, then either all these elements are zero, or else ψs′,t′ = ψs′′,t′′ for some (s
′, t′) �=

(s′′, t′′), where 0 ≤ s′ < t′ ≤ 3 and 0 ≤ s′′ < t′′ ≤ 3; yet, the latter contradicts our
assumption that f0,1(x), f0,2(x), . . . , f2,3(x) are all distinct. Therefore, in a nontrivial
solution for a0,1, a0,2, . . . , a2,3, all these elements are nonzero.

Case 3 (� > 3). Fix some s in the range 1 < s ≤ �−2, and consider another index
t in the range s < t ≤ �−1. Following the analysis of Case 2, there must exist nonzero
a0,1, a0,s, a0,t, a1,s, a1,t, as,t ∈ F such that

as,t · fs,t(x) = a0,s · f0,s(x)− a0,t · f0,t(x) ,

a1,s · f1,s(x) = a0,1 · f0,1(x)− a0,s · f0,s(x) ,(35)

a1,t · f1,t(x) = a0,1 · f0,1(x)− a0,t · f0,t(x) .

Let u be in the range t < u ≤ �; there are five nonzero coefficients a′0,s, a
′
1,s, a0,u, a1,u,

as,u such that

as,u · fs,u(x) = a′0,s · f0,s(x)− a0,u · f0,u(x) ,

a′1,s · f1,s(x) = a0,1 · f0,1(x)− a′0,s · f0,s(x) ,(36)

a1,u · f1,u(x) = a0,1 · f0,1(x)− a0,u · f0,u(x) .

Combining (35) and (36) results in

(a1,s − a′1,s) · f1,s(x) = (a′0,s − a0,s) · f0,s(x) ,

and since f1,s(x) and f0,s(x) are relatively prime, it follows that a
′
0,s = a0,s and a′1,s =

a1,s. Hence, the same nonzero constant a0,s multiplies f0,s(x) in (23), independently
of t.

4. Proof of main results for RS codes. In this section (starting from sub-
section 4.3), we prove Propositions 1.4–1.7. We use the tools developed in section 3
and additional tools presented in the following two subsections.

4.1. Properties of ∆RS
� (n, d ; q). Proposition 4.1 below describes some simple

relations satisfied by ∆RS
� (n, d; q).

Proposition 4.1. Let (�, n, d, q) be an RS-admissible quadruple. Then
(a) ∆RS

� (n−1, d−1; q) ≤ ∆RS
� (n, d; q) ≤ ∆RS

� (n−1, d−1; q) + 1 for d > 1, and
(b) ∆RS

� (n, d; q) ≤ ∆RS
� (n−1, d; q) for d < n.

Proof. Part (a): Let C be an [n, k, d] RS code over GF(q), where k < n (d > 1),
and let C′ be obtained by deleting the last coordinate from each codeword of C. A list-�
decoder for C can be obtained by truncating the last coordinate from the received word
and applying a list-� decoder for C′ to the resulting word. Hence, ∆�(C) ≥ ∆�(C′),
and, so, ∆�(n, d; q) ≥ ∆�(n−1, d−1; q). On the other hand, a list-� decoder for C′ can
be obtained by appending an arbitrary nth coordinate to the received word, followed
by an application of a list-� decoder for C. Therefore, ∆�(C′) ≥ ∆�(C)− 1 and, since
C′ can be any [n−1, k, d−1] RS code, ∆�(n−1, d−1; q) ≥ ∆�(n, d; q)− 1.

Part (b): Every [n−1, k−1, d] RS code C over GF(q) with n ≤ q can be extended to
an [n, k, d] (generalized) RS code C over GF(q) by adding one column to the parity-
check matrix of C; (see [11, sect. 10.8]). Therefore, a list-� decoder for C can be
obtained by appending a zero coordinate to the received word and then applying a
list-� decoder for C. Hence, ∆�(C) ≥ ∆�(C) and, so, ∆�(n−1, d; q) ≥ ∆�(n, d; q).
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4.2. Types of simple sets of polynomials. In some of our proofs, we will use
two types of sets of polynomials that are simple over certain sets U , as follows.

Type 1. Assume that e | q−1 and let α be a primitive element in F = GF(q). The
set {

xe − αei : 0 ≤ i < (q−1)/e
}

is simple over F \ {0}.
Type 2. Assume that q = ph and e = pb < q. If we regard F = GF(q) as a linear

space over GF(p), then the pb elements of every b-dimensional subspace F ′ of F are

the roots of some nonzero linearized polynomial η(x) =
∑b

i=0 ηix
pi

over F (see [10,
Ch. 4] or [11, Ch. 4]). The polynomial η(x) defines a linear mapping η : F → F
over GF(p). The range Rη of the mapping x → η(x) over F is a subspace of F of
dimension h−b in which every two distinct elements have disjoint sets of pb preimages
under η. The set {

η(x)− β : β ∈ Rη

}
is thus simple over F .

4.3. The high-rate range: Proposition 1.4.
Proof of Proposition 1.4. We consider here codes at rates (k−1)/n ≥ 1−(2/(�+1))

= ρ�. Starting with the case k = n, we have � < 2n ≤ 1+(q−1)n for all RS-admissible
quadruples (�, n, d, q) �= (3, 2, 1, 2); so, in this case, ∆�(n, 1; q) = 0.

We assume from now on in the proof that d = n−k+1 is an even number (in such
cases (6) holds); the case of odd d follows from Proposition 4.1(a). We show that
there is an [n, k, d] RS code C over F = GF(q) that contains a failing list of size �+1.

Let S′
1 be the set {0, 1, . . . , �} and let S1, S2, . . . , S�+1 be the subsets of S

′
1 of size

�. Using any of the constructions of simple sets in section 4.2, we let {ASi(x)}�+1
i=1 be

a simple set over F , where degASi(x) = d/2 for every i. We denote by Ui the set of

d/2 roots of ASi(x) in F and by U the union
⋃�+1

i=1 Ui. Also, define U ′
1 to be a subset

of F \ U of size n− (�+1)d/2 and let

AS′
1
(x) =

∏
α∈U ′

1

(x− α) .

Define P to be a partition vector (I1, I2, . . . , I�+1, I
′
1) of 〈n〉 with |Ii| = d/2 and

|I ′1| = n − (�+1)d/2, and let C be defined by the code locators α1, α2 . . . , αn, where
Ui = {αµ}µ∈Ii and U ′

1 = {αµ}µ∈I′1 .
By construction, P satisfies both (13) and (14) with equality. Finally, let the poly-

nomials fs,t(x) be defined by (22). For every s < t, the set { f0,s(x)
g0,s,t(x) ,

f0,t(x)
g0,s,t(x) ,

fs,t(x)
g0,s,t(x)}

contains three different polynomials from {ASi
(x)}�+1

i=1 and is therefore a simple
set over U . Hence, the polynomials f0,s(x), f0,t(x), and fs,t(x) satisfy the differ-
ence condition. Corollaries 3.5 and 3.6 now imply that C contains a failing list of size
�+1.

We next show that there are infinitely many quadruples satisfying the conditions
of this proposition. The quadruples (�, n, d, q), where 2 ≤ d ≤ 5 and � ≤ 2n

d −1, satisfy
the conditions for every field size q ≥ n. Another example consists of the quadruples
(�, n, d, q), where q = n = 2m, d = 2p for 1 < p < m, and � ≤ 2m−p+1 − 1. In this
case, d/n = 2p−m ≤ 2/(�+ 1) and �(d− 1)/2� = 2p−1 divides q = 2m.
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4.4. The midrate range. Propositions 4.2 and 4.3 below identify cases where
the GS bound is tight for code rate around 0.3 and list sizes 3 or 4.

4.4.1. List-3 decoders for RS codes at rates ≈ 0.3.
Proposition 4.2. Let (3, 10m+ν+κ, 7m+ν+1, q) be an RS-admissible quadru-

ple, where q = ph for a prime p; the integer pair (ν, κ) belongs to the set {(ν, κ) :
−1 ≤ ν ≤ 1, 1 ≤ κ ≤ 5−3ν}; and m is a positive integer such that either (a) m | q−1
and q ≥ 11m or (b) m | q and p /∈ {3, 5, 7}. Then,

∆RS
3 (10m+ν+κ, 7m+ν+1; q) = �τ3(10m+ν+κ, 7m+ν+1)� − 1 = 4m+ ν .

Proof. It suffices to prove the proposition for (ν, κ) = (−1, 1), in which case
τ3(10m, 7m) = 4m. The results for the remaining values of (ν, κ) follow from Propo-
sition 4.1: for κ = 1, the result follows from part (a) of Proposition 4.1, and then, for
every fixed ν, it follows from part (b). We construct an [n=10m, k=3m+1, d=7m] RS
code C over F that contains a failing list of size �+1 = 4; note that here r = 2 and
that γ = γ′ = m satisfy (15).

Part (a). We assume that the field size q is such that q−1 = m · b, where b ≥ 11,
and we let α be an element of order b in the multiplicative group of F = GF(q). We
define six polynomials A{s,t}(x), 0 ≤ s < t ≤ 3, and four polynomials A{s,t,u}(x),
0 ≤ s < t < u ≤ 3, as follows:

A{0,1}(x) = xm − α2 , A{0,2}(x) = xm − α , A{0,3}(x) = xm − α7 ,
A{1,2}(x) = xm − α3 , A{1,3}(x) = xm − α9 , A{2,3}(x) = xm − α8 ,
A{0,1,2}(x) = xm − α11 , A{0,1,3}(x) = xm − α5 , A{0,2,3}(x) = xm − α6 ,
A{1,2,3}(x) = xm − α4 .

Note that any two of these ten polynomials are relatively prime, and each has m
simple roots in F .

For every Si = {s, t} (respectively, S′
j = {s, t, u}), let Ui (respectively, U

′
j) denote

the set of roots of ASi
(x) (respectively, AS′

j
(x)) in F . Define accordingly a partition

vector P = (Ii)
6
i=1‖(I ′j)4i=1 such that Ui = {αµ}µ∈Ii and U ′

j = {αµ}µ∈I′
j
. Denote by

U the union of
⋃6

i=1 Ui and
⋃4

j=1 U ′
j , and define C to be the [10m, 3m+1, 7m] RS code

over F whose set of code locators is U .
Next, we define the polynomials fs,t(x) by (22) and obtain

f0,1(x) = (xm − α2)(xm − α5)(xm − α11), f0,2(x) = (xm − α)(xm − α6)(xm − α11),
f0,3(x) = (xm − α5)(xm − α6)(xm − α7), f1,2(x) = (xm − α3)(xm − α4)(xm − α11),
f1,3(x) = (xm − α4)(xm − α5)(xm − α9), f2,3(x) = (xm − α4)(xm − α6)(xm − α8).

Similarly, we define the polynomials g0,s,t(x) by (28), and the sets{
f0,s(x)
g0,s,t(x) ,

f0,t(x)
g0,s,t(x) ,

fs,t(x)
g0,s,t(x)

}
, 0 < s < t ≤ 3 ,(37)

are given by{
f0,1(x)
g0,1,2(x) ,

f0,2(x)
g0,1,2(x) ,

f1,2(x)
g0,1,2(x)

}
=
{
(xm−α2)(xm−α5), (xm−α)(xm−α6), (xm−α3)(xm−α4)

}
,{

f0,1(x)
g0,1,3(x) ,

f0,3(x)
g0,1,3(x) ,

f1,3(x)
g0,1,3(x)

}
=
{
(xm−α2)(xm−α11), (xm−α6)(xm−α7), (xm−α4)(xm−α9)

}
,{

f0,2(x)
g0,2,3(x) ,

f0,3(x)
g0,2,3(x) ,

f2,3(x)
g0,2,3(x)

}
=
{
(xm−α)(xm−α11), (xm−α5)(xm−α7), (xm−α4)(xm−α8)

}
.
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Each of these three sets of polynomials is simple over U , since the three polynomials in
each set differ only in their coefficient of xm. Applying Corollary 3.6 to the partition
vector (Ii)

6
i=1‖(I ′j)4i=1, it follows that C contains a failing list of size 4.

Part (b). We assume that the field size q is ph for a prime p ≥ 11 and that m = pb

for b < h; the case p = 2 is omitted, as it is covered by Proposition 4.3 (to be proved
immediately below). Let η(x) be a linearized polynomial of degree m over F = GF(q)
that has m simple roots in GF(q). Let β be a nonzero element in the range of the
mapping η : F → F ; by linearity, the (distinct) elements 0, β, 2β, . . . , 10β are also in
that range. As in part (a), we define six polynomials A{s,t}(x), 0 ≤ s < t ≤ 3, and
four polynomials A{s,t,u}(x), 0 ≤ s < t < u ≤ 3, each having m simple roots in F and
every two being relatively prime:

A{0,1}(x) = η(x)− 2β , A{0,2}(x) = η(x)− β , A{0,3}(x) = η(x)− 7β ,
A{1,2}(x) = η(x)− 3β , A{1,3}(x) = η(x)− 9β , A{2,3}(x) = η(x)− 8β ,
A{0,1,2}(x) = η(x)− 11β , A{0,1,3}(x) = η(x)− 5β , A{0,2,3}(x) = η(x)− 6β ,
A{1,2,3}(x) = η(x)− 4β .

The proof now continues as in part (a); in particular, the sets (37) that result in
this case are simple, as the three polynomials in each set differ only in their constant
term.

The failing list in Figure 1 is obtained from the construction in the proof of
part (b) by taking F = GF(11), m = 1, η(x) = x, and β = 1.

4.4.2. List-4 decoders for RS codes at rates ≈ 0.3.
Proposition 4.3. Let (4, 10m+ν+κ, 7m+ν+1, q) be an RS-admissible quadru-

ple, where (ν, κ) is an integer pair in the set {(2, 1)} ∪ {(ν, κ) : −1 ≤ ν ≤ 1, 1 ≤ κ ≤
9−6ν} and q and m are powers of 2. Then

∆RS
4 (10m+ν+κ, 7m+ν+1; q) = �τ4(10m+ν+κ, 7m+ν+1)� − 1 = 4m+ ν .

Proof. We prove the proposition for (ν, κ) = (−1, 1), in which case τ4(10m, 7m) =
4m; the results for the other values for (ν, κ) extend directly from Proposition 4.1.
We construct an [n=10m, k=3m+1, d=7m] RS code C over F = GF(2h) that contains
a failing list of size �+1 = 5; here r = 3, and the values γ = m and γ′ = 0 satisfy (15).

Let η(x) be a linearized polynomial of degree m = 2b ≤ 2h−4 over F that has m
simple roots in F . The range, Rη, of the mapping x → η(x) over F is a linear space of
dimension h−b ≥ 4 over GF(2); therefore, one can find four elements β0, β1, β2, β3 ∈
Rη that are linearly independent over GF(2). We represent each of the 16 elements∑3

i=0 εiβi, εi ∈ GF(2), as a 4-tuple (ε0 ε1 ε2 ε3).
Define the ten polynomials A{s,t,u}(x), 0 ≤ s < t < u ≤ �, as follows:

A{0,1,2}(x) = η(x)− (1 0 0 0) , A{0,1,3}(x) = η(x)− (0 1 0 0) ,
A{0,1,4}(x) = η(x)− (0 0 1 0) , A{0,2,3}(x) = η(x)− (0 0 0 1) ,
A{0,2,4}(x) = η(x)− (0 1 1 1) , A{0,3,4}(x) = η(x)− (1 0 1 1) ,
A{1,2,3}(x) = η(x)− (1 0 0 1) , A{1,2,4}(x) = η(x)− (1 1 1 1) ,
A{1,3,4}(x) = η(x)− (0 0 1 1) , A{2,3,4}(x) = η(x)− (0 1 1 0) .

For every subset Si of {0, 1, 2, 3, 4} of size 3, let Ui denote the set of the γ = m = 2b

roots of ASi
(x) in F , and denote by U the union

⋃10
i=1 Ii. Define the partition vector

P = (Ii)
10
i=1 so that Ui = {αµ}µ∈Ii . The code C is now defined as a [10m, 3m+1, 7m]

RS code over F whose set of code locators is U .
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Let the polynomials fs,t(x) and gs,t,u(x) be defined by (22) and (28), respectively.
It can be verified that each of the six sets{

f0,s(x)
g0,s,t(x) ,

f0,t(x)
g0,s,t(x) ,

fs,t(x)
g0,s,t(x)

}
, 0 < s < t ≤ 4 ,(38)

is simple over F . In particular, the polynomials—each of degree 2m—in every set
differ only in their constant terms. For example,

f0,1(x)
g0,1,2(x) = A{0,1,3}(x) ·A{0,1,4}(x) = x2m + (0 1 1 0) · xm + (0 1 0 0) · (0 0 1 0),
f0,2(x)
g0,1,2(x) = A{0,2,3}(x) ·A{0,2,4}(x) = x2m + (0 1 1 0) · xm + (0 0 0 1) · (0 1 1 1),
f1,2(x)
g0,1,2(x) = A{1,2,3}(x) ·A{1,2,4}(x) = x2m + (0 1 1 0) · xm + (1 0 0 1) · (1 1 1 1)

(multiplications are in F ). Applying Corollary 3.6 to the proper partition vector
(Ii)

10
i=1, it follows that C contains a failing list of size 5.
The failing list in Figure 2 is obtained from the construction in the last proof by

taking F = GF(24), m = 1, η(x) = x, and βi = αi, where α is a root of x4 + x+ 1.
We turn next to proving Proposition 1.6, namely, to showing that the GS bound

is not tight for RS-admissible quadruples (�, n, d, q) = (4, 10, 7, q), where q is odd. The
next lemma characterizes the structure of a failing list of size 5 in a (10,M, 7) code
over any field.

Lemma 4.4. Let q = ph, where p is a prime. Every failing list of size 5 in a
(10,M, 7) code over GF(q) is a (4, 3)-configuration with respect to a proper partition
vector P = (Ii)

10
i=1, where |Ii| = 1 for all i. Every failing list of size 5 thus corresponds

to a BIBD(5, 3, 3).
Proof. The parameters � = 4, r = 3, n =

(
�+1
r

)
= 10, and d = 7 satisfy (6).

Therefore, by Proposition 2.3, every failing list of size 5 forms a (4, 3)-configuration
with respect to a partition vector P = (Ii)

10
i=1‖(I ′j)5j=1 for which (13)–(14) hold with

equality. Furthermore, since ρr(�) = ρ3(4) = 3/10 = 1 − d/n, the partition vector P
is proper; exactly r = 3 codewords agree on every position. We next show that each
set Ii has size 1.

Assume the contrary; since
∑10

i=1 |Ii| = 10, at least one of the partition elements,
say, I1, is empty. Without loss of generality, let S1 = {0, 1, 2} and let the sets I2
through I7 correspond, respectively, to S2 = {0, 1, 3}, S3 = {0, 1, 4}, S4 = {0, 2, 3},
S5 = {0, 2, 4}, S6 = {1, 2, 3}, and S7 = {1, 2, 4}. We have

7∑
i=2

|Ii| =
∑

0≤s<t≤2

( ∑
i : {s,t}⊆Si

|Ii|
)

= 9 ,

where the second equality follows from the equality in (13). Hence, either |I2|+ |I4|+
|I6| ≥ 5 or |I3| + |I5| + |I7| ≥ 5. Assuming the former inequality (the arguments for
the latter are similar) we obtain, again from (13),∑

s∈{0,1,2}

( ∑
i : {s,3}⊆Si

|Ii|
)
≥ 2(|I2|+ |I4|+ |I6|) ≥ 10 .

Therefore, there must be s ∈ {0, 1, 2} such that∑
i : {s,3}⊆Si

|Ii| ≥ 4 ,

thereby contradicting (13).
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Proof of Proposition 1.6. Assume to the contrary that there is a [10, 4, 7] RS code C
over GF(q), q odd, that contains a failing list L of size 5. By Lemma 4.4, this failing
list is a (4, 3)-configuration with respect to a proper partition vector P = (Ii)

10
i=1,

where |Ii| = 1 for all i. Let α1, α2, . . . , α10 be the code locators of C. The polynomials
ASi

(x), which are defined by (21), can be written, without loss of generality, as

A{0,1,2}(x) = x− α1 , A{0,1,3}(x) = x− α2 , A{0,1,4}(x) = x− α3 ,
A{0,2,3}(x) = x− α4 , A{0,2,4}(x) = x− α5 , A{0,3,4}(x) = x− α6 ,
A{1,2,3}(x) = x− α7 , A{1,2,4}(x) = x− α8 , A{1,3,4}(x) = x− α9 ,
A{2,3,4}(x) = x− α10 .

The polynomials fs,t(x), 0 ≤ s < t ≤ 4, are defined accordingly by (22).
By Lemma 3.1(b), the ten polynomials fs,t(x) must satisfy (23). In particular,

for every 0 ≤ s < t ≤ 4, the three polynomials f0,s(x)/g0,s,t, f0,t(x)/g0,s,t(x), and
fs,t(x)/g0,s,t(x), which take the form (x− αi1)(x− αi2), must satisfy the difference
condition. By Lemma 3.2, this happens if and only if the code locators satisfy the
following six equations:

(α1α3 − α7α9)(α1 + α3 − α4 − α6) = (α1α3 − α4α6)(α1 + α3 − α7 − α9),(39)

(α1α2 − α8α9)(α1 + α2 − α5 − α6) = (α1α2 − α5α6)(α1 + α2 − α8 − α9),(40)

(α2α3 − α7α8)(α2 + α3 − α4 − α5) = (α2α3 − α4α5)(α2 + α3 − α7 − α8),(41)

(α2α6 − α7α10)(α2 + α6 − α1 − α5) = (α2α6 − α1α5)(α2 + α6 − α7 − α10),(42)

(α3α6 − α8α10)(α3 + α6 − α1 − α4) = (α3α6 − α1α4)(α3 + α6 − α8 − α10),(43)

(α2α4 − α9α10)(α2 + α4 − α3 − α5) = (α2α4 − α3α5)(α2 + α4 − α9 − α10).

Defining

ε7 = (α3 − α4)/(α7 − α4), ε8 = (α2 − α5)/(α8 − α5),

and ε9 = (α1 − α6)/(α9 − α6),(44)

(39)–(41) can be rewritten as
 α2−α4 α3−α5 0

α1−α4 0 α3−α6

0 α1−α5 α2−α6




 ε7

ε8
ε9


 =


 α2−α4+α3−α5

α1−α4+α3−α6

α1−α5+α2−α6


 .(45)

Now, if the matrix in (45) were nonsingular, then the unique solution of (45) would be
ε7 = ε8 = ε9 = 1, thereby requiring from (44) that certain code locators be identical,
namely, α7 = α3, α8 = α2, and α9 = α1. Since this is impossible, the matrix in (45)
must be singular, and this occurs if and only if

−(α1 − α5)(α2 − α4)(α3 − α6) = (α1 − α4)(α2 − α6)(α3 − α5) .(46)

Reiterating the analysis, with (39)–(41) now replaced by (41)–(43), we obtain

−(α6 − α5)(α2 − α4)(α3 − α1) = (α6 − α4)(α2 − α1)(α3 − α5) .(47)

Subtracting (46) from (47) and simplifying the result yield

2(α1 − α6)(α2 − α4)(α3 − α5) = 0 .

However, this is a contradiction whenever q is odd. We thus conclude that C cannot
contain the failing list L.
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4.4.3. List-10 decoders for [11, 3, 9] RS codes.
Proof of Proposition 1.7. Assume to the contrary that there is an [11, 3, 9] RS code

over GF(2h) that contains a failing list L of size 11. By Proposition 2.3 and by prop-
erty B1 in Proposition 2.8, the failing list corresponds to a symmetric BIBD(11, 5, 2)
(which has 11 blocks); namely, it forms a (10, 5)-configuration with respect to a proper
partition vector P = (Ii)i such that eleven partition elements Ii have size 1, whereas
all the other partition elements in P are empty.

As this BIBD is essentially unique (see [2, p. 73]), we can assume, without loss of
generality, that the nonempty partition elements in P are Ii = {i}, 1 ≤ i ≤ 11, where
S1, S2, . . . , S11 are given by

S1 = {1, 3, 4, 5, 9} , S2 = {2, 4, 5, 6, 10} , S3 = {0, 3, 5, 6, 7} ,
S4 = {1, 4, 6, 7, 8} , S5 = {2, 5, 7, 8, 9} , S6 = {3, 6, 8, 9, 10} ,
S7 = {0, 4, 7, 9, 10} , S8 = {0, 1, 5, 8, 10} , S9 = {0, 1, 2, 6, 9} ,
S10 = {1, 2, 3, 7, 10} , S11 = {0, 2, 3, 4, 8} .

Define ASi
(x) and fs,t(x) accordingly by (21) and (22). In particular, we obtain

f0,2(x) = (x− α9)(x− α11) , f0,7(x) = (x− α3)(x− α7) ,
f0,5(x) = (x− α3)(x− α8) , f0,10(x) = (x− α7)(x− α8) ,
f2,7(x) = (x− α5)(x− α10) , f2,5(x) = (x− α2)(x− α5) ,
f2,10(x) = (x− α2)(x− α10) .

By Lemma 3.1(b), each of the following sets of three polynomials must satisfy the
difference condition: {f0,2(x), f0,7(x), f2,7(x)}, {f0,2(x), f0,5(x), f2,5(x)}, and {f0,2(x),
f0,10(x), f2,10(x)}. By Lemma 3.2 we then obtain the following equations on the code
locators:

(α9 + α11 − α3 − α7)(α9α11 − α5α10) = (α9 + α11 − α5 − α10)(α9α11 − α3α7),(48)

(α9 + α11 − α3 − α8)(α9α11 − α2α5) = (α9 + α11 − α2 − α5)(α9α11 − α3α8),(49)

(α9 + α11 − α7 − α8)(α9α11 − α2α10) = (α9 + α11 − α2 − α10)(α9α11 − α7α8).(50)

Defining

ε3 =
(α11−α3)(α9−α3)

α5 − α3
, ε7 =

(α11−α7)(α9−α7)

α10 − α7
, and ε8 =

(α11−α8)(α9−α8)

α2 − α8
,

we can rewrite (48)–(50) as
 1 1 0

1 0 1
0 1 1




 ε3

ε7
ε8


 =


 α11−α3+α9−α7

α11−α3+α9−α8

α11−α8+α9−α7


 .

Summing up these equations and recalling that the field size is even, the left-hand
side is identically zero, while the right-hand side equals the nonzero value α9 + α11,
which is a contradiction.

4.5. The low-rate range: Proposition 1.5.
Proof of Proposition 1.5. The proof is based on Lemma 3.7. One can verify that

a sufficient condition for (33) to hold is that {ψs,t}s,t take either the form ψs,t = ψsψt

or the form ψs,t = ψs + ψt for some �+1 values ψ0, ψ1, . . . , ψ�. The values ψs must
form a weak Sidon set (in the respective group) so as to have distinct values of ψs,t.
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We now consider the two types of polynomials presented in section 4.2, taking e to
be k−1.

Using polynomials of type 1 as the
(
�+1
2

)
polynomials {f∗

s,t(x)}0≤s<t≤� in Lemma
3.7, we require that (k−1)|(q−1), and we select the respective constant terms ψ0,1, ψ0,2,
. . . , ψ�−1,� so that they satisfy ψs,t = ψsψt. The set {ψ0, ψ1, . . . , ψ�} should be a weak
Sidon set of size �+1 in the multiplicative group of GF(q). If α is a primitive element
in GF(q) and ψs = αξs , then an equivalent requirement is that {ξ0, ξ1, . . . , ξ�} be a
weak Sidon set contained in the additive group of Z(q−1)/(k−1).

When using polynomials of type 2 over GF(ph) as {f∗
s,t(x)}0≤s<t≤�, we require

that k−1 = pb, where b < h, and we select the constant terms so that they satisfy
ψs,t = ψs+ψt. The set {ψ0, ψ1, . . . , ψ�} should be a weak Sidon set of size �+1 in the
range, Rη, of a linearized polynomial η(x) of degree pb over F with pb simple roots in
GF(ph). This range is an (h−b)-dimensional linear space over GF(p) and is therefore
isomorphic to Z

h−b
p .

It is known that the additive group of Z(q−1)/(k−1) contains a weak Sidon set of
size �+1 whenever

�2 · (1 + o(1)) < (q−1)/(k−1) ,(51)

where o(1) stands for an expression that goes to zero as � → ∞ [6, Thm. 1]. In
particular, for quadruples (�, n, d, q), where q = p2m, n = q − 1, and k = n− d+ 1 =
pm, we get that (k−1)|(q−1). The size of Z(q−1)/(k−1) is pm + 1. By [6, Thm. 1],
Z(q−1)/(k−1) contains some weak Sidon set of size �+1, where � satisfies (51). It follows
that �2 < n/(k − 1), and thus d/n ≥ 1− 2/(�(�+ 1)), as required. We conclude that
there are infinitely many quadruples that satisfy the requirements of Proposition 1.5
(part (a)).

For the group Z
h−b
p in part (b) of Proposition 1.5, the known bounds imply a

weak Sidon set of size � whenever

�2+o(1) < q/(n−d) = ph−b(52)

(see [1, sect. 5]). If n = q, such a list size � also satisfies the requirement d/n ≥
1 − 2/(�(� + 1)). We can therefore find infinitely many quadruples (�, n = ph, d =
ph−pb, q = ph) satisfying the conditions of the proposition (part (b)).

Appendix.
Proof of Theorem 1.1. As shown in [7], the Guruswami–Sudan algorithm is a

list-� decoder with a decoding radius τ if there is a positive integer m such that the
following two conditions hold:

r(n− τ) ≥ m+ �(k−1) and(53) (
r+1
2

)
n < (�+1)m+

(
�+1
2

)
(k−1) .(54)

(In terms of [7], m+�(k−1) is the weighted degree of the bivariate polynomial Q(x, y)
which is computed by the algorithm.)

It can be easily verified that every integer τ that satisfies (53)–(54) for some
positive integer m must be smaller than τ�(n, d); therefore, τ ≤ �τ�(n, d)� − 1. Next
we show the converse result: we prove that τ = �τ�(n, d)� − 1 satisfies (53)–(54) for
some positive integer m. Define

m′ = 1
�+1

((
r+1
2

)
n− (�+1

2

)
(k−1)

)
.
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Since (k−1)/n < ρr+1, the value of m
′ is positive. We can now incorporate m′ into

the expression for τ�(n, d) in (5) to obtain

τ�(n, d) =
1

(�+1)r

((
�+1
2

)
(n− (k−1))− (�+1−r

2

)
n
)
= 1

r (rn−m′ − �(k−1)) .(55)

If τ�(n, d) is an integer, then m′ must also be an integer; in this case, m = m′+1 and
τ = τ�(n, d)− 1 satisfy (53)–(54).

On the other hand, if τ�(n, d) is not an integer, then

rτ = r(�τ�(n, d)� − 1) < rn−m′ − �(k−1) ,

and, therefore,

rτ ≤ rn− �m′� − �(k−1) .

Hence, m = �m′� and τ = �τ�(n, d)� − 1 satisfy (53). Furthermore, this value of m is
positive and satisfies (54) as well.

Fix the triple (�, n, d), and consider the function

t�,n,d(r) =
1

(�+1)r

((
�+1
2

)
d− (�+1−r

2

)
n
)

.

It can be easily verified that t�,n,d(r+1) ≥ t�,n,d(r) only for 1 − d/n ≥ (r(r+1))/
(�(�+1)) = ρr+1. Hence, the value of r which maximizes the decoding radius of the
Guruswami–Sudan algorithm is the one for which 1− d/n = (k−1)/n ∈ [ρr, ρr+1), as
claimed in Theorem 1.1.
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Abstract. There are a large number of linear block codes satisfying the chain condition. Their
weight hierarchies are called chain good and form an important group in classifying all possible
weight hierarchies. In this paper, we present a series of new sufficient conditions to determine which
kinds of sequences are chain good weight hierarchies. Our results are efficient for the determination
of the chain good weight hierarchies with high dimension.
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1. Introduction. The generalized Hamming weight and weight hierarchy were
first introduced by Wei in [7] and Helleseth, Kløve, and Mykkeltveit in [4]. The rth
generalized Hamming weight of a q-ary [n, k] linear block code C is defined as

dr = min{|χ(Dr)| : Dr is an [n, r] linear subcode of C},
where χ(Dr) is the support set of Dr, i.e.,

χ(Dr) =
⋃
c∈Dr

{e : ce �= 0, where c = (c1, . . . , cn)}.

The weight hierarchy of C is denoted by (d1, . . . , dk). The chain condition was first
introduced by Wei and Yang in [8]. We say that the code C satisfies the chain
condition if there exist k subcodes Dr(1 ≤ r ≤ k) ⊆ C such that

dim(Dr) = r, |χ(Dr)| = dr, and D1 ⊂ D2 ⊂ · · · ⊂ Dk = C.

An integer sequence (a1, . . . , ak) is called a “chain good weight hierarchy over GF (q)”
if it is a weight hierarchy of an [n, k] (n = ak) linear block code over GF (q) satisfying
the chain condition. In this paper, q is a fixed prime power. A chain good weight
hierarchy over GF (q) is also called a “chain good weight hierarchy.”

There are a large number of linear block codes satisfying the chain condition;
see [1, 2, 3, 5, 6, 8]. Their chain good weight hierarchies form an important group
in classifying all possible weight hierarchies and they receive much attention. In [1]
and [6], some sufficient conditions were given for the determination of the chain good
weight hierarchies with general dimension over GF (q). However, these conditions
are not efficient for the determination of the chain good weight hierarchies with high

∗Received by the editors October 24, 2002; accepted for publication (in revised form) May 19,
2003; published electronically November 4, 2003. This work was supported by National Science
Foundation of China grant 10271116.

http://www.siam.org/journals/sidma/17-2/41668.html
†Computer Science & Engineering Department, Shanghai Jiao Tong University, Hua Shan Road

1954, Shanghai, 200030 China (yluo@cs.sjtu.edu.cn, jsluo@nankai.edu.cn).
‡Institute of Systems Science, Academy of Mathematics & System Sciences, Chinese Academy of

Sciences, Beijing 100080, China (xinmei@public3.bta.net.cn).
§Institute for Experimental Mathematics, Duisburg-Essen University, Ellernstr. 29, 45326 Essen,

Germany (vinck@exp-math.uni-essen.de).

196



CHAIN GOOD WEIGHT HIERARCHIES WITH HIGH DIMENSION 197

dimension. In many cases, the lower bounds of these conditions increase exponentially
with the dimension k; see the remarks of Theorems 2.1 and 2.2 in section 2.

In this paper, we present a series of new sufficient conditions to determine the
chain good weight hierarchies with general dimension over GF (q). The lower bounds
of our new conditions increase linearly with the dimension k; see Corollaries 2.5 and
2.6 of section 2. They are more efficient than previous methods for the determination
of the chain good weight hierarchies with high dimension.

Some preliminaries and our main results are introduced in section 2. In section 3,
some interesting properties are shown. The proofs of our main results are presented
in sections 4 and 5. For q = 3 and k = 6, 7, 8, the improvements on [1] and [6] are
listed in section 6. Section 7 is the conclusion.

2. Preliminaries and main results. A positive integer sequence (a1, . . . , ak)
is called chain permissible over GF (q) if qir−1 ≥ ir ≥ 0 for 1 ≤ r ≤ k − 1, where

ir = ak−r − ak−r−1 and a0 = 0.(2.1)

We know that the chain good weight hierarchies are chain permissible [3] and there
also exist some chain permissible sequences which do not correspond to any weight
hierarchies [2]. From (2.1), it is easy to see that the parameter sequence (i0, . . . , ik−1)
can be determined from the sequence (a1, . . . , ak) and vice versa. Let

πr = (1− q)

r−1∑
j=0

ij + ir =

r∑
j=1

(ij − qij−1) + i0 for 0 ≤ r ≤ k − 1.(2.2)

Then

ir =

r∑
j=0

πjSr,j for 0 ≤ r ≤ k − 1,(2.3)

where Sj,l = (q − 1)qj−l−1 for j > l, and Sj,j = 1. For a chain permissible sequence
(a1, . . . , ak), it is easy to see from (2.2) that

π0 ≥ · · · ≥ πk−1. (πr may be negative for r ≥ 1.)(2.4)

Denote

ιr = �ir/qr� and pr = ir − ιrq
r for 0 ≤ r ≤ k − 1(2.5)

and

δr =

{
0 if 0 ≤ pr+1 ≤ prq,
1 if prq < pr+1 < qr+1.

(2.6)

Then for any chain permissible sequence, it was shown in [1] that

ιr ≥ ιr+1 + δr.(2.7)

The following theorems, Theorems 2.1 [1] and 2.2 [6], are two methods for the deter-
mination of the chain good weight hierarchies.

Theorem 2.1 (see [1]). A chain permissible sequence (a1, . . . , ak) is a chain good
weight hierarchy if

ιk−3 ≥ (q − 1) +

k−4∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1).(2.8)
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Remark. For fixed q, it is easy to see that the lower bound of condition (2.8) is
greater than qk−3/2 if δk−4 = 1 and pk−3 − qpk−4 is small positive; it is also greater
than qk−4/2 if δk−5 = 1 and pk−4 − qpk−5 is small positive, and so on. Therefore,
in many cases, the lower bound of the condition (2.8) increases exponentially with
the dimension k. By using (2.7) for a chain permissible sequence, we know that the
exponential increase of ιk−3 with k implies the exponential increase of ιr with k for
0 ≤ r ≤ k − 4.

Theorem 2.2 (see [6]). A chain permissible sequence (a1, . . . , ak) is a chain good
weight hierarchy if

ιk−2 ≥
k−3∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1).(2.9)

Remark. By the same arguments as in the remark for Theorem 2.1, we know that
the lower bound of condition (2.9) also increases exponentially with the dimension
k in many cases. The exponential increase of ιk−2 with k implies the exponential
increase of ιr with k for 0 ≤ r ≤ k − 3.

Therefore, Theorems 2.1 and 2.2 are not so efficient for large k. In this paper,
we present a series of new sufficient conditions, the lower bounds of which increase
linearly with the dimension k; see Corollaries 2.5 and 2.6. These new conditions are
more efficient for the determination of the chain good weight hierarchies with high
dimension. The following theorem provides an original idea about how to give a
sufficient condition by using the parameters π0, . . . , πΓ, where 0 ≤ Γ ≤ k − 2.

Theorem 2.3. For a chain permissible sequence (a1, . . . , ak) and an integer Γ
such that 0 ≤ Γ ≤ k − 2, if there exist some integers θ0 ≥ θ1 ≥ · · · ≥ θk−2 ≥ 0
satisfying

ik−2 =

k−2∑
l=0

θlSk−2,l, where 0 ≤ θl ≤ πl for 0 ≤ l ≤ Γ,(2.10)

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3,(2.11)

then the chain permissible sequence is a chain good weight hierarchy.
In Theorem 2.3, condition (2.11) does not exist for Γ = k−2, k−3, and k−4. For

Γ = k − 2, the corresponding result of Theorem 2.3 was obtained in [6]; i.e., a chain
permissible sequence (a1, . . . , ak) is a chain good weight hierarchy if πk−2 ≥ 0. For
Γ = k−4, the corresponding result of Theorem 2.3 includes the cases where Γ = k−2
and k − 3.

Note that the integers θ0, . . . , θk−2 satisfying (2.10) do not exist if πΓ < 0. In
fact, if πΓ and ιk−2 are large positive, we can find some suitable θ0, . . . , θk−2 and get
the following theorem.

Theorem 2.4. Let (a1, . . . , ak) be a chain permissible sequence and let Γ be an
integer such that 0 ≤ Γ ≤ k− 4. Then (a1, . . . , ak) is a chain good weight hierarchy if

πΓ ≥ (k − 2)q, ιk−2 ≥ (k − 2)(q − 1),(2.12)

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3.(2.13)
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Furthermore, (a1, . . . , ak) is a chain good weight hierarchy if

ιΓ ≥ (k − 2)q +

Γ−1∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1),(2.14)

ιk−2 ≥ (k − 2)(q − 1),(2.15)

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3.(2.16)

Note that, when Γ = k − 4, (2.13) and (2.16) do not exist.
Theorem 2.4 presents a series of new sufficient conditions by using a different

Γ. A large number of new chain good weight hierarchies are found by using this
theorem (see section 6). In particular, from the second part of Theorem 2.4, we get
two important results, Corollaries 2.5 and 2.6.

Corollary 2.5. Let Γ be a fixed nonnegative integer. A chain permissible
sequence (a1, . . . , ak), where k ≥ Γ + 6, is a chain good weight hierarchy if

ιk−2 ≥ (k − 2)(q − 1) +

Γ−1∑
r=0

qr+1 and(2.17)

ιj−1 ≥ ιj + 2 for Γ + 2 ≤ j ≤ k − 3.(2.18)

Remark. In Corollary 2.5, the lower bound of condition (2.17) increases linearly
with the dimension k. The linear increase of ιk−2 with k only implies the linear
increase of ιr with k for 0 ≤ r ≤ k − 3. Therefore, in the determination of the chain
good weight hierarchies with high dimension, Corollary 2.5 is more efficient than
Theorems 2.1 and 2.2. By the same arguments, we have Corollary 2.6. In Corollary
2.6, the lower bound on the condition for ιk−2 is smaller, but a larger k is needed.

Corollary 2.6. Let Γ be a fixed nonnegative integer. A chain permissible
sequence (a1, . . . , ak), where k ≥∑Γ−1

r=0 qr+1 + 6, is a chain good weight hierarchy if

ιk−2 ≥ (k − 2)(q − 1) and(2.19)

ιj−1 ≥ ιj + 2 for Γ + 2 ≤ j ≤ k − 3.(2.20)

3. Some basic lemmas. In this section, we give some interesting properties,
which are useful in establishing our main results. In section 3.1, two types of expres-
sions are introduced. We show that a nonnegative integer having a type I expression
can also be expressed in type II. Then, in section 3.2, a symbol R(·, ·) is used to
describe the relation of two expressions. In the last subsection, we introduce two new
parameters, π∗

j and Tj , of a chain permissible sequence.

3.1. Two types of expressions. For nonnegative integers z0, . . . , zJ , let [z0,

· · · , zJ ] be the expression
∑J
l=0 zlSJ,l, where J ≥ 1. We say that [z0, . . . , zJ ] =

[y0, . . . , yJ ] if zl = yl for 0 ≤ l ≤ J . We say that [z0, . . . , zJ ] and [y0, . . . , yJ ] have the

same value if
∑J
l=0 zlSJ,l =

∑J
l=0 ylSJ,l. Let

D[z0, . . . , zJ ] = [z0 −∆, z1 +∆(q − 1), . . . , zJ +∆(q − 1)],(3.1)

where ∆ = � z0−z1q �. Then D[z0, . . . , zJ ] and [z0, . . . , zJ ] have the same value. The

expression [z0, . . . , zJ ] is called type I if

zl ≥ zl+1 ≥ 0 for all 0 ≤ l ≤ J − 1.(3.2)



200 YUAN LUO, WENDE CHEN, AND A. J. HAN VINCK

It is called type II if

zl+1 + q > zl ≥ zl+1 ≥ 0 for all 0 ≤ l ≤ J − 1.(3.3)

Furthermore, we have the following property.
Lemma 3.1. Let [z0, . . . , zJ ] be an expression of type I; then an expression of type

II having the same value can be given by [z
(J)
0 , . . . , z

(J)
J ], where

[z
(l)
J−l, . . . , z

(l)
J ] = D[zJ−l, z

(l−1)
J−l+1, . . . , z

(l−1)
J ] for 1 ≤ l ≤ J, z

(0)
J = zJ .(3.4)

Proof. For l = 1, it is easy to see that [z
(1)
J−1, z

(1)
J ] = D[zJ−1, zJ ] is type II. For

l = t, suppose [z
(t)
J−t, . . . , z

(t)
J ] is type II. Then for l = t+ 1, the expression

[z
(t+1)
J−t−1, . . . , z

(t+1)
J ] = D[zJ−t−1, z

(t)
J−t, . . . , z

(t)
J ]

is also type II. Therefore, by induction, [z
(J)
0 , . . . , z

(J)
J ] is an expression of type II.

Furthermore, [z
(J)
0 , . . . , z

(J)
J ] and [z0, z1, . . . , zJ ] have the same value since the operator

D does not change the value of an expression.

3.2. A relation R of two expressions. Let SUMj and SUMj+1 be two ex-
pressions such that

SUMj :

j∑
l=0

αj,lSj,l + λj,l and SUMj+1 :

j+1∑
l=0

αj+1,lSj+1,l + λj+1,l,(3.5)

where αj,l, αj+1,l, λj,l(< Sj,l), and λj+1,l(< Sj+1,l) are nonnegative integers. We say
that

R(SUMj , SUMj+1) is true(3.6)

if the coefficients of SUMj and SUMj+1 satisfy

αj,l ≥ αj,l+1 + ε(λj,l+1),(3.7)

αj+1,l ≥ αj+1,l+1 + ε(λj+1,l+1),(3.8)

αj,l ≥ αj+1,l + ε(λj+1,l),(3.9)

where ε(x) = 0 for x = 0 and ε(x) = 1 otherwise. By using the symbol R(·, ·),
Theorem 2 of [6] can be given as follows.

Lemma 3.2 (see [6]). For a chain permissible sequence (a1, . . . , ak), if there exist
nonnegative integers αj,l and λj,l(< Sj,l) such that

Ej : ij =

j∑
l=0

αj,lSj,l + λj,l for 0 ≤ j ≤ k − 1 and(3.10)

R(Ej , Ej+1) is true for 0 ≤ j ≤ k − 2,(3.11)

then it is a chain good weight hierarchy.
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3.3. New parameters: π∗
j and Tj. For a chain permissible sequence (a1, . . . ,

ak), the relation between the parameter sequences (i0, . . . , ik−1) and (π0, . . . , πk−1) is
obtained in (2.2) and (2.3). Now, we introduce a new parameter sequence (π∗

0 , . . . ,
π∗
k−1), which is useful for studying the bound of ij (0 ≤ j ≤ k−1). For 0 ≤ Γ ≤ k−4,

let

π∗
l = πl for 0 ≤ l ≤ Γ and π∗

l = πΓ for Γ + 1 ≤ l ≤ k − 1.(3.12)

Denote

Tj =

j∑
l=0

π∗
l Sj,l for 0 ≤ j ≤ k − 1.(3.13)

Lemma 3.3. For a chain permissible sequence (a1, . . . , ak), we have

ij ≤ Tj for 0 ≤ j ≤ k − 1.(3.14)

If iΓ+1 > iΓ+2/q, we have

ij < Tj for j ≥ Γ + 2.(3.15)

Proof. For a chain permissible sequence (a1, . . . , ak), it is shown in (2.4) that
π0 ≥ · · · ≥ πk−1. Then πl ≤ π∗

l for 0 ≤ l ≤ k − 1 and

ij =

j∑
l=0

πlSj,l ≤ Tj for 0 ≤ j ≤ k − 1.

When iΓ+1 > iΓ+2/q, if there exists an integer j ≥ Γ + 2 such that ij = Tj , then

ij =

j∑
l=0

πlSj,l =

j∑
l=0

π∗
l Sj,l

⇒πj = πΓ

⇒
j∑

t=Γ+1

(it − qit−1) = 0

⇒it−1 = it/q for Γ + 1 ≤ t ≤ j,

which is impossible.

4. Proof of Theorem 2.3. In this section, the proof of Theorem 2.3 is given in
two parts. The first part is presented for Γ = k − 4 in Lemma 4.2, i.e., Theorem 4 of
[6]. Now, we have a new description of the proof, which is useful in establishing the
whole proof of Theorem 2.3. The second part is presented for Γ ≤ k− 5. In addition,
the following lemma, which is derived from Lemma 5 of [2], allows us to pay attention
only to some special chain permissible sequences satisfying ik−1 = qik−2.

Lemma 4.1 (see [2]). For fixed integers i∗0, . . . , i
∗
k−2, let A be the set of chain

permissible sequences with dimension k such that ij = i∗j (0 ≤ j ≤ k− 2). Then all of
the sequences in A are chain good weight hierarchies if the sequence in A satisfying
ik−1 = qik−2 is a chain good weight hierarchy.
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Lemma 4.2 (see [6]). For a chain permissible sequence (a1, . . . , ak), if there exist
some integers θ0 ≥ θ1 ≥ · · · ≥ θk−2 ≥ 0 such that

ik−2 =

k−2∑
l=0

θlSk−2,l, where θl ≤ πl for 0 ≤ l ≤ k − 4,(4.1)

then it is a chain good weight hierarchy.
Proof. By using Lemmas 3.1 and 4.1, we can assume that [θk−3, θk−2] is type II

and ik−1 = qik−2. Since

Ej : ij =

j∑
l=0

πlSj,l for 0 ≤ j ≤ k − 4,

Ek−2 : ik−2 =

k−2∑
l=0

θlSk−2,l,

Ek−1 : ik−1 = qik−2 =

k−2∑
l=0

θlSk−1,l + θk−2,

it follows that this lemma can be obtained by using Lemma 3.2 if there exists a suitable
expression Ek−3 for ik−3 such that R(Ek−4, Ek−3) and R(Ek−3, Ek−2) are both true.

In the following paragraphs, after showing two bounds of ik−3, a suitable ex-
pression Ek−3 is given in (4.4). The first bound is an upper bound obtained from
Lemma 3.3:

ik−3 ≤ Tk−3 =

k−3∑
l=0

π∗
l Sk−3,l.(4.2)

The second bound is a lower bound. Denote Λ =
∑k−3
l=0 θlSk−3,l; we have

ik−3 ≥ �ik−2/q� = Λ(4.3)

since ik−3 ≥ ik−2/q and [θk−3, θk−2] is type II. Then a suitable expression Ek−3 for
ik−3 is obtained in (4.4), where the coefficients are less than or equal to those of Tk−3

and greater than or equal to those of Λ. Denote

el = π∗
l − θl for 0 ≤ l ≤ k − 3,

L = max

{
δ : ik−3 ≥ Λ +

δ∑
l=0

elSk−3,l

}
(let L = −1 if δ does not exist),

g = ik−3 − Λ−
L∑
l=0

elSk−3,l;

we have

ik−3 = Λ+

L∑
l=0

elSk−3,l + g

=

L∑
l=0

π∗
l Sk−3,l + ((θL+1 + g1)Sk−3,L+1 + g2) +

k−3∑
l=L+2

θlSk−3,l,(4.4)
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where g1 = �g/Sk−3,L+1� < ek−3 and g2 = g−g1Sk−3,L+1 < Sk−3,L+1. For L = k−4,
the last part of (4.4) does not exist. For L = k − 3, the last two parts of (4.4) do not
exist.

Proof of Theorem 2.3 when Γ ≤ k − 5. By using Lemmas 3.1 and 4.1, we can
assume that [θΓ+1, . . . , θk−2] is type II and ik−1 = qik−2.

From Lemma 3.2, we know that this theorem can be obtained if there exist the
following expressions:

Ej : ij =

j∑
l=0

π∗
l Sj,l for 0 ≤ j ≤ Γ,(4.5)

Ej : ij =

uj−1∑
l=0

π∗
l Sj,l +

j∑
l=uj

αj,lSj,l + λj,ηj for Γ + 1 ≤ j ≤ k − 3,(4.6)

Ek−2 : ik−2 =

k−2∑
l=0

θlSk−2,l,

Ek−1 : ik−1 =

k−2∑
l=0

θlSk−1,l + θk−2,

where αj,l, uj , ηj(≥ uj), and λj,ηj (< Sj,ηj ) are nonnegative integers to be determined
under the true condition R(Ej , Ej+1). Note that expression (4.5) is fixed.

In the following paragraphs, the construction for (4.6) is given in three steps. In
Step 1, an expression Ej is obtained from Ej+1 by induction in (4.8). Then, in Step
2, we show that R(Ej , Ej+1) is true. However, in some cases, Ej should be changed.
The changes are given in the last step.

Step 1. Now, we show how to get the expression (4.6) by induction. By the same
arguments as in the proof of Lemma 4.2, we get an expression Ek−3 from Ek−2 such
that

R(Ek−3, Ek−2) is true and uk−3 = ηk−3.

For any integer j : Γ+1 ≤ j ≤ k− 4, assume that Ej+1 has been obtained from Ej+2

satisfying

R(Ej+1, Ej+2) is true and uj+1 = ηj+1.

Then, by the same arguments as in the proof of Lemma 4.2, we get an expression Ej
in (4.8) from Ej+1 if

[αj+1,u∗
j+1

, . . . , αj+1,j+1] is type II,(4.7)

where u∗
j+1 = max{uj+1,Γ + 1}. The corresponding arguments are

Λ =

uj+1−1∑
l=0

π∗
l Sj,l +

j∑
l=uj+1

αj+1,lSj,l ≤ �ij+1/q� ≤ ij (by using (4.7)),

el = π∗
l − αj+1,l for uj+1 ≤ l ≤ j,

L = max


δ : ij ≥ Λ +

δ∑
l=uj+1

elSj,l


 (if δ doesn’t exist, let L = uj+1 − 1),

g = ij − Λ−
L∑

l=uj+1

elSj,l.
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Denote g1 = �g/Sj,L+1� and g2 = g − g1Sj,L+1; we have

ij = Λ+

L∑
l=uj+1

elSj,l + g

=

L∑
l=0

π∗
l Sj,l + ((aj+1,L+1 + g1)Sj,L+1 + g2) +

j∑
l=L+2

aj+1,lSj,l

=

L∑
l=0

π∗
l Sj,l +

j∑
l=L+1

αj,lSj,l + λj,L+1,(4.8)

where αj,L+1 = αj+1,L+1+g1, αj,l = αj+1,l for L+2 ≤ l ≤ j and λj,L+1 = g2 < Sj,L+1.
Note that in (4.8) the coefficients are greater than or equal to those of Λ and less than
or equal to those of Tj . In addition,

uj = ηj = L+ 1 ≥ uj+1 = ηj+1.(4.9)

Step 2. By analyzing two cases of (4.9), we know that R(Ej , Ej+1) is true.
• If L+ 1 > uj+1, then it is easy to verify that R(Ej , Ej+1) is true.
• Assume that L+1 = uj+1. By using (2.11), we have ij− ij+1/q ≥ Sj,0. Then

g = ij − Λ ≥ ij − �ij+1/q� ≥ Sj,0 and

g1 ≥ �Sj,0/Sj,L+1� ≥ 1,(4.10)

which implies that R(Ej , Ej+1) is true.
Step 3. In Step 1, we construct Ej from Ej+1 by induction when Ej+1 satisfies

(4.7). For Ek−2, condition (4.7) is obvious since [θΓ+1, . . . , θk−2] is type II. Now we
should make Ej have the same property, where Γ + 2 ≤ j ≤ k − 3.

Suppose Ej+1 has property (4.7), and Ej is obtained in Step 1. In the following
two cases, we present a method to make [αj,u∗

j
, . . . , αj,j ] a type II expression. Note

that u∗
j denotes max{µj ,Γ + 1}.
• Case 1. u∗

j < j.
– If uj < Γ+1, then, from (4.8) and (4.9), we know that u∗

j = Γ+1 = u∗
j+1,

and [αj,u∗
j
, . . . , αj,j ] = [αj+1,u∗

j+1
, . . . , αj+1,j ] is type II.

– If uj ≥ Γ + 1, then u∗
j = uj . Let

[α′
j,uj

, . . . , α′
j,j ] = D[αj,uj , . . . , αj,j ].

Then it is easy to verify that [α′
j,uj

, . . . , α′
j,j ] is type II since [αj,uj+1, . . . ,

αj,j ] = [αj+1,uj+1, . . . , αj+1,j ] is type II. Now, we get a new expression
for ij :

E′
j : ij =

uj−1∑
l=0

π∗
l Sj,l +

j∑
l=uj

α′
j,lSj,l + λj,uj .(4.11)

Ej can be replaced with E′
j since R(E

′
j , Ej+1) is true and [α′

j,uj
, . . . , α′

j,j ]
is type II.

• Case 2. u∗
j = j = uj > Γ + 1. Now Ej has the form ij =

∑j−1
l=0 π∗

l Sj,l + αj,j
and λj,ηj = 0. In order to have the type II property as before, Ej should be
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replaced with a new expression:

Ẽj : ij =

j−2∑
t=0

π∗
t Sj,t + α̃j,j−1Sj,j−1 + α̃j,j ,(4.12)

where [α̃j,j−1, α̃j,j ] = D[π∗
j−1, αj,j ], i.e.,

α̃j,j−1 = π∗
j−1 −∆j , α̃j,j = αj,j + (q − 1)∆j , ∆j = �(π∗

j−1 − αj,j)/q�.

It is easy to see that [α̃j,j−1, α̃j,j ] is type II. However, we do not know if

R(Ẽj , Ej+1) is true. In order to make R(Ẽj , Ej+1) true, all of the expressions
El(j ≤ l ≤ ω) should be changed, where ω is the integer such that

j = uj = uj+1 = · · · = uω > uω+1.

The new expressions for il are given by

Ẽl : il =

j−2∑
t=0

π∗
t Sl,t +

l∑
t=j−1

α̃l,tSl,t + λl,ηl for j ≤ l ≤ ω,(4.13)

where α̃l,j−1 = π∗
j−1 −∆j and α̃l,t = αl,t + (q − 1)∆j for j ≤ t ≤ l. λl,ηl is

the same as the corresponding term in El. Let ũl = j− 1. It is easy to verify
that R(Ẽl, Ẽl+1) is true for j ≤ l ≤ ω − 1 and that R(Ẽω, Eω+1) is also true.

Now, the induction given by Steps 1, 2, and 3 ends the proof.
Note that, when we construct Ej from Ej+1 by induction, if Case 2 of Step 3

occurs, then Case 1 of Step 3 will not appear in the next cycle. This is because,
in the next cycle, the expression for ij−1 obtained by using Step 1 has the form

Ej−1 : ij−1 =
∑j−2
l=0 π∗

l Sj−1,l + αj−1,j−1.

5. Proofs of Theorem 2.4 and two corollaries. The proof of Theorem 2.4
is based on Theorem 2.3 and the following three lemmas: Lemmas 5.1, 5.2, and 5.3.
Lemma 5.1 leads to the first part of Theorem 2.4. It tells us how to make use of
Theorem 2.3.

Lemma 5.1. For a chain permissible sequence (a1, . . . , ak) and a fixed integer
Γ : 0 ≤ Γ ≤ k − 4, if

πΓ ≥ (k − 2)q and ιk−2 ≥ (k − 2)(q − 1),

then there exist integers θ0 ≥ θ1 ≥ · · · ≥ θk−2 ≥ 0 such that

ik−2 =

k−2∑
l=0

θlSk−2,l, where θl ≤ πl for 0 ≤ l ≤ Γ.(5.1)

Proof. The proof of Lemma 5.1 is given in two steps. In the first step, an
initial expression for ik−2 is presented in (5.3). In the second step, the parameters
θ0, . . . , θk−2 satisfying (5.1) are obtained in (5.5) and (5.8), respectively. Denote

z = max

{
ρ : ik−2 ≥

ρ∑
r=0

π∗
rSk−2,r

}
(if ik−2 < π∗

0Sk−2,0, let z = −1),(5.2)
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where π∗
r is defined in (3.12). If z = k − 2 or k − 3, by using Lemma 3.3, the proof is

trivial since we can select θr = π∗
r for 0 ≤ r ≤ k−3 and θk−2 ≤ π∗

k−2. In the following
paragraphs, the proof is presented for z ≤ k − 4.

First, by using (5.2), an initial expression for ik−2 is obtained:

ik−2 =

z∑
r=0

π∗
rSk−2,r +

k−2∑
r=z+1

σrSk−2,r,(5.3)

where σz+1, . . . , σk−2 are nonnegative integers such that

σz+1 < π∗
z+1,

σr < Sk−2,r−1/Sk−2,r = q for z + 2 ≤ r ≤ k − 3,

σk−2 < Sk−2,k−3/Sk−2,k−2 = q − 1.

In particular, for z = −1, we have ik−2 =
∑k−2
r=0 σrSk−2,r, where σ0 is selected as

�ik−2/Sk−2,0�. From the condition ik−2 ≥ (k − 2)qSk−2,0, we know that

σ0 ≥ (k − 2)q when z = −1.(5.4)

Second, by adjusting (5.3) in the following two cases, (5.1) is obtained in (5.5)
and (5.8), respectively.

• Assume that σz+1 ≥ σz+2 + (k − z − 4)q + 1; then we have

θr = π∗

r for 0 ≤ r ≤ z,

θz+1 = σz+1 − (k − z − 4),

θr = σr + (k − r − 2)q − (k − r − 3) for z + 2 ≤ r ≤ k − 3,

θk−2 = σk−2.

(5.5)

This assumption implies that θz+1 ≥ θz+2. In addition, the condition (k −
2)q ≤ πΓ implies that θz+2 ≤ πΓ since θz+2 ≤ (k − 2)q.
• Assume that σz+1 < σz+2 + (k − z − 4)q + 1; we have

z ≥ 0.(5.6)

If z = −1, then the assumption denotes that σ0 < σ1+(k−3)q+1 ≤ (k−2)q,
which is opposite to (5.4). Let µ = �σz+1/q�; then

k − z − µ− 3 ≥ 0.(5.7)

If k−z−µ−3 < 0, then the assumption denotes that σz+1 < (k−z−3)q ≤ µq,
which is also impossible. By using (5.6), (5.7), and the condition (k−2)q ≤ πΓ,
we have




θr = π∗
r for 0 ≤ r ≤ z − 1,

θz = π∗
z − (k − z − µ− 3),

θz+1 = σz+1 + (k − z − µ− 3)q − (k − z − 4),

θr = σr + (k − r − 2)q − (k − r − 3) for z + 2 ≤ r ≤ k − 3,

θk−2 = σk−2.

(5.8)

Note that, in (5.8), since θz+1 = (σz+1 − µq) + (k− z − 3)q − (k− z − 4), we
have

(k − z − 2)q − (k − z − 3) ≥ θz+1 ≥ (k − z − 3)q − (k − z − 4),

which implies that θz ≥ θz+1 ≥ θz+2 and πΓ ≥ θz+1.
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In the following lemma, i.e., Lemma 5 of [1], a relation between the parameters
ιl and πl is introduced. Using this lemma, the second part of Theorem 2.4 can be
obtained from the first part of Theorem 2.4.

Lemma 5.2 (see [1]). For a chain permissible sequence with dimension k, if there
exists a positive integer l such that ιr = ιr+1 + δr for 0 ≤ r ≤ l − 1, then

ιl = πl +

l−1∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1).(5.9)

Lemma 5.3, a special case of Lemma 8 of [6], allows us to pay attention to some
special chain permissible sequences.

Lemma 5.3. For fixed nonnegative integers l(≤ k − 1), s, and F , if each chain
permissible sequence such that

ιj = ιj+1 + δj for 0 ≤ j ≤ l − 1,(5.10)

ιl ≥ s+

l−1∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1),(5.11)

ij−1 ≥ ij/q + Sj−1,0 for l + 2 ≤ j ≤ k − 3,(5.12)

ik−2 ≥ F(5.13)

is a chain good weight hierarchy, then the chain permissible sequences which satisfy
only (5.11), (5.12), and (5.13) are chain good weight hierarchies.

Proof of Theorem 2.4. For 0 ≤ Γ ≤ k − 4, by Lemma 5.1 and Theorem 2.3, we
know that the chain permissible sequences such that

πΓ ≥ (k − 2)q, ιk−2 ≥ (k − 2)(q − 1),

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3(5.14)

are chain good weight hierarchies. This is the first part of Theorem 2.4. Then by
Lemma 5.2, the chain permissible sequences such that

ιu = ιu+1 + δu for 0 ≤ u ≤ Γ− 1,

ιΓ ≥ (k − 2)q +

Γ−1∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1),

ik−2 ≥ (k − 2)qSk−2,0,

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3(5.15)

are chain good weight hierarchies. Finally, by using Lemma 5.3 with parameters l = Γ,
s = (k − 2)q, and F = (k − 2)qSk−2,0, the second part of this theorem is obtained.
Note that, for Γ = k − 4, conditions (5.14) and (5.15) do not exist.

Proof of Corollary 2.5. Corollary 2.5 follows from the second part of Theorem
2.4. Condition (2.15) is satisfied by (2.17). Condition (2.16) can be obtained by using
(2.18) and the inequality ij−1/q

j−1 ≥ ιj−1 ≥ ιj+2 ≥ ij/q
j+1, where Γ+2 ≤ j ≤ k−3.

We will show that the condition (2.14) is also satisfied.
For a chain permissible sequence (a1, . . . , ak), it follows from (2.7) and (2.18) that

ιΓ ≥ ιΓ+1 ≥ ιk−3 + 2(k − 4− Γ) ≥ ιk−2 + 2(k − 4− Γ).(5.16)
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Then by using (5.16) and (2.17), we have

ιΓ ≥ (k − 2)(q − 1) +

Γ−1∑
r=0

qr+1 + 2(k − 4− Γ) ≥ (k − 2)q +

Γ−1∑
r=0

(qr+1 − 2)

since k ≥ Γ + 6. Therefore, (2.14) is satisfied since

qr+1 − 2 ≥ δr(q
r+1 − 1) + qpr − pr+1.

The proof of Corollary 2.6 uses the same arguments as that of Corollary 2.5.

6. Improvements on [1] and [6]. Theorem 2.4 presents a series of sufficient
conditions for determining the chain good weight hierarchies by using different Γ’s.
In this section, using Theorem 2.4, we find many new chain good weight hierarchies,
which cannot be investigated using Theorems 2.1 and 2.2. For q = 3 and k = 6, 7, 8,
three examples of the improvements are given by using Corollaries 6.1, 6.2, and 6.3,
respectively.

Let (a1, . . . , ak) be a chain permissible sequence and let Γ be an integer such that
0 ≤ Γ ≤ k−4. From the second part of Theorem 2.4, we know that (a1, . . . , ak) is chain
good if (2.14), (2.15), and (2.16) are satisfied. Since δr(q

r+1−1)+qpr−pr+1 ≤ qr+1−2,
it is easy to see that a chain permissible (a1, . . . , ak) is chain good if

ιΓ ≥ (k − 2)q +

Γ−1∑
r=0

(qr+1 − 2),

ιk−2 ≥ (k − 2)(q − 1),

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3.

Then, Corollaries 6.1, 6.2, and 6.3 are obtained for q = 3 and Γ = k − 5 = 1,
Γ = k − 6 = 1, and Γ = k − 7 = 1, respectively.

Corollary 6.1. For q = 3 and k = 6, a chain permissible sequence is a chain
good weight hierarchy if

ι1 ≥ 13, ι4 ≥ 8, and i2 ≥ i3/3 + 6.(6.1)

Example. From Corollary 6.1, we find that, for each pair of parameters (i3, i4)
such that 648 ≤ i4 ≤ 1997 and i4/3 ≤ i3 ≤ 695, there exist many new chain good
weight hierarchies which cannot be investigated using Theorems 2.1 and 2.2. For
instance, if i4 = 648 and i3 = 216, all the corresponding chain permissible sequences
with dimension 6 such that i2 ∈ {115, 116}

⋃{l : 120 + 9t ≤ l ≤ 125 + 9t, 0 ≤ t ≤ 13}
are new chain good weight hierarchies.

Corollary 6.2. For q = 3 and k = 7, a chain permissible sequence is a chain
good weight hierarchy if

ι1 ≥ 16, ι5 ≥ 10, and ij−1 ≥ ij/3 + 2 · 3j−2 for j = 3, 4.(6.2)

Example. From Corollary 6.2, we find that, for each pair of parameters (i4, i5)
satisfying 2430 ≤ i5 ≤ 19013 and i5/3 ≤ i4 ≤ 6419, many new chain good weight
hierarchies cannot be checked with Theorems 2.1 and 2.2. For instance, if i5 = 2430
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and i4 = 810, all the corresponding chain permissible sequences with dimension 7
such that i2 ≥ i3/3 + 6 and i3 ∈ {l : 409 + 27t ≤ l ≤ 431 + 27t, 0 ≤ t ≤ 65} are new
chain good weight hierarchies.

Corollary 6.3. For q = 3 and k = 8, a chain permissible sequence is a chain
good weight hierarchy if

ι1 ≥ 19, ι6 ≥ 12, and ij−1 ≥ ij/3 + 2 · 3j−2 for j = 3, 4, 5.(6.3)

Example. From Corollary 6.3, we find that, for each pair of parameters (i5, i6)
such that 8748 ≤ i6 ≤ 174695 and i6/3 ≤ i5 ≤ 58475, there are also many new chain
good weight hierarchies which cannot be investigated using Theorems 2.1 and 2.2.
For instance, if i6 = 8748 and i5 = 2916, all the corresponding chain permissible
sequences with dimension 8 such that i2 ≥ i3/3 + 6, i3 ≥ i4/3 + 18, and i4 ∈ {l :
1405 ≤ l ≤ 1457}⋃{l : 1463 + 81t ≤ l ≤ 1538 + 81t, 0 ≤ t ≤ 224} are new chain good
weight hierarchies.

7. Conclusion. The determination of chain good weight hierarchies was studied
several years ago. For the binary codes with dimension up to 5 and the ternary codes
with dimension up to 4, the problem was solved in [3] and [2], respectively. As for
linear codes with general dimension over GF (q), some research was done in [1] and
[6]. However, these results are not efficient for the determination of the chain good
weight hierarchies with high dimension since in many cases the lower bounds on the
conditions for ι0, . . . , ιk−3(or ιk−2) increase exponentially with the dimension k. In
this paper, we present a method to deal with the high dimension cases; see Corollaries
2.5 and 2.6. Our lower bounds on the conditions for ι0, . . . , ιk−2 only increase linearly
with the dimension k.
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1. Introduction. In drug design and molecular recognition, combinatorial chem-
istry has played a powerful role in recent years. One of the central problems is the
construction of a molecular graph with given chemical or physical properties. A chem-
ical or physical property can be quantitatively represented by some topological index
[1]. The problem here is to find a molecular graph with a given value of some topo-
logical index. In [1], the authors studied the problem for the Wiener index. They
proposed two conjectures related to the so-called inverse problem of peptoids. A pep-
toid is represented by a large molecular graph constructed from some pieces of given
small molecular graphs by joining them in a linear scaffold way, i.e., chaining them
linearly. The problem is to find a peptoid with these given small pieces as fragments
such that it has the desired Wiener index value. The ordering or arrangement of these
pieces in a peptoid determines the value of the Wiener index. The two conjectures are
to determine the orderings or arrangements under which the values are minimum or
maximum. As one can see in the statements of the conjectures, the optimal problems
are purely mathematical. We can go without any notation or terminology on graph
theory or chemistry.

Let n1, n2, . . . , nN be N positive integers; define

D =

N∑
i=1

N∑
j=i+1

(j − i)ninj .

For an ordering or rearrangement π = π(1)π(2) . . . π(N) of 1, 2, . . . , N , define

D(π) =

N∑
i=1

N∑
j=i+1

(j − i)nπ(i)nπ(j).

Conjecture 5.1 of [1] is stated as follows.
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Conjecture 1. Given n1 ≤ n2 ≤ · · · ≤ nN , the ordering for the minimum value
of D is

πmin(i) =

{
2i− 1 if i ≤ N

2

2(N − i+ 1) if i > N
2 .

Conjecture 5.2 of [1] is stated as follows.
Conjecture 2. An algorithm to compute the ordering for the maximum value

of D, given n1 ≤ n2 ≤ · · · ≤ nN , is as follows:
LP = 1;L = 0
Rp = N ;R = 0
For i = N down to 1 do
if R ≥ L, then
πmax(Lp) = i;Lp = Lp + 1;L = L+ ni;
else
πmax(Rp) = i;Rp = Rp − 1;R = R+ ni.

We solve these two conjectures in the following sections. In section 2, we do some
preparations by introducing two inequalities due to Hardy, Littlewood, and Pólya [2]
and Wiener [4], respectively. In section 3, we prove Conjecture 1 vigorously by using
Hardy, Littlewood, and Pólya’s inequality. In section 4, we show that Conjecture 2 is
not correct. The algorithm in Conjecture 2 does not always give the maximum value.
We give a better upper bound for the maximum value by using Wiener’s inequality.
Finally, in section 5, we analyze the difficulty in finding the exact ordering to attain
the maximum value.

2. Preliminaries. We follow the notations of [2] or [3]. Suppose that we are
given a set of a finite number of nonnegative numbers x1, x2, . . . , xN , or x−n, . . . , x−1,
x0, x1, . . . , xn, denoted by (x). An ordering or rearrangement of them is x′1, x

′
2, . . . , x

′
N ,

or x′−n, . . . , x
′
−1, x

′
0, x

′
1, . . . , x

′
n, denoted by (x′), where {x′1, x′2, . . . , x′N} = {x1, x2, . . . ,

xN} and {x′−n, . . . , x′−1, x
′
0, x

′
1, . . . , x

′
n} = {x−n, . . . , x−1, x0, x1, . . . , xn}. Some spe-

cial orderings are given as follows:

(x̄) = x̄1 ≤ x̄2 ≤ · · · ≤ x̄N
or

(x̄) = x̄−n ≤ · · · ≤ x̄−1 ≤ x̄0 ≤ x̄1 ≤ · · · ≤ x̄n,

i.e., increasing ordering.

(x+) = x+
0 ≥ x+

1 ≥ x+
−1 ≥ x+

2 ≥ x+
−2 ≥ · · ·

and

(+x) =+ x0 ≥+ x−1 ≥+ x1 ≥+ x−2 ≥+ x2 ≥ · · · .

For example, in the example of [1, p. 283], (x) = 8, 13, 2, 17, 19, 18, 28, 5; (x̄) = (n) =
2, 5, 8, 13, 17, 18, 19, 28; (x+) = 5, 13, 18, 28, 19, 17, 8, 2, and (+x) = 2, 8, 17, 19, 28, 18,
13, 5.

From [2] or [3], we have the following theorem.
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Theorem 2.1 (Hardy, Littlewood and Pólya). Suppose that c, x, y are non-
negative and c symmetrically decreasing so that

c0 ≥ c1 = c−1 ≥ c2 = c−2 ≥ · · · ≥ c2k = c−2k,

while x and y are given except in arrangement. Then the bilinear form

S(1) =

k∑
r=−k

k∑
s=−k

cr−sxrys(1)

attains its maximum when (x) is (x+) and (y) is (y+), or (x) is (+x) and (y) is (+y).
From [2] or [4], we have the following theorem.
Theorem 2.2 (Wiener). If c2 ≥ c3 ≥ · · · ≥ c2n ≥ 0 and the sets (x) and (y) are

nonnegative and given except in arrangement, then

S(2) =

n∑
r=1

n∑
s=1

cr+sxrys(2)

is a maximum when (x) and (y) are both in decreasing order.
It is easy to see that the two bilinear forms of (1) and (2) have the coefficient

matrices

C(1) =




c0 c1 c2 c3 · · · · · · · · · · · ·
c1 c0 c1 c2 · · · · · · · · · · · ·
c2 c1 c0 c1 · · · · · · · · · · · ·
...

...
...

...
. . .

...
...

...
· · · · · · · · · · · · · · · c0 c1 c2
· · · · · · · · · · · · · · · c1 c0 c1
· · · · · · · · · · · · · · · c2 c1 c0




(2k+1)×(2k+1)

and

C(2) =




c2 c3 c4 c5 · · · · · · · · · cn+1

c3 c4 c5 · · · · · · · · · · · · · · ·
c4 c5 · · · · · · · · · · · · · · · · · ·
c5 · · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
. . .

...
...

...
· · · · · · · · · · · · · · · · · · · · · c2n−2

· · · · · · · · · · · · · · · · · · c2n−2 c2n−1

cn+1 · · · · · · · · · · · · c2n−2 c2n−1 c2n



n×n

,

respectively.
So, we have

S(1) = (x−k, . . . , x−1, x0, x1, . . . , xk) C(1)




y−k
...
y−1

y0
y1
...
yk
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and

S(2) = (x1, x2, . . . , xn) C(2)




y1
y2
...
yn


 .

3. The proof of Conjecture 1. We shall use Theorem 2.1 to prove Conjec-
ture 1. Since Conjecture 1 is about optimal minimum, while Theorem 2.1 is about
optimal maximum, we have to do some transformation in the following.

First, we note that

2D =
n∑
i=1

n∑
j=1

|j − i|ninj

with the coefficient matrix as follows:

A =




0 1 2 · · · N − 2 N − 1
1 0 1 · · · N − 3 N − 2
...

...
...

. . .
...

...
N − 2 N − 3 N − 4 · · · 0 1
N − 1 N − 2 N − 3 · · · 1 0



N×N.

Then,

D =
1

2
(n1, n2, . . . , nN ) A




n1

n2

...
nN


 .

Take the matrix C(1) = NIN − A, where IN is the identity of order N , and
consider the following bilinear (quadratic) form:

(n1, n2, . . . , nN ) C(1)




n1

n2

...
nN




= (n1, n2, . . . , nN ) NIN




n1

n2

...
nN


− (n1, n2, . . . , nN ) A




n1

n2

...
nN




= N

(
N∑
i=1

ni

)2

− 2D.(3)

Since the termN(
∑n
i=1 ni)

2 in (3) is independent of the orderings of n1, n2, . . . , nN ,
we have that (3) reaches its optimal maximum by some ordering of n1, n2, . . . , nN if
and only if D reaches its optimal minimum. Since here the matrix C(1) satisfies the
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conditions of Theorem 2.1, we know that (3) reaches its optimal maximum when (n)
is (n+) or (+n), which is exactly the ordering given in Conjecture 1. Therefore, D
reaches its optimal minimum when (n) is the ordering given in Conjecture 1. The
proof is complete.

4. Negative answer for Conjecture 2 and a better upper bound. We use
examples to give a negative answer for Conjecture 2. The example of [1, p. 283] is
shown in Table 1.

Table 1
The table of [1, p. 283].

i 1 2 3 4 5 6 7 8
ni 2 5 8 13 17 18 19 28

nπmax(i) 28 18 8 2 5 13 17 19

First, we point out that by executing the algorithm in Conjecture 2, we get a
different ordering from Table 1, with the exchange of the two numerals 18 and 17 in
the third line. We denote the ordering in Table 1 by πt, not by πmax, and the ordering
determined by the algorithm of Conjecture 2 by πa. So πt = 8, 6, 3, 1, 2, 4, 5, 7. In
Appendix A, we show that πa = 8, 5, 3, 1, 2, 4, 6, 7 by executing the algorithm. We
do not know if this πa gives the optimal maximum. However, we do know that
D(πa) > D(πt). In fact, we have that

D(πt)−D(πa) = (n6 − n5)[5(n7 − n8) + 3(n4 − n3) + (n2 − n1)]

= (18− 17)[5(19− 28) + 3(13− 8) + (5− 2)]

= 5× (−9) + 3× 5 + 3

= −45 + 18 = −27 < 0,(4)

i.e., D(πa) > D(πt).
Does this mean that the algorithm in Conjecture 2 really gives the ordering for

the optimal maximum? The answer is “no.” One may argue that the ordering of the
numerals given in the table of [1, p. 283] is misprinted by the authors’ carelessness.
This is also not the case. In fact, from (4) we can see that n6 − n5 is always positive
when n5 	= n6, and so are n4−n3 and n2−n1. However, n7−n8 is always negative when
n7 	= n8. One can imagine that by properly assigning the values of n1, n2, . . . , n8, we
can get D(πa) > D(πt), as in the above example, and D(πa) < D(πt) in some other
cases. This is really the case. For example, we take n1 = 1, or any number smaller
than 8, n2 = 20, n3 = 21, n4 = 22, n5 = 23, n6 = 24, n7 = 25, n8 = 28. The ordering
given by πt and the ordering πa obtained by the algorithm of Conjecture 2 are shown
in Table 2.

Table 2
The orderings given by πt and πa, respectively.

i 1 2 3 4 5 6 7 8
ni 1 20 21 22 23 24 25 28

nπt(i) 28 24 21 1 20 22 23 25

nπa(i) 28 23 21 1 20 22 24 25

From (4), we have

D(πt)−D(πa) = (24− 23)[5(25− 28) + 3(22− 21) + (20− 1)]

= 5× (−3) + 3× 1 + 19 = 7 > 0,
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i.e., D(πt) > D(πa). In fact, since n6 − n5 > 0, from (4) we know that D(πt) >
D(πa) if 5(n8 − n7) < 3(n4 − n3) + (n2 − n1), while D(πt) < D(πa) if 5(n8 − n7) >
3(n4 − n3) + (n2 − n1). So we can construct infinitely many examples to show that
D(πt) > D(πa) by properly assigning the values of n1, n2, . . . , n8 and also infinitely
many other examples to show that D(πt) < D(πa), the other way round. We do not
know that if this D(πt) is the optimal maximum for these new ni’s. However, it is
greater than the value under the ordering given by the algorithm of Conjecture 2.

So the ordering with optimal maximum value is still unknown. We tried to find
it but failed. First, we look at the ordering given by Conjecture 1, which attains the
optimal minimum. Imagine that we have a balance, or a rod with support point at
the center, and we want to hang N things with weights n1, n2, . . . , nN on it. To reach
the minimum, we hang the heaviest one nN at the (near) center, then we take turns to
hang the next heaviest things to the left (or right) and right (or left) side of nN . One
may imagine that the maximum might be attained the other way round, i.e., hang the
lightest one n1 at the (near) center, then take turns to hang the next lightest things
to the left (or right) and right (or left) side of n1. We denote this ordering by πb.
Unfortunately, for N = 8 we have that

D(πa)−D(πb) = (n8 − n7)[5(n6 − n5) + 3(n4 − n3) + (n2 − n1)] > 0

and

D(πt)−D(πb) = [(n8 − n7) + (n6 − n5)][3(n4 − n3) + (n2 − n1)] > 0.

i.e.,

D(πb) < D(πa) and D(πb) < D(πt).

So the intuitive observation does not give an ordering with the optimal maximum.
Indeed, finding such an ordering is not an easy thing. This is why the authors of [1]
did not give an exact ordering but instead an algorithmic ordering. The above analysis
shows us that, unlike the optimal minimum case, to obtain the optimal maximum, the
ordering is not purely dependent on the value-ordering of n1, n2, . . . , nN but mainly
dependent on how large the values n1, n2, . . . , nN are themselves. Although to give
an exact ordering for the optimal maximum is almost hopeless (see the analysis in
section 5), we can give a better upper bound for the optimal maximum by Theorem

2.2, which could be much better than the upper bound N3−N
6 n2

N in [1] and useful in
the inverse problem for peptoids. First, we note that we can rewrite D as follows:

D = (n1, n2, . . . , nN )




N − 1 N − 2 N − 3 · · · 2 1 0
N − 2 N − 3 N − 4 · · · 1 0

...
...

...
...

2 1 0
1 0
0







nN
nN−1

...
n2

n1


 .

Denote the coefficient matrix by C(2). Then, C(2) satisfies the conditions of
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Theorem 2.2. Therefore, for any ordering π of 1, 2, · · · , N , we have

D(π) ≤ (nN , nN−1, . . . , n2, n1)C(2)




nN
nN−1

...
n2

n1


 .

So, we have proved the following theorem.
Theorem 4.1.

Dmax ≤ (nN , nN−1, . . . , n2, n1)

·




N − 1 N − 2 N − 3 · · · 2 1 0
N − 2 N − 3 N − 4 · · · 1 0
...

...
...

...
2 1 0
1 0
0







nN
nN−1

...
n2

n1


 .

5. Difficulty analysis for finding the ordering πmax. From the three or-
derings πt, πa, and πb, we observed that all of them arrange the values n1, n2, . . . , nN
concavely with the valley at the (nearly) central position. Can it be true that the
optimal maximum is always attained by some ordering that arranges n1, n2, . . . , nN
in a concave way? The following analysis shows in some extent that the answer is
“no.” This negative answer shows that in some sense finding the ordering πmax could
be very difficult.

Suppose that we have a concave ordering π for n1, n2, . . . , nN such that π(i) >
π(j) when i < j ≤ 
N2 � + 1, where 
x� denotes the maximum integer less than or
equal to x. We construct another ordering π′ from π by

π′(k) =




π(k), k 	= i, j,
π(j), k = i,
π(i), k = j,

i.e., by exchanging π(i) and π(j) and keeping the others unchanged. Then, π′ is
no longer a concave ordering for n1, n2, . . . , nN . We shall show that sometimes
D(π) > D(π′) and sometimes D(π) < D(π′), the other way round. First, by careful
calculation, we can obtain that

D(π′)−D(π) =

i−1∑
k=1

(j − i)nπ(k)(nπ(i) − nπ(j))

+

j−1∑
k=i+1

(2k − (i+ j))nπ(k)(nπ(j) − nπ(i))

+

N∑
k=j+1

(j − i)nπ(k)(nπ(j) − nπ(i))

= (nπ(j) − nπ(i))

N∑
k=1,k �=i,j

αknπ(k),
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where

αk =




j − i, k = 1, 2, . . . , i− 1,
(i+ j)− 2k, k = i+ 1, . . . , j − 1,
−(j − i), k = j + 1, . . . , N.

Note that nπ(i) − nπ(j) > 0 by our assumption that nπ(i) > nπ(j).
Example 5.1. When j = i+ 1, we have

D(π′)−D(π)

nπ(i) − nπ(i+1)
= n(π(1) + nπ(2) + · · ·+ nπ(i−1))− (nπ(i+2) + nπ(i+3) + · · ·+ nπ(N)).

Example 5.2. When j = i+ 2, we have

D(π′)−D(π)

nπ(i) − nπ(i+2)

= 2nπ(1) + 2nπ(2) + · · ·+ 2nπ(i−1) − 2nπ(i+3) − 2nπ(i+4) − · · · − 2nπ(N)

= 2[(nπ(1) + nπ(2) + · · ·+ nπ(i−1))− (nπ(i+3) + nπ(i+4) + · · ·+ nπ(N))].

Example 5.3. When j = i+ 3, we have

D(π′)−D(π)

nπ(i) − nπ(i+3)

= 3nπ(1) + 3nπ(2) + · · ·+ 3nπ(i−1) + nπ(i+1)

−nπ(i+2) − 3nπ(i+4) − 3nπ(i+5) − · · · − 3nπ(N)

= 3[(nπ(1) + nπ(2) + · · ·+ nπ(i−1))− (nπ(i+4) + nπ(i+5) + · · ·+ nπ(N))]

+(nπ(i+1) − nπ(i+2)).

From Examples 5.1–5.3, we can see that one can properly assign the values
n1, n2, . . . , nN to attain D(π′) < D(π) sometimes, or D(π′) > D(π) on other oc-
casions. This again shows that the most important aspect for the ordering to attain
the optimal maximum is heavily dependent on how large the value is itself of each
of the n1, n2, . . . , nN , and is not purely dependent on the value-ordering of them.
In other words, different values of n1 ≤ n2 ≤ · · · ≤ nN give different orderings for
attaining the optimal maximum.

To conclude the paper we propose the following problem.
Problem 5.1. Find a polynomial-time algorithm to compute the ordering for the

optimal maximum of D, given n1 ≤ n2 ≤ · · · ≤ nN .

Appendix A. We follow the algorithm of Conjecture 2 for the numerals ni in
Table 1.

Step 0. Lp = 1, L = 0;Rp = 8, R = 0
Step 1. i = 8;R = 0 ≥ 0 = L,

πmax(Lp) = πmax(1) = 8;
Lp = 1 + 1 = 2, L = 0 + n8 = 28

Step 2. i = 7;R = 0 < L = n8 = 28,
πmax(Rp) = πmax(8) = 7;
Rp = 8− 1 = 7, R = 0 + n7 = 19

Step 3. i = 6;R = 19 < 28 = L,



218 XUELIANG LI AND LUSHENG WANG

πmax(Rp) = πmax(7) = 6;
Rp = 7− 1 = 6, R = 19 + n6 = 19 + 18 = 37

Step 4. i = 5;R = 37 > 28 = L,
πmax(Lp) = πmax(2) = 5;
Lp = 2 + 1 = 3, L = 28 + n5 = 28 + 17 = 45

Step 5. i = 4;R = 37 < 45 = L,
πmax(Rp) = πmax(6) = 4;
Rp = 6− 1 = 5, R = 37 + n4 = 37 + 13 = 50

Step 6. i = 3;R = 50 > 45 = L,
πmax(Lp) = πmax(3) = 3;
Lp = 3 + 1 = 4, L = 45 + n3 = 45 + 8 = 53

Step 7. i = 2;R = 50 < 53 = L,
πmax(Rp) = πmax(5) = 2;
Rp = 5− 1 = 4, R = 50 + n2 = 50 + 5 = 55

Step 8. i = 1;R = 55 > 53 = L,
πmax(Lp) = πmax(4) = 1;
Lp = 4 + 1 = 5, L = 53 + n1 = 53 + 2 = 55

Finally, we get an ordering πmax or πa = 8, 5, 3, 1, 2, 4, 6, 7.
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1. Introduction. We consider questions of the following general form: Given a
graph G and a natural number k, what is the optimum value of a certain quantity in
a set of k vertices of G? The desired quantity could be the number of edges between
a set of k vertices and its complement (i.e., the size of the boundary) or the number
of edges induced by a set of k vertices, etc. The sets achieving the optimum value are
called extremal sets.

Specifically, we study extremal sets in Hamming graphs minimizing the size of
the edge-boundary of a set of vertices of given size, where boundary edges along each
dimension are normalized by a weight determined by that dimension, as shall soon
be explained.

First, we introduce some notation and terminology. Given a graph G and a subset
X of its vertices, let ∂X denote the edge-boundary, or simply boundary, of X. This is
the set of edges connecting vertices in X with vertices not in X (i.e., the complement
of X). A d-dimensional Hamming graph Hd is a graph with k1 × k2 × · · · × kd
vertices, k1 ≤ k2 ≤ · · · ≤ kd, each having a unique label l = 〈l1, l2, . . . , ld〉, where
0 ≤ li ≤ ki − 1. There is an edge between two vertices iff their labels differ in
exactly one digit. A d-dimensional array Ad resembles Hd with the exception that
two vertices are adjacent iff their labels differ in exactly one digit and the difference is
exactly one. Examples of a two-dimensional Hamming graph and a two-dimensional
array are shown in Figure 1.

The Cartesian product G×H of two graphs G and H is the graph with vertex set
V (G)×V (H), in which vertices (u, v) and (u′, v′) are adjacent iff u is adjacent to u′ in
G and v = v′, or v is adjacent to v′ in H and u = u′. The constituent graphs G and H
are called factors. A Hamming graph can be characterized as the Cartesian product
of a number of complete graphs of different sizes, i.e., Hd = Kk1 ×Kk2 × · · · ×Kkd ,
where Kr is a complete graph on r vertices. Similarly, Ad can be characterized
as the Cartesian product of a number of path graphs of varying length, i.e., Ad =
Pk1 × Pk2 × · · · × Pkd , where Pr is a path graph (chain) with r vertices.
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Fig. 1. The two-dimensional Hamming graph K3 ×K4 and array P3 × P4.

Lindsey [19] proved that the set of first k vertices of a Hamming graph in lex-
icographic order constitutes an extremal set minimizing the boundary ∂X over all
k-element subsets X. The lexicographic order is defined as follows: In the Hamming
graph Hd = Kk1 ×Kk2 × · · · ×Kkd with k1 ≤ k2 ≤ · · · ≤ kd, vertex x = 〈x1, . . . , xd〉
precedes vertex y = 〈y1, . . . , yd〉 in lexicographic order iff there exists an index i such
that x1 = y1, x2 = y2, . . . , xi−1 = yi−1 and xi < yi holds. Intuitively, in lexico-
graphic order, we traverse the Hamming graph in the direction of the next largest
factor starting with the vertex labeled 〈0, 0, . . . , 0〉. For instance, the vertices of the
Hamming graph in Figure 1 in lexicographic order are labeled

00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 23.

Our aim in this paper is to determine and describe extremal sets of Hamming
graphs minimizing the dimension-normalized boundary. This is defined next.

Definition 1.1. Given a Hamming graph Hd = Kk1 ×Kk2 × · · · ×Kkd and a
subset X of its vertices, the dimension-normalized boundary B(X) of X is defined as

B(X) =
|∂1X|
c1

+
|∂2X|
c2

+ · · ·+ |∂dX|
cd

,(1.1)

where for 1 ≤ i ≤ d, ∂iX is the set of boundary edges along dimension i and

ci =

{
k2
i if ki is even,
k2
i − 1 if ki is odd.

(1.2)

We prove that the set of first k vertices in reverse-lexicographic order constitutes
an extremal set minimizing the dimension-normalized boundary over all k-element
subsets in a Hamming graph. The definition of the reverse-lexicographic order is
similar to that of the lexicographic order: In the Hamming graph Hd = Kk1 ×
Kk2 × · · · × Kkd with k1 ≤ k2 ≤ · · · ≤ kd, vertex x = 〈x1, . . . , xd〉 precedes vertex
y = 〈y1, . . . , yd〉 in reverse-lexicographic order iff there exists an index i such that
xd = yd, xd−1 = yd−1, . . . , xi+1 = yi+1 and xi < yi holds. In other words, we move in
the direction of the next smallest factor starting at the vertex labeled 〈0, 0, . . . , 0〉. To
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illustrate, the vertices of the Hamming graph in the above example listed in reverse-
lexicographic order are

00, 10, 20, 01, 11, 21, 02, 12, 22, 03, 13, 23.

We should point out that there are other sets of vertices which are structurally
equivalent to the sets specified in our definitions of lexicographic or reverse-lexico-
graphic orders. These are obtained by symmetries in the underlying graph. For
instance, in Figure 1, another ordering structurally equivalent to the lexicographic
ordering would be 23, 22, 21, 20, 13, etc. Similarly, the sets defined by the initial
segments of the ordering 23, 13, 03, 22, 12, etc., give rise to sets structurally identical
to those in reverse-lexicographic order.

We state our claim formally in the following theorem.
Theorem 1.2. Given a d-dimensional Hamming graph Hd, let X be any k-vertex

subset of V (Hd) and X be the set of first k vertices of Hd in reverse-lexicographic
order. Then B(X) ≤ B(X).

Interestingly, when all factors ofHd have equal size, the lexicographic and reverse-
lexicographic orders both result in structurally symmetric subsets and hence are equiv-
alent with respect to extremal sets minimizing the boundary (dimension-normalized
or otherwise). Therefore Theorem 1.2 is trivially true when k1 = k2 = · · · = kd by
Lindsey’s result, since the denominators ci in (1.1) will all be equal and minimizing
B(X) will be equivalent to minimizing |∂1X| + |∂2X| + · · · + |∂dX| = |∂X|, i.e., the
size of the boundary of X.

In the next section, we describe the notion of the isoperimetric number, which
is a quantity closely related to extremal sets. The isoperimetric number problem for
special classes of graphs provides the basis of our motivation for this work.

1.1. Motivation. An important quantity in the theory of graphs is the isoperi-
metric number i(G) of a graph G, defined as

i(G) = min
1≤|X|≤ |V (G)|

2

|∂X|
|X| ,(1.3)

where X ⊆ V (G). That is, the set of vertices of G is partitioned into two nonempty
sets and the ratio of the number of edges between the two parts and the number of
vertices in the smaller one is minimized. A subset X achieving the equality in (1.3)
is called an isoperimetric set.

The notion of the isoperimetric number of a graph G serves as a measure of
connectivity of G as it quantifies the minimal interaction between a set of vertices
X and its complement V (G) \X in terms of the number of edges between them. In
many instances, the isoperimetric number of a graph can be used to obtain a tight
lower bound for its bisection width as well [18]. We refer the reader to Mohar [22] or
Chung [12] for a discussion of basic results and various interesting properties of i(G).

At present, the isoperimetric number of an array Ad = Pk1 × Pk2 × · · · × Pkd is
known only when either k1 = k2 = · · · = kd (see Azizoğlu and Eğecioğlu [4]) or the
size of the largest factor is even (see Azizoğlu and Eğecioğlu [5]). The latter is also
implicit in [10] (see also [17]). See also [3] and [13]. The techniques used to obtain
these results seem to fail in the general case. However, using the notion of extremal
sets minimizing dimension-normalized boundary together with a result of Nakano [23],
one can show that

i(Ad) = min
i

1


ki2 �
.
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The technique used involves embedding a Hamming graph into Ad and associating
these extremal sets with isoperimetric sets of the array. We refer the reader to [6] for
details.

1.2. A summary of previous results. There has been a significant amount
of research in the area of isoperimetric bounds on various popular classes of graphs
such as Hamming graphs, arrays, and tori. We shall only mention those results in
this area which pertain to our discussion and refer the reader to Bezrukov [8] for a
comprehensive survey and Bollobás [9] for a general discussion of this and related
topics.

As mentioned before, an extremal set of a graph for a given k is, in a broad sense,
a configuration of k vertices with

• minimum number of boundary edges or
• maximum number of spanned edges

among all such k-vertex subsets of the given graph. The problem of finding extremal
sets of the first (or second) type is called the minimum-boundary-edge problem (or the
maximum-induced-edge problem). It can be shown that the minimum-boundary-edge
and the maximum-induced-edge problems are equivalent for regular graphs [11]. We
remark that one can easily obtain the isoperimetric number of a given graph if the
extremal sets of the first type are known (and the boundary is actually computable).
Evidently, an extremal set X with 
|V (G)|/2� vertices in a given graph G determines
a bisection for G.

The maximum-induced-edge problem (hence the minimum-boundary-edge prob-
lem, because of its regularity) for the hypercube (d-dimensional binary Hamming
graph) was solved by Harper [14] and extended by Lindsey [19] to the d-dimensional
k-ary Hamming graph. In both instances, there is a nested structure of solutions, and
the first k vertices in lexicographic order constitute an extremal set. The maximum-
induced-edge problem for the d-dimensional k-ary array Adk was solved by Bollobás
and Leader [11]. Since Adk is not regular, this result does not automatically give a solu-
tion to the minimum-boundary-edge problem. It was later extended to general arrays
by Ahlswede and Bezrukov [1] who also gave a solution for Pk1×Pk2 for the minimum-
boundary-edge problem. The first nontrivial bounds on the minimum-boundary-edge
problem for the d-dimensional k-ary arrays are in Bollobás and Leader [11]. Unfortu-
nately, however, the bounds obtained are not tight enough to yield an exact formula
for i(Adk).

Similar problems have been studied in the literature for the vertex-boundary
of a given configuration of vertices. For instance, for the d-dimensional k-ary torus,
Bollobás and Leader [10] solved the vertex-boundary problem for even k. Riordan [24]
later extended their result by giving an ordering of vertices on the d-dimensional even
torus, which minimizes the number of vertices at shortest distance t from the vertices
in the ordering. Wang and Wang [25] solved this problem for P∞× · · ·×P∞, i.e., the
d-dimensional infinite array, where the minimum is taken over all nonempty finite
subsets of vertices. In their result, each P∞ may be infinite in both directions or in
one direction only. They also gave a simple ordering of the vertices in which the first
k vertices constitute an extremal set minimizing the vertex-boundary. In a recent
paper, Harper [15] solved the vertex-boundary problem on Hamming graphs.

1.3. Outline. The outline of the remainder of this paper is as follows. In sec-
tion 2 we consider the case of two-dimensional Hamming graphs. First we define the
terminology we use and state a number of basic facts on restricted integer partitions,
majorization, and Schur-convexity. Then we identify potential extremal sets in H2 as
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integer partitions inside a rectangle. The problem of showing that the set of first k ver-
tices of H2 in reverse-lexicographic order constitutes an extremal set minimizing the
dimension-normalized edge-boundary over all k-vertex subsets becomes the problem
of maximization of a certain function on partitions, which is a linear combination of
two Schur-convex functions. However, the function itself is not Schur-convex, and the
identification of the partition on which the maximum is achieved is actually done us-
ing an inductive argument. The main result of this section is Lemma 2.5. In section 3
we extend the proof to the higher-dimensional case. This is done by an induction on
the number of dimensions, using the two-dimensional result as the base case. Finally,
concluding remarks are given in section 4.

2. The two-dimensional case. Let H2 = Km×Kn be a given two-dimensional
Hamming graph. Without loss of generality, we may assume that m = k1 ≤ k2 = n.
Consider a subset X of vertices in H2. Let X ′ be the subset of vertices of H2 obtained
by pushing (compressing) all the vertices in X as far downward and then to the left
in H2 as possible. It is easy to see (and proved in [19], [16]) that B(X ′) ≤ B(X)
since the number of boundary edges in either dimension will not increase as a result
of this procedure. A subset X ′ in the compressed form corresponds to a partition of
the integer |X| contained in the m× n rectangle.

We give below the definitions and properties of partitions that we will use in our
proof of Theorem 1.2. The reader is referred to [2] for further details.

Partitions. A partition λ of an integer N is a sequence (λ1, λ2, . . . , λ�) of positive
integers (called parts) satisfying λ1 ≥ λ2 ≥ · · · ≥ λ� and λ1 + λ2 + · · ·+ λ� = N . We
put |λ| = N . The Ferrers diagram of λ is a two-dimensional array of unit cells (or
nodes) in which row i from the bottom has λi cells and the rows are left justified. It
is clear that, in our case, λ = X ′ forms a partition of |X| whose Ferrers diagram is
contained in the m×n rectangle, i.e., λi ≤ m for 1 ≤ i ≤ � (i.e., each part at most m)
and � ≤ n (i.e., number of parts at most n). We use P(m,n) to denote the set of these
partitions. Thus we may assume that an extremal set is a partition λ ∈ P(m,n), and
we use the symbol P(m,n) to refer to H2 = Km ×Kn when we are not interested in
the graph structure of H2 but just the placement of the subset λ. We may augment
partitions by adding parts of zero length and write

∑
i≥1 λi for |λ|. We also identify

partitions with their diagrams when there is no confusion.

Given a partition λ = (λ1, λ2, . . . , λn), we may define a new partition λ′ =
(λ′1, λ

′
2, . . . , λ

′
m) by choosing λ′i as the number of parts of λ that are ≥ i. The parti-

tion λ′ is called the conjugate of λ. Geometrically, λ′ is obtained from λ by reflection
in the main diagonal (equivalently by counting the cells in successive columns of λ).
For example, the conjugate of (5, 4, 3, 3, 1, 1) is (6, 4, 4, 2, 1). Clearly |λ| = |λ′|, and if
λ ∈ P(m,n), then λ′ ∈ P(n,m).

Durfee square. Let d = d(λ) denote the number of λi such that λi ≥ i. Then
d measures the largest square of cells contained in the partition λ, i.e., the number
of cells on the main diagonal of λ, the cells with coordinates of the form (i, i). This
square is called the Durfee square, and d is called the side of the Durfee square. For
the partition λ = (5, 4, 3, 3, 1, 1), the side of the Durfee square is d = 3.

Frobenius notation. Suppose d is the side of the Durfee square of λ. Let
αi = λi− i be the number of cells in the ith row of λ to the right of (i, i) for 1 ≤ i ≤ d,
and let βi = λ′i − i be the number of cells in the ith column of λ above (i, i) for
1 ≤ i ≤ d. Then we have α1 > α2 > · · · > αd ≥ 0 and β1 > β2 > · · · > βd ≥ 0. The
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Frobenius notation for λ is

λ = (α1, . . . , αd|β1, . . . , βd) = (α|β).

For example, if λ = (5, 4, 3, 3, 1, 1), then α = (4, 2, 0) and β = (5, 2, 1) as shown in
Figure 2.

β

α

α

β

3α

32

1

2

β1

Fig. 2. The main diagonal (cells in dark) of the 3 × 3 Durfee square and α = (4, 2, 0), β =
(5, 2, 1) of the Frobenius notation for the partition λ = (5, 4, 3, 3, 1, 1).

Reverse-lexicographic ordering on partitions. Given partitions λ and µ, µ
precedes λ in reverse-lexicographic ordering, denoted by µ ≥ λ, if either λ = µ or else
the first nonvanishing difference λi − µi is positive. Reverse-lexicographic ordering is
a total order. For example, partitions of N = 5 are ordered by reverse-lexicographic
ordering as

(5) ≥ (4, 1) ≥ (3, 2) ≥ (3, 1, 1) ≥ (2, 2, 1) ≥ (2, 1, 1, 1) ≥ (1, 1, 1, 1, 1),

the first (or the “smallest” one) being (5). The reason for this reversed notation is
for consistency with the dominance order on partitions that we later define.

Majorization, Schur-convexity, and transfer. Given two partitions λ =
(λ1, λ2, . . . , λN ) and µ = (µ1, µ2, . . . , µN ) of N , λ is majorized by µ, written λ ≺ µ, if

λ1 + λ2 + · · ·+ λk ≤ µ1 + µ2 + · · ·+ µk, k = 1, 2, . . . , N.

Majorization is also referred to as the dominance or natural order [20, Chap. 1]. As
soon as N ≥ 6, majorization is not a total ordering. For example, the partitions
(3, 1, 1, 1) and (2, 2, 2) of 6 are not comparable. However, reverse-lexicographic order-
ing on partitions is a linear extension of ≺. Thus

λ ≺ µ ⇒ λ ≤ µ.

Furthermore λ ≺ µ ⇔ µ′ ≺ λ′ (see [20, (1.11)]). A real-valued function g defined on
partitions of an integer N is said to be Schur-convex (see [21, Chap. 3]) if

λ ≺ µ ⇒ g(λ) ≤ g(µ).



EXTREMAL SETS IN HAMMING GRAPHS 225

We make use of the following special case of a result of Schur, 1923, and Hardy,
Littlewood, and Polya, 1929 (see [21, Chap. 3, Prop. C.1]).

Proposition 2.1. Suppose φ is a real-valued convex function on R and N is a
positive integer. Then the function

g(λ) =
∑
i≥1

φ(λi)

is Schur-convex on partitions of N .
Given a partition µ = (µ1, µ2, . . . , µN ) with µi > µj , the transformation that

takes µ to ρ = (ρ1, ρ2, . . . , ρN ) defined by

ρi = µi − 1,

ρj = µj + 1,

ρk = µk, k �= i, j,

is called a transfer from i to j. By a result of Muirhead, if λ ≺ µ, then λ can be
derived from µ by successive application of a finite number of transfers [21, Chap. 5,
D.1], [20, (1.16)].

Now consider a partition λ ∈ P(m,n), where k1 = m ≤ n = k2, which corresponds
to a compressed set in H2 = Km ×Kn. Let ∂mλ and ∂nλ be sets of horizontal and
vertical boundary edges of λ, respectively. Then we have

|∂mλ| =
∑
λi>0

λi(m− λi) and |∂nλ| =
∑
λ′
j
>0

λ′j(n− λ′j).

After substituting these into (1.1) and eliminating constant terms, we see that finding
a subset λ ∈ Km × Kn minimizing B(λ) is equivalent to maximizing the following
function f :

f(λ) = c1

λ′
1∑

i=1

λ2
i + c2

λ1∑
j=1

λ′2j(2.1)

= γn
∑
i≥1

λ2
i + γm

∑
j≥1

λ′2j

on P(m,n) (m ≤ n), where

γn =

{
n2 if n is even,
n2 − 1 if n is odd

(2.2)

in accordance with the definition of the weights ci in (1.2). We prove the following
equivalent formulation of Theorem 1.2 for H2 = Km ×Kn:

Theorem 2.2. When restricted to partitions of a fixed N ≤ mn, the function
f defined in (2.1) is maximized on P(m,n), m ≤ n, by the reverse-lexicographically
smallest partition of N in P(m,n).

The proof of the main result of this paper, and consequently the proof of the
formula for the isoperimetric number of arrays itself (see [6]) which uses this result,
would be simplified by an independent proof of this fact. However, the function f is
not Schur-convex. In other words, transfer operators [21, Chap. 5, D.1] or equivalently
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raising/lowering operators (see [20, (1.15)–(1.16)]) which move from a given λ to
a smaller one in the linear order while keeping the value of f nondecreasing are
insufficient to prove this fact. As an example take m = 4, n = 8, λ = (4, 1, 1, 1, 1, 1, 1),
µ = (4, 2, 1, 1, 1, 1). Then λ ≺ µ by a single transfer as shown in Figure 3, but
2240 = f(λ) > f(µ) = 2208. It can be shown that transfer arguments can be used to
prove Theorem 2.2 in the special case when n ≥ m2.

λ µ

Fig. 3. µ is obtained from λ by single transfer (lowering the indicated cell). Here m = 4, n = 8,
λ ≺ µ but f(λ) = 2240, whereas f(µ) = 2208.

We reformulate f(λ) in (2.1) in a form which is more convenient for our charac-

terization. Given a partition λ ∈ P(m,n), let λ̃ be the partition in P(m − 1, n − 1)
which is obtained by removing the bottommost row and the leftmost column from
the m× n rectangle. Now consider the term γn

∑
λ2
i of f(λ) in (2.1). By taking the

first term λ2
1 out of the summation and putting λi = (λi − 1) + 1, we have

γn
∑
i≥1

λ2
i = γn

[
λ2

1 +

λ′
1∑

i=2

((λi − 1) + 1)2
]

= γn

[
λ2

1 +
∑
i≥1

λ̃2
i + 2

∑
i≥2

λi −
λ′

1∑
i=2

1

]

= γn

[
λ2

1 +
∑
i≥1

λ̃2
i + 2(|λ| − λ1)− (λ′1 − 1)

]
.

Putting the second term γm
∑
j≥1 λ

′2
j of f(λ) as above, we now have

f(λ) = γn

[
λ2

1 +
∑
i≥1

λ̃2
i + 2(|λ| − λ1)− (λ′1 − 1)

]

+ γm

[
λ′21 +

∑
j≥1

λ̃′2j + 2(|λ| − λ′1)− (λ1 − 1)

]
.

Since f(λ̃) = γn
∑
i≥1 λ̃

2
i + γm

∑
j≥1 λ̃

′2
j , this is equivalent to

f(λ) = f(λ̃) + γn

[
λ2

1 + 2(|λ| − λ1)− (λ′1 − 1)

]
(2.3)

+ γm

[
λ′21 + 2(|λ| − λ′1)− (λ1 − 1)

]
.
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Suppose now λ = (α|β) = (α1, . . . , αd|β1, . . . , βd). Then the partition λ̃ obtained
from λ by deleting the leftmost column and the bottommost row of them×n rectangle
is a partition (α̃|β̃) which has a Durfee square of size d − 1, where λ̃ = (α̃|β̃) =
(α2, . . . , αd|β2, . . . , βd). Using this and λ1 = 1 + α1, λ

′
1 = 1 + β1, equality (2.3) can

be reformulated as

f(α|β) = f(α̃|β̃) + γnα
2
1 − γmα1 + γmβ

2
1 − γnβ1 + (γn + γm)(2|λ| − 1).(2.4)

Since the last term (γn + γm)(2|λ| − 1) is constant for all configurations with size |λ|,
iterating this expression we have the following proposition.

Proposition 2.3. Over partitions λ = (α|β) in P(m,n) of a fixed integer |λ|
with Durfee square of size d, maximizing f(λ) is equivalent to maximizing

γn

[
α2

1 + · · ·+ α2
d − (β1 + · · ·+ βd)

]
+ γm

[
β2

1 + · · ·+ β2
d − (α1 + · · ·+ αd)

]
.(2.5)

Durfee-equivalence. Suppose λ ∈ P(m,n) has a Durfee square D of size d. Let
ν = ν(λ) denote the partition that lies north (on top) of D and η = η(λ) the partition
that lies east (to the right) of D. Then ν1 ≤ d and ν′1 ≤ n − d, and η′1 ≤ d and
η1 ≤ m− d. Two partitions λ, µ ∈ P(m,n) are Durfee-equivalent iff

1. d(λ) = d(µ),
2. |ν(λ)| = |ν(µ)| and |η(λ)| = |η(µ)|.

We single out a special representative λ∗ in the equivalence class of partitions
Durfee-equivalent to λ. λ∗ is the partition in which η is the largest in the dominance
order in the d × (m − d) rectangle to the right of the Durfee square and ν′ is the
largest in the dominance order in the (n − d) × d rectangle to the top of the Durfee
square. In other words, in λ∗, η∗ is obtained by distributing |η| cells into as many
rows as possible of length m − d, followed by a (possibly null) partial row of size r.
Similarly in λ∗, ν∗ is obtained by distributing |ν| cells by first laying as many columns
as possible of length n− d, followed by a (possibly null) partial column of size s. An
example of this is shown in Figure 4.

η

ν

η

*

*

ν
λ λ*

Fig. 4. Partition λ = (5, 4, 4, 3, 2, 1) is Durfee-equivalent to the special representative λ∗ =
(6, 4, 3, 2, 1, 1, 1, 1) in P(6, 8).

Proposition 2.4. Suppose λ ∈ P(m,n) and λ∗ is the special representative of λ
in the equivalence class of partitions Durfee-equivalent to λ. Then f(λ∗) ≥ f(λ).

Proof. We use Proposition 2.3. Since in Durfee-equivalence |ν| and |η| do not
change, α1 + · · · + αd and β1 + · · · + βd are constant. Thus maximizing f over the
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Durfee-equivalence class of λ is equivalent to maximizing

γn
(
α2

1 + · · ·+ α2
d

)
+ γm

(
β2

1 + · · ·+ β2
d

)
,

which is decoupled. Since the function φ(x) = x2 is convex on R, applying the
majorization result of Proposition 2.1 to each term separately, we obtain the propo-
sition.

Remark. Proposition 2.4 allows us to restrict potential maximizers of the function
f(λ) on λ ∈ P(m,n) to partitions of the form shown in Figure 5. Here |λ| = d2 +
w(m− d) + t(n− d) + r + s.

d

d
r

s

t

w

n−d

m−d

Fig. 5. The form of special representatives of Durfee-equivalence classes of partitions in P(m,n).

2.1. Extremal sets for the two-dimensional Hamming graph. Now we
are ready to prove the two-dimensional case, which is stated using the terminology of
Hamming graphs in the following lemma.

Lemma 2.5. Given a two-dimensional Hamming graph H2 = Km × Kn with
m ≤ n, let λ be any k-vertex subset of V (H2) and λ be the set of first k vertices of
H2 in reverse-lexicographic order. Then f(λ) ≥ f(λ). That is,

γn
∑
i≥1

λ
2

i + γm
∑
j≥1

λ
′2
j ≥ γn

∑
i≥1

λ2
i + γm

∑
j≥1

λ′2j .(2.6)

Proof. We give the proof only for n and m both even. The other cases are similar.
By Proposition 2.4, we can assume that λ = λ∗ is the special representative in the
Durfee-equivalence class of λ and is characterized by the parameters r, s, w, t,m, d, n
as shown in Figure 5 with |λ| = d2 + w(m− d) + t(n− d) + r + s. Using the original
definition (2.1) of f , we compute

γn
∑

λ2
i = n2

[
wm2 + (d+ r)2 + (d− w − 1)d2 + s(t+ 1)2 + (n− d− s)t2

]
,

γm
∑
j≥1

λ′2j = m2

[
tn2 + (d+ s)2 + (d− t− 1)d2 + r(w + 1)2 + (m− d− r)w2

]
.
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For simplicity, assume that m divides |λ|. Then λ consists of |λ|/m rows of length m
each. Thus

γn
∑

λ
2

i = n2m
[
d2 + w(m− d) + t(n− d) + r + s

]
,

γm
∑
j≥1

λ
′2
j = m

[
d2 + w(m− d) + t(n− d) + r + s

]2
.

Let g(r, s, w, t,m, d, n) = f(λ)− f(λ). Then

g(r, s, w, t,m, d, n)(2.7)

= n2m
[
d2 + w(m− d) + t(n− d) + r + s

]
+m

[
d2 + w(m− d) + t(n− d) + r + s

]2
− n2

[
wm2 + (d+ r)2 + (d− w − 1)d2 + s(t+ 1)2 + (n− d− s)t2]

−m2
[
tn2 + (d+ s)2 + (d− t− 1)d2 + r(w + 1)2 + (m− d− r)w2

]
.

g is a polynomial of total degree 5 in the integer variables r, s, w, t,m, d, n, which is
quadratic as a polynomial in r, s, w, t, and m, cubic in n, and quartic in d. Let R be
region defined by the inequalities

0 ≤ r ≤ m− d,
0 ≤ s ≤ n− d,
0 ≤ w ≤ d− 1,(2.8)

0 ≤ t ≤ d− 1,

d ≤ m ≤ n
that we read off from Figure 5. Now we show that g(r, s, w, t,m, d, n) ≥ 0 on R where
g is as in (2.7) and R is the region defined in (2.8). Rewrite the inequalities in R in
the form

r0 ≤ r ≤ r1,
s0 ≤ s ≤ s1,
w0 ≤ w ≤ w1,

t0 ≤ t ≤ t1,
m0 ≤ m ≤ m1

with r0 = 0, r1 = m−d, and s0 = 0, s1 = n−d, etc., up to m0 = d, m1 = n. The idea
of the proof is simple in theory: As a quadratic in r, we calculate that the leading
coefficient ism−n2 ≤ 0. If, in addition, we can show that g(r0, s, w, t,m, d, n) ≥ 0 and
g(r1, s, w, t,m, d, n) ≥ 0 on R, then we would be done. But this requires that we solve
two subproblems: We need to show g(r0, s, w, t,m, d, n) ≥ 0 and g(r1, s, w, t,m, d, n) ≥
0. Both of these are quadratic in s. If we can show that the leading coefficient in
each is ≤ 0 on R and if each one evaluated in s = s0 and s = s1 is ≥ 0 on R, then we
would be done. Iterating this argument, to prove the claim about the nonnegativity
of g on R, it suffices to verify the following two assertions:

1. g(ri1 , s, w, t,m, d, n) has leading coefficient ≤ 0 on R as a polynomial in s,
g(ri1 , si2 , w, t,m, d, n) has leading coefficient ≤ 0 on R as a polynomial in w,
g(ri1 , si2 , wi3 , t,m, d, n) has leading coefficient ≤ 0 on R as a polynomial in t,
g(ri1 , si2 , wi3 , ti4 ,m, d, n) has leading coefficient ≤ 0 on R as a polynomial in
m for all 0-1 vectors (i1, i2, i3, i4),

2. g(ri1 , si2 , wi3 , ti4 ,mi5 , d, n) is ≥ 0 on R for each 0-1 vector (i1, i2, i3, i4, i5).
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Table 1
Leading coefficients of the quadratic terms in g. For example, the entry in row 011 indi-

cates that the quadratic g(r0, s1, w1, t,m, d, n) = g(0, n − d, d − 1, t,m, n, d) in t has the expression
−(n− d)(n2 −mn+ dm) ≤ 0 as the coefficient of t2.

i1i2i3i4 Coefficient of the leading term

ε −(n2 −m)
0 −m(m− 1)
1 −m(m− 1)
00 −dm(m− d)
01 −dm(m− d)
10 −dm(m− d)
11 −dm(m− d)
000 −(n− d)(n2 −mn+ dm)
001 −(n− d)(n2 −mn+ dm)
010 −(n− d)(n2 −mn+ dm)
011 −(n− d)(n2 −mn+ dm)
100 −(n− d)(n2 −mn+ dm)
101 −(n− d)(n2 −mn+ dm)
110 −(n− d)(n2 −mn+ dm)
111 −(n− d)(n2 −mn+ dm)
0000 −d3

0001 −d2 − (d− 1)n2

0010 −d
0011 −(d− 1)(n− d+ 1)2 − 1
0100 −d2(d− 1)− n2

0101 −dn2

0110 −(d− 1)− (n− d+ 1)2

0111 −d(n− d+ 1)2

1000 −d(d− 1)2

1001 −(d− 1)(n2 − 2n+ d)
1010 0
1011 −(d− 1)(n− d)2

1100 −d((d− 1)(d− 2) + 1)− n(n− 2)
1101 −d(n− 1)2

1110 −(n− d)2

1111 −d(n− d)2

This is a job best suited to a symbolic algebra package. The expressions proving this
proposition are given in Tables 1 and 2. They were calculated by a short Mathematica
program.

3. The higher-dimensional case. In this section, we prove Theorem 1.2 for
an arbitrary number of dimensions d. The main idea of the proof is based on that
of [16]; hence our notation is similar to the notation therein.

Proof. The proof is by induction on d with d = 2, already proved in Lemma 2.5,
being the base case. We assume k1 ≤ k2 ≤ · · · ≤ kd for Hd = Kk1 ×Kk2 × · · · ×Kkd
and vertices are labeled by d-tuples 〈l1, l2, . . . , ld〉, where 0 ≤ li ≤ ki − 1.

The idea is to transform a given arbitrary configuration into one in reverse-
lexicographic order so as not to increase the normalized boundary. To aid the read-
ability of the proof, Figure 6 provides a three-dimensional Hamming graph H3 =
K4 ×K5 ×K10, which illustrates the transformation process.

Given an arbitrary configuration X in Hd, we permute the kd (d−1)-dimensional
Hamming subgraphs along dimension d such that successive subgraphs have fewer
elements of X. Now we apply the induction hypothesis to each of these subgraphs.
Phase (i) in Figure 6 illustrates a configuration obtained after this step. Note that
applying this procedure cannot increase B(X) since |∂dX| cannot increase and by the
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Table 2
The values of the specializations of the quadratic terms in g. For example, the entry in row

01101 indicates that g(r0, s1, w1, t0,m1, d, n) = g(0, n− d, d− 1, 0, n, n, d) = 2n2(d− 1)(n− d) ≥ 0.

i1i1i3i4i5 g(ri1 , si2 , wi3 , ti4 ,mi5 , d, n)

00000 0
00001 d2n(n− d)2

00010 (d− 1)(n− d)(n2 − dn+ d2)
00011 dn(n− 1)(n− d)
00100 0
00101 dn(n− 1)(n− d)
00110 (d− 1)(n− d)(n2 − dn+ d2)
00111 (d− 1)2n(n− d)2 + 2n2(d− 1)(n− d)
01000 (d− 1)(n− d)(n2 − dn+ d2)
01001 d(d− 1)n(n− d)(n− d+ 1)
01010 0
01011 0
01100 (d− 1)(n− d)(n2 − dn+ d2)
01101 2n2(d− 1)(n− d)
01110 0
01111 d(d− 1)n(n− d)(n− d+ 1)
10000 0
10001 d(d− 1)n(n− d)(n− d+ 1)
10010 (d− 1)(n− d)(n2 − dn+ d2)
10011 2(d− 1)n2(n− d)
10100 0
10101 0
10110 (d− 1)(n− d)(n2 − dn+ d2)
10111 d(d− 1)n(n− d)(n− d+ 1)
11000 (d− 1)(n− d)(n2 − dn+ d2)
11001 (d− 2)2n(n− d)2 + 2n2(d− 1)(n− d)
11010 0
11011 dn(n− 1)(n− d)
11100 (d− 1)(n− d)(n2 − dn+ d2)
11101 dn(n− 1)(n− d)
11110 0
11111 d2n(n− d)2

induction hypothesis

|∂1Xi|
c1

+ · · ·+ |∂d−1Xi|
cd−1

is smallest for each subgraph i, where Xi is the set of elements of X that are in sub-
graph i. Not surprisingly, this means that candidate extremal sets in higher dimen-
sions are among higher-dimensional partitions (see [2, Chap. 11]), which are contained
in the d-dimensional parallelepiped k1 × k2 × · · · × kd. Now we repeat the same steps
for subgraphs along dimension d − 1 as well. This step is illustrated by phase (ii) in
Figure 6.

Consider the (d − 2)-dimensional Hamming subgraphs of Hd when dimensions
d and d − 1 are fixed. We call each such subgraph “complete” iff its vertices are
completely contained in X, “incomplete” iff there exists some (but not all) contained
in X, and “empty” iff none is in X. We shall show that if there are more than one
incomplete subgraph, then these can be combined without increasing B(X). The
result of this step is shown by phase (iii) in Figure 6. To this end we give some
definitions and develop proper notation.

First, suppose P ∗
p,q and P ∗

r,s are sets of vertices of two such incomplete (d − 2)-
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(i) (ii) (iii) (iv)

Fig. 6. Conversion into the reverse-lexicographic order in three dimensions.

dimensional Hamming subgraphs, where p, r and q, s are coordinates of dimension d
and d− 1, respectively, with 0 ≤ p, r ≤ kd − 1 and 0 ≤ q, s ≤ kd−1 − 1. Without loss
of generality, assume

p

cd
+

q

cd−1
≥ r

cd
+

s

cd−1
.(3.1)

Next, let Pp,q = P ∗
p,q ∩X, Pr,s = P ∗

r,s ∩X, and Y = X \ (Pp,q ∪Pr,s). In our example,
there are exactly two such subgraphs with p = 0, q = 3 and r = 2, s = 2, i.e., P0,3

and P2,2, which satisfies the assumption given by the inequality above.
Now given two disjoint subsets S and T of V (Hd), let

B(S, T ) =
|∂1(S, T )|

c1
+
|∂2(S, T )|

c2
+ · · ·+ |∂d(S, T )|

cd
,(3.2)

where ci is as defined before and ∂i(S, T ) is the set of edges in dimension i having one
end in S and the other in T . Note that, in this notation, B(X) = B(X,V (Hd) \X).

Note that the following holds:

B(X) = B(Y ) +B(Pp,q) +B(Pr,s)(3.3)

− 2(B(Y, Pp,q) +B(Y, Pr,s))− 2B(Pp,q, Pr,s).

We claim that if as many elements in Pr,s as possible are moved to P ∗
p,q preserving

the reverse-lexicographic order, then B(X) does not increase. To this end, consider
the terms in (3.3). First, we remark that, by virtue of the reverse-lexicographic order,
we must have p �= r and q �= s, and therefore B(Pp,q, Pr,s) = 0 in (3.3). Furthermore,
because of inequality (3.1), B(Y, Pp,q)+B(Y, Pr,s) cannot decrease by this move, and
B(Y ) is constant. Finally, we claim that B(Pp,q) +B(Pr,s) does not increase.

To prove this, note that any vertex v ∈ (Pp,q ∪ Pr,s) is adjacent to kd − 1 and
kd−1 − 1 vertices in dimensions d and d− 1, respectively. Thus, moving vertices from
Pr,s to P ∗

p,q does not change the boundary along dimensions d and d− 1. Therefore,
it suffices to prove

B′(Pp,q) +B′(Pr,s) ≥ B′(P ′
p,q) +B′(P ′

r,s),(3.4)

where

B′(X) =
|∂1X|
c1

+ · · ·+ |∂d−2X|
cd−2
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and P ′
p,q and P ′

r,s are the new subsets corresponding to Pp,q and Pr,s respectively,
after elements are moved from Pr,s to P ∗

p,q.
To prove inequality (3.4), first suppose that all of Pr,s fits in the complement of

Pp,q with respect to P ∗
p,q. Thus we can place elements of Pr,s into P ∗

p,q \ Pp,q in a
set structurally identical to the one given by reverse-lexicographic order, i.e., starting
with vertex 〈k1− 1, k2− 1, . . . , kd−2− 1, q, p〉 of Hd and expanding in the direction of
the smallest factor of the Hamming graph. That is,

〈k1−1, k2−1, . . . , kd−3−1, kd−2−1, q, p〉 → 〈k1−1, k2−1, . . . , kd−3−1, kd−2−2, q, p〉

→ · · · → 〈k1 − 1, k2 − 1, . . . , kd−3 − 2, kd−2 − 1, q, p〉

→ 〈k1 − 1, k2 − 1, . . . , kd−3 − 2, kd−2 − 2, q, p〉 → · · ·
and so on. This is shown in Figure 7.

(i)(i) (ii)(ii)

Fig. 7. Combining two incomplete subgraphs where the elements can fit into one. (i) Subgraphs
before, and (ii) after.

In this case, we have B′(P ′
r,s) = 0 since P ′

r,s = φ and B′(P ′
p,q) can be written

as B′(P ′
p,q) = B′(Pp,q) + B′(Pr,s) − 2B′(Pp,q, Pr,s). Substituting these values into

inequality (3.4), it suffices to prove that

B′(Pp,q) +B′(Pr,s) ≥ B′(Pp,q) +B′(Pr,s)− 2B′(Pp,q, Pr,s),

which obviously holds since B′(Pp,q, Pr,s) ≥ 0. We remark that P ′
p,q is not in reverse-

lexicographic order at this point since it consists of two subsets, each of which is
structurally in reverse-lexicographic order. Nevertheless, by an easy application of
the induction hypothesis, we can convert it to the reverse-lexicographic order without
increasing B′(P ′

p,q).
Now assume that not all elements of Pr,s fit into P ∗

p,q. First take |P ∗
p,q \ Pp,q|

vertices in reverse-lexicographic order in P ∗
r,s. These vertices are in Pr,s. Call this set

of vertices Y2 and set Y1 = Pr,s \ Y2. After moving all vertices in Y2 to P ∗
p,q, we put

Y1 in reverse-lexicographic order Y 1 within P ∗
r,s. This is shown in Figure 8.

Then, inequality (3.4) reduces to proving

B′(Pp,q) +B′(Pr,s) ≥ B′(Y1)
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(i)(i) (ii)(ii)

Y
2

Y1

Y
2

Y
1

Fig. 8. Combining two incomplete subgraphs where the elements cannot fit into one. (i) Sub-
graphs before, and (ii) after.

as B′(Y1) ≥ B′(Y1) holds by the induction hypothesis. Now note that B′(Pr,s) =
B′(Y1) + B′(Y2) − 2B′(Y1, Y2) and B′(Y2) = B′(Pp,q) since Y2 and Pp,q are comple-
mentary in P ∗

p,q. Thus the above inequality is equivalent to

B′(Y2) ≥ B′(Y1, Y2),

which obviously holds. Thus B(Pp,q) + B(Pr,s) does not increase as claimed. By
applying this process to all (d− 2)-dimensional incomplete subgraphs, we can assume
that X has only one incomplete (d− 2)-dimensional Hamming subgraph.

Finally we treat the (d − 2)-dimensional Hamming subgraphs as single vertices
and use the two-dimensional case to minimize B(X) by putting them in reverse-
lexicographic order with the only incomplete one highest in the order, as shown by
phase (iv) in Figure 6. This completes the proof of Theorem 1.2.

4. Conclusions. We proved that the set of first k vertices of the Hamming
graph Hd = Kk1×Kk2×· · ·×Kkd (k1 ≤ k2 ≤ · · · ≤ kd) in reverse-lexicographic order
constitutes an extremal set minimizing the dimension-normalized edge-boundary over
all k-vertex subsets of the graph. The boundary edges ∂iX along the ith dimension
of X ⊂ V (Hd) are normalized by a weight

ci =

{
k2
i if ki is even,
k2
i − 1 if ki is odd,

which naturally arises in the isoperimetric number problem for d-dimensional arrays.
The weighted boundary to be minimized is then

B(X) =
|∂1X|
c1

+
|∂2X|
c2

+ · · ·+ |∂dX|
cd

over X ⊂ V (Hd). Interestingly, when all factors of Hd have equal size, the lexico-
graphic and reverse-lexicographic orders both result in structurally symmetric sub-
sets and hence are equivalent with respect to extremal sets minimizing the boundary
(dimension-normalized or otherwise). Thus our result is identical to Lindsey’s for
k1 = k2 = · · · = kd.
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We formulated the problem for the two-dimensional case as the maximization of
the function f defined on partitions λ ∈ P(m,n) (m ≤ n) by

f(λ) = γn

n∑
i=1

λ2
i + γm

m∑
j=1

λ′2j

and proved that f is maximized for N ≤ nm, by the reverse-lexicographically smallest
partition of N in P(m,n), where

γn =

{
n2 if n is even,
n2 − 1 if n is odd.

This result for d = 2 forms the base step of the higher-dimensional case.

Acknowledgment. The authors would like to thank the anonymous referee
whose careful repeated reviews were essential for us to obtain correct proofs presented
in this revised version.
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A 5/8 APPROXIMATION ALGORITHM FOR THE MAXIMUM
ASYMMETRIC TSP∗
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Abstract. The maximum asymmetric traveling salesperson problem, also known as the taxicab
rip-off problem, is the problem of finding a maximally weighted tour in a complete asymmetric graph
with nonnegative weights.

We propose a polynomial time approximation algorithm for the problem with a 5/8 approxi-
mation guarantee. This (1) improves upon the approximation factors of previous results and (2)
presents a simpler solution to the previously fairly involved algorithms. Our solution uses a simple
linear programming formulation. Previous solutions were combinatorial. We make use of the linear
programming in a novel manner and strengthen the path-coloring method originally proposed in
[S. R. Kosaraju, J. K. Park, and C. Stein, Long tours and short superstrings, in Proceedings of the
35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 166–177].

Key words. approximation algorithms, traveling salesperson, linear programming, graph theory

AMS subject classifications. 68W25, 68W40, 68R05, 68R10
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1. Introduction. Problem formulation. In the maximum asymmetric trav-
eling salesman problem, max TSP for short, we are given a complete weighted directed
graph G = (V,E,w) with nonnegative edge weights wuv ≥ 0, (u, v) ∈ E, and need to
find a closed tour of maximum weight visiting all vertices exactly once.

Motivation. The minimization variant of this problem is one of the most studied
and well-known optimization problems and has many applications [12]. The Max
TSP is also a well-studied and well-motivated optimization problem. We shall shortly
mention several applications.

Since Max TSP is an NP-hard optimization problem, it is desirable to design
approximation algorithms for this problem with good performance guarantees. We
say that an algorithm for a maximization problem has performance guarantee ρ ≤ 1
if it always delivers a solution with value at least ρ times the value of the optimal
solution. (For a minimization problem ρ ≥ 1 the algorithm should always deliver a
solution with value at most ρ times the optimal value.)

The following applications motivate Max TSP:

1. Shortest superstring problem. Given a collection of strings s1, . . . , sn we seek
the shortest possible string S such that every string in the collection is a sub-
string of S, i.e., for all i, S = S′siS′′. This problem arises in DNA sequencing
and has applications to data compression as well. Kosaraju, Park, and Stein
[13] noted that there is an implicit reduction from shortest superstring to
Max TSP in the proof of [5]. An ever tighter reduction is given by Breslauer,
Jiang, and Jiang [6]. Specifically, they show that a ρ approximation factor
for Max TSP implies a (3.5− 1.5) · ρ approximation for shortest superstring.
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2. Maximal compression problem. This problem is the sibling of the shortest
superstring problem. Given a collection of strings s1, . . . , sn we seek a string
S such that every string in the collection (1) is a substring of S and (2)
maximizes

∑
i |si| − |S|. The shortest superstring’s optimal solution is equal

to the optimal solution of this problem, but the approximate solutions can
differ greatly approximationwise. This problem, which arises in various data
compression problems, was analyzed by Tarhio and Ukkonen [18] and by
Turner [19]. In this setting the vertices represent strings and an edge between
two “strings” is weighted with the amount of maximum overlap between these
strings. The optimal compression is equivalent to the weight of the maximal
Hamiltonian path. With the creation of a special vertex representing the
start and end of the Hamiltonian cycle, the maximal compression problem
is equivalent to Max TSP on this graph. Hence a ρ approximation for Max
TSP implies a ρ approximation for the maximal compression problem.

3. Minimum asymmetric {1,2}-TSP. Introduced by Papadimitriou and Yan-
nakakis [16], this problem is that of the classical minimum TSP in the asym-
metric case when the edge weights are 1 or 2. The problem can easily be
transformed into the maximum variant, where the weights of 2 are replaced
by 0. It is easily verifiable that a ρ factor approximation for Max TSP implies
a 2− ρ approximation algorithm for minimum asymmetric {1,2}-TSP.

Previous results. As we already noted, the Max TSP is an NP-hard optimiza-
tion problem. Moreover, Papadimitriou and Yannakakis [16] proved that this problem
is Max SNP-hard and, therefore, we cannot obtain a polynomial time approximation
scheme for this problem unless P = NP . This result was refined by Engebretsen [7];
his result implies that there is no (2803

2804 +ε) approximation algorithm for Max TSP for
any ε > 0 unless P = NP (note that he proved this result for minimum asymmetric
{1, 2}-TSP). Recently, Engebretsen and Karpinsky [8] improved the negative result to
319/320+ ε. The first polynomial time algorithm with proven performance guarantee
for this problem is due to Fisher, Nemhauser, and Wolsey [10]. They noticed that the
algorithm which finds a minimum cycle cover on the input graph, deletes the cheapest
edge in each cycle, and patches all cycles together has performance guarantee 1/2.
Other approximation algorithms which improve the approximation factors appear in
[14, 13, 2]. The best known result to date was an 8/13 factor [2].

In the case when all weights are either 0 or 1, Vishwanathan [20] obtained a 7/12
approximation and Bläser and Siebert [4] obtained a 2/3 approximation algorithm ex-
ploiting an approach due to Papadimitriou and Yannakakis [16]. Many other variants
of approximation algorithms for Max TSP appear in the literature. A good survey
on Max TSP, also containing many results that appeared in the Russian literature, is
[1].

Our results. In this paper we present a new algorithm which achieves a 5/8
approximation factor for Max TSP. The algorithm uses a simple LP formulation of a
cycle cover which does not contain 2-cycles. This is a very weak variant of the full
classical subtour elimination constraints. We solve this LP and transform it into a
collection of cycle covers with useful properties. We then remove edges to satisfy a
generalized version of the path-coloring lemma due to Kosaraju, Park, and Stein [13].
This yields many Hamiltonian cycles, of which one must contain weight at least 5/8
of the maximal weight Hamiltonian cycle.

Our result immediately implies a better result for the maximal compression prob-
lem. It also implies an approximation algorithm for the minimum {1, 2}-TSP with
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performance guarantee 11/8. Recently, a better performance guarantee of 4/3 was
shown for this special case [4]. Another implication is a simple (41/16 = 2.5 + 1/16)
approximation algorithm for the shortest superstring problem. The best known ap-
proximation algorithm for this problem has performance guarantee 2.5 [17], yet is
quite complicated.

2. Algorithm and analysis. In this section we present our 5/8 approximation
algorithm. We will assume that the input graph G has an even number of vertices.
For the case of an odd number of vertices we show a reduction to the even number case
in section 3. This assumption is made in order to be able to use perfect matchings in
our algorithm (more specifically, maximum matchings in a complete graph).

We begin with some preliminary notation. For a vertex set V let K(V ) denote
the edge set K(V ) = (V × V ) \ {(v, v) | v ∈ V }. We will consider weighted directed
graphs G = (V,K(V ), w), where w : K(V )→ Q≥0. With wuv we shorthand w(u, v).
The optimal solution to the Max TSP problem will be denoted opt.

A cycle cover C for a graph is a set of cycles such that each vertex participates
in exactly one cycle. The weight of a cycle cover, denoted w(C), is the sum of the
weights of its edges. A directed multigraph is said to be d-regular if the indegree and
the outdegree of each vertex is equal to d.

A set of edges E is called k-path-colorable if the set of edges can be partitioned
into k collections of vertex disjoint paths. The collections 〈E1, . . . , Ek〉 are said to
color-partition E. Let E be a set of edges that is 1-path-colorable. We say that an
edge e /∈ E is path-compatible with E if {e} ∪ E is 1-path-colorable.

2.1. Generic algorithm and previous solutions. The following generic al-
gorithm first appeared in [10] and was also used in [13, 2, 20].

Generic Algorithm.
Step 1. Compute a maximum-weight cycle cover C for G.
Step 2. Use C to obtain a set P of vertex-disjoint paths.
Step 3. Construct a tour by patching together the paths of P .

In [10] the algorithm uses a simple method. To obtain the set P in step 2 the
lightest edge in each cycle was discarded, yielding a 1/2 approximation factor. In
[13, 2, 20] better approximations were achieved by slightly adapting the graph and
finding a maximum matching M along with the maximum cycle cover. The main idea
is to discard some fraction of the edges to obtain a 2-path-colorable set of edges.

If C∪M was 2-path-colorable with color-partition 〈E1, E2〉, then choosing the set
of edges with the larger weight would yield a solution ≥ 3

4 w(opt) since w(M)+w(C) ≥
1.5w(opt).

The algorithms will focus on the fraction of edges needed to be discarded. The
results in [13, 2] are achieved by a trade-off between several applications (three and
four, respectively) of the algorithms with different discarding schemes. All discarding
schemes rely on the following graph coloring property.

Lemma 2.1 (KPS lemma; see [13, 3]). Let G be a directed multigraph such that
(1) each vertex has indegree at most 2, outdegree at most 2, and total degree at most
3, and (2) the graph does not contain any 2-cycles. Then the edges of G are 2-path-
colorable.

It needs to be pointed out that in [13] only the formulation of the Lemma is
contained. A partial proof appears in [2] and a full proof appears in [3].

For our solution we will need a more general version of the KPS lemma allowing
us to color certain graphs with 2-cycles. The 2-cycles that remain undesirable are
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those that are on a cycle other than this 2-cycle. Namely, for a cycle 〈v1, . . . , vk, v1〉
in a directed multigraph G a back-edge is an edge (vi, vi−1), where i − 1 is k if i is
1. Note that for the case k = 2, (v2, v1) of the cycle is not called a back-edge, yet
a different (v2, v1) (which can happen in a multigraph) is called a back-edge; see the
left-hand figure in Figure 1. The following lemma is the desired generalization.

Lemma 2.2 (path-coloring lemma). Let G = (V,E) be a directed multigraph such
that (1) each vertex has indegree at most 2, outdegree at most 2, and total degree at
most 3, and (2) there are no back-edges on any cycle in G. Then E is 2-path-colorable.

Proof. The lemma will follow from the KPS lemma if we eliminate all 2-cycles
from G. To this end one 2-cycle will be eliminated while maintaining the properties
of the lemma, not creating any new 2-cycles, and ensuring that the eliminated 2-cycle
can be 2-path-colored in compatibility with the rest of the graph. Hence, one can
eliminate all 2-cycles and the result will follow.

Let (u, v), (v, u) ∈ E be a 2-cycle in G. Since total degree of u is at most 3 there
is at most one other edge, e1, incident on u, either (x, u) or (u, x) for some vertex x.
Vertex x cannot be equal to v because of property (2). Likewise, there is at most one
edge, e2, (v, w) or (w, v). There are four cases.

Case 1. u and v both have total degree 2: this 2-cycle is isolated and is 2-path-
colorable independent of G \ {u, v}.

Case 2. Only one of u and v has total degree 3. This case is a special case of case
4.

In the next two cases both u and v have total degree 3.

Case 3. One of {(u, v), (v, u)} is path-compatible with both e1 and e2. Assume
w.l.o.g. that e1 = (x, u) and that e2 = (v, w). Set V ′ = V \ {u, v}. The subgraph
induced by V ′, G′ has exactly four edges fewer than G. Add edge (x,w) to G′. It
is straightforward to check that the properties are maintained. Moreover, by prop-
erty (2), no new 2-cycle is created. For a 2-path-coloring of G, let 〈E1, E2〉 be a
2-path-coloring of G′ such that (x,w) ∈ E1. Then 〈E1 ∪ {(x, u), (u, v), (v, w)} \
{x,w}, E2 ∪ {(v, u)}〉 can be easily verified to be a 2-path-coloring of G.

Case 4. Each of (u, v) and (v, u) is path-compatible with exactly one of e1 and e2.
Contract u and v into one vertex z discarding edges (u, v) and (v, u). All properties are
maintained and a new 2-cycle is not created since z has either indegree 0 or outdegree
0. A 2-path-coloring in the contracted graph can be extended by assigning (u, v) and
(v, u) the color of their path-compatible edge e1 or e2.

2.2. LP for cycle cover and algorithm outline. In our solution we maintain
the generic structure of the algorithm but propose a novel way of obtaining the vertex-
disjoint paths. Rather than finding a cycle cover using combinatorial methods we
formulate an LP for cycle cover and add an additional constraint. In the integer
programming corresponding to this LP the constraint forbids 2-cycles.

This LP is then solved and used to construct a collection of cycle covers. To
each cycle cover in the collection we add a maximum matching, as in [13, 2]. We then
transform this collection of graphs, by discarding and moving edges, into a collection of
graphs that are 2-path-colorable. The collection of vertex-disjoint paths with largest
weight is chosen from amongst all graphs. Our discarding scheme is different from
previous schemes; in particular, we will be transferring edges between graphs in the
collection.

The LP is formulated as following.
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LP for cycle cover with two-cycle constraint.
Max

∑
(u,v)∈K(V ) wuvxuv subject to∑

u xuv = 1 for all v (indegree constraints)∑
v xuv = 1 for all u (outdegree constraints)

xuv + xvu ≤ 1 for all u �= v (two-cycle constraints)
xuv ≥ 0 for all u �= v (nonnegativity constraints)

Let {x∗
uv}uv∈K(V ) be a solution for the LP. Set D to be the minimal integer

such that for all (u, v) ∈ K(V ), D · x∗
uv is integral. Denote by k · (u, v) the multiset

containing k copies of the edge (u, v). Define the weighted multigraph D · G =
(V, Ê, w), where Ê = {(D · x∗

uv) · (u, v) | (u, v) ∈ K(V )}. Note that D may be
exponential in the graph size which creates a problem. In this section we assume that
D is polynomial in the size of the graph and show a polynomial time implementation
for general D in section 4.

Note that it follows from the degree constraints of the LP that D ·G is D-regular.
Hence, we can apply the following lemma to the multigraph D ·G.

Lemma 2.3. 1. Let G be a d-regular multigraph. The edges of G can be partitioned
into d cycle covers.

2. If the indegree and the outdegree of any vertex in the multigraph G is at most
d, then edges of G can be partitioned into d collections of vertex-disjoint cycles and
paths.

This lemma is well known and is a straightforward consequence of König’s theorem
on the edge colorings of bipartite multigraphs [9].

Another ingredient necessary for our algorithm is a maximum matching in a
directed graph. To find a maximum matching, the directed graph can be converted
into an undirected graph by setting the weight of edge (u, v) to be the maximum
of {wuv, wvu}. A maximum matching in the directed graph now has a one-to-one
correspondence with one in the undirected graph.

We now present the algorithm.

Max TSP algorithm.
Step 1. Solve the LP.
Step 2. Set G′ to be D ·G.
Step 3. Split G′ into D cycle covers C1, . . . , CD.
Step 4. Find a maximum matching M in G.
Step 5. Transform C1 ∪M, . . . , CD ∪M into D graphs G1, . . . , GD such that
each Gi is 2-path-colorable by Lemma 2.2 with color-partition 〈Pi, P ′

i 〉.
Step 6. Choose the collection with largest weight from collections {P1, P

′
1,

. . . , PD, P
′
D}.

Step 7. Patch the chosen collection to a Hamiltonian tour.

2.3. Transformation into D 2-path-colorable graphs. Define the graphs
Gi to be Ci ∪M . The graphs need to be transformed so that each will be 2-path-
colorable. To achieve this we will be moving edges between the different graphs and
removing edges when necessary. Our goal is to do this in a manner that will allow us
to bound the fraction of the overall weight that is removed when edges are deleted.

In this section we will do this in such a manner that the overall weight of the
removed edges is at most half the weight of M on average for each of the graphs Gi.
So, on average for eachGi, the weight will be bounded from below by w(C)+ 1

2w(M) ≥
w(opt) + 1

4w(opt) = 5
4w(opt). Hence taking the graph with heaviest weight and

coloring the edges with a 2-path-coloring yields a 5/8 approximation for Max TSP.
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vu

u v

Fig. 1. Dashed edges are from M and solid edges from the cycle cover. On the left, configuration
1, an F1, and, on the right, configuration 2.

. . . . .

u1 u2 u3 u4 u2k−3 u2k

Fig. 2. Configuration 3—alternating edges from M and cycles from the cycle cover. Possibly,
(u2k−1, u2k) = (u1, u2).

At the start each Gi contains a cycle cover and a matching. Therefore property (1)
of the path-coloring lemma is satisfied. The transformation which we will shortly
describe needs to ensure that there are no back-edges on any cycle, i.e., property (2)
of the path-coloring lemma. There are three possible configurations where Gi might
contain a cycle, not necessarily from the cycle cover, with a back-edge upon it.

Configuration 1. A 2-cycle from Ci with a parallel edge from the matching; see
F1 in Figure 1.

Configuration 2. An edge (u, v) is on some cycle in Ci of size ≥ 3 and there is an
edge m = (v, u) ∈M ; see Figure 1.

Configuration 3. A 2-cycle {(u, v), (v, u)} appears in Ci, where, say, (v, u) is the
back-edge. In this case, since (u, v) is on a “cycle,” there must be edges (x, u) and
(v, w) from the matching M , where x �= w and x,w /∈ {u, v}. In fact, there may be a
chain of interchanging matching edges and 2-cycles; see Figure 2. It is important to
note that to comply with property (2) of the path-coloring lemma it is sufficient to
break chains at any location on the chain.

Formally, u1, u2, . . . , u2k is a chain in Gi if (1) (u2j−1, u2j) ∈ M for 1 ≤ j ≤ k
and (2) (u2j , u2j+1), (u2j+1, u2j) ∈ Ci for 1 ≤ j ≤ k, and (3) k ≥ 2. A maximal chain
in Gi is a chain that cannot be extended to a larger chain.

It is quite easy to verify, using a case-based analysis of a pair {u, v}, that these
three bad configurations are the only ones violating property (2) of the path-coloring
lemma in a graph that is the union of a matching and a cycle cover.

2.3.1. Removing Configuration 1 and its counterpart Configuration 3.
To remove the undesired configurations we will need to delete some of the edges from
the graphs. However, to obtain a lower bound on the fraction of edges we remove, we
prove the following.

Lemma 2.4 (balancing lemma). Let m = (u, v) ∈ M . If there are f graphs in
which m is contained in an F1, then there are at least f other graphs in which the
cycle cover does not contain both (u, v) and (v, u).

Proof. By the 2-cycle constraint, x∗
uv + x∗

vu ≤ 1. Hence D · (x∗
uv + x∗

vu) ≤ D.
Since the edge (u, v) appears in D · x∗

uv covers, and the edge (v, u) appears in D · x∗
vu

covers the number of edges (u, v) and (v, u) in all cycle covers combined is ≤ D.



A 5/8 APPROXIMATION ALGORITHM FOR MAXIMUM TSP 243

By definition, for each Gi containing an F1 on vertices {u, v} both (u, v) and
(v, u) appear in Ci. If there are f graphs containing an F1 on vertices {u, v}, then
these f graphs contain 2f cycle cover edges between u and v. Hence, there are at
most D− 2f other graphs Gj containing exactly one cycle cover edge (u, v) or (v, u).
Since there are D graphs overall, f containing an F1 on vertices {u, v} and at most
D − 2f graphs containing at least one edge from a cycle cover between u and v, it
follows that there are at least f graphs containing no edge from a cycle cover between
u and v.

Consider an edge m = (u, v) ∈ M . m appears in each of the D graphs Gi. It
follows from the balancing lemma that each m which appears in an F1, say in Gi, can
be paired uniquely with an m, say in Gj , where (u, v) and (v, u) do not appear in Cj .
An m-pair is a triplet 〈m, i, j〉, where m ∈M is on an F1 in Gi and its pair is in Gj .

We discard the edge m from the F1 in Gi, thus eliminating Configuration 1. If
we can guarantee that its pair, the m in Gj , is not removed, then we remove only
one out of two edges to eliminate Configuration 1. However, since the m in Gj may
participate in Configuration 3, we need a slightly more sophisticated method which
eliminates both undesired configurations together. Note that the m in Gj cannot be
of type Configuration 2.

Prior to removing the edges of M that appear in F1, we identify all maximal
chains, i.e., Configuration 3, in all the graphs. Remember, breaking a chain at any
point eliminates the problem of violating property (2) of the path-coloring lemma.
One way to break the chain is to remove an edge on the chain. Another possibility is
to reverse one of the edges from M on the chain. One must be careful not to reverse
all edges from M on the chain, because otherwise a reverse cycle might be created
once again violating property (2) of the path-coloring lemma. Yet, reversing at least
one edge and making sure that at least one edge does not get reversed is sufficient to
“break” the chain.

Consider a pair 〈m, i, j〉 where m is on such a maximal chain in Cj . We check
whether any edge has been reversed on this maximal chain. If one has, then there is
no Configuration 3 “problem” in Gj and we simply remove m from Gi to eliminate
the Configuration 1 from Gi. If no edge has been reversed on the maximal chain,
then we reverse it, i.e., m = (u, v) is removed from Gj and (v, u) is added to Gj . In
parallel, we remove (v, u) from Gi. Hence overall we have removed one copy of m.
Both configurations have been fixed.

2.3.2. Removing Configuration 3. The only type of Configuration 3 neces-
sary to fix, after removing edges of type Configuration 1, are maximal chains that
have not been paired with Configuration 1 edges. Removing the cheapest edge from
M appearing on a chain breaks the chain as desired. Moreover, the weight removed is
less than half the weight of the edges from M on this maximal chain, upper bounding
the removal cost.

2.3.3. Removing Configuration 2. For those back-edges violating property (2)
of the path-coloring lemma because of Configuration 2, the following lemma provides
a removal scheme. The scheme removes at most 1/2 of the weight of the violating
back-edge.

Lemma 2.5. Let P = (x, u), (u, v), (v, w) be a portion of a cycle from Ci in Gi

and let (v, u) ∈ M . Let W be the overall weight of the edges in Gi. Then by (1)
removing (u, v) or (2) removing (v, u) and adding another (u, v), the overall weight
will be at least W − 1

2wvu.
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Proof. If wuv ≤ 1
2wvu, then (1) removing edge (u, v) gives the desired result.

Otherwise, wuv ≥ 1
2wvu and (2) yields the result.

Both (1) and (2) remove the undesired 2-cycle. Hence, this fixes the violation of
property (2) in the path-coloring lemma.

2.4. Putting it all together. Step 5 of our algorithm works as follows.

Transformation to back-edge–free cycles.
Step 5a. Identify edges m = (u, v) ∈M that appear on an F1 in each of
the graphs.
Step 5b. Pair, uniquely, each such edge m in Gi with an m in some Gj

such that (u, v), (v, u) /∈ Cj .
Step 5c. Identify all maximal chains of Configuration 3.
Step 5d(a). For each m on an F1, if its pair is not on a maximal chain,
remove it.
Step 5d(b). If its pair is on a maximal chain, then if ∃e ∈ M on the
maximal chain such that e has been reversed, remove m from the F1.
Step 5d(c). Otherwise, reverse m on the maximal chain, i.e., remove
m = (u, v) from Gj and replace it with (v, u). On Gi remove (v, u).
Step 5e. For each maximal chain where no edge has been reversed, delete
the cheapest edge from M on the chain.
Step 5f. To each appearance of m = (u, v) ∈ M in each graph Gi such
that (v, u) appears in Ci but (u, v) does not, apply Lemma 2.5.

Theorem 2.6. The algorithm produces a Hamiltonian path of weight ≥ 5
8w(opt),

where w(opt) is the weight of Max TSP.

Proof. The Hamiltonian cycle in G corresponds to a feasible solution of the LP.
The optimal solution to the LP is {x∗

uv}(u,v)∈K(V ). Therefore, w(opt) ≤
∑

(u,v)∈K(V )

wuvx
∗
uv. Hence D · w(opt) ≤ D ·∑u,v∈K(V ) wuvx

∗
uv. It follows from Lemma 2.3 that

after Step 3,
∑D
i=1 w(Ci) = D ·∑u,v∈K(V ) wuvx

∗
uv. Obviously, w(M) ≥ 1

2 · w(opt).
Since M was added to each of the graphs Gi, the weight of the graphs before the
transformation was

∑D
i=1 w(Ci) +D · w(M). From the discussion in section 2.3 the

overall weight deleted from all the graphs together is ≤ 1
2 · D · w(M). Hence the

overall weight of the graphs after Step 5 is at least
∑D
i=1 w(Ci) +

1
2 · D · w(M) =

D ·∑u,v∈K(V ) wuvx
∗
uv+

1
2 ·D ·w(M) ≥ D ·w(opt)+ 1

4 ·D ·w(opt) = 5
4 ·D ·w(opt). Since

each of the D graphs is 2-path-colorable, it follows that there are 2D path collections

to choose from. Choosing the heaviest yields one of weight
5
4 ·D·w(opt)

2D = 5
8 · w(opt).

Completing the path collection to a Hamiltonian tour cannot decrease the weight.

3. Algorithm for graphs with odd number of vertices. If the input graph
G has an odd number of vertices, then the maximum matching M in G does not
necessarily satisfy the inequality w(M) ≥ w(opt)/2. In this case we show how to
reduce the problem to the problem on a graph with an even number of vertices.
Assume that we have guessed two consecutive edges (v1, v2), (v2, v3) of some optimal
tour for Max TSP in G; this is done by enumerating over all directed paths of length 2.
Find the maximum matching M1 in the graph G\{v1, v2, v3} and maximum matching
M2 in the graph G \ {v2}. We claim that w(M1) + w(M2) + wv1v2 + wv2v3 ≥ w(opt)
and therefore max{w(M1) + wv1v2 + wv2v3 , w(M2)} ≥ w(opt)/2. The reason that
w(M1)+w(M2)+wv1v2 +wv2v3 ≥ w(opt) is that the optimal tour can be partitioned
into two edge-disjoint graphs: one is a matching in G \ {v1, v2, v3} plus two edges



A 5/8 APPROXIMATION ALGORITHM FOR MAXIMUM TSP 245

(v1, v2), (v2, v3) and another is a matching in G \ {v2}.
If w(M2) ≥ w(M1) + wv1v2 + wv2v3 , then we can apply the previous algorithm

without modifications since in this case w(M2) ≥ w(opt)/2 and M2 is a matching.
If w(M2) < w(M1)+wv1v2 +wv2v3 , then we delete vertex v3 from G and redefine

the weight of the edge (v1, v3) to be wv1v2 +wv2v3 . After that we apply our algorithm
to the optimal fractional solution of the LP defined on the new instance of the problem
and matching M1∪{(v1, v3)}. If P is the heaviest collection of paths delivered by the
algorithm, then we add vertex v2 back to the graph G. If P contains edge (v1, v3),
then we delete it and add two edges (v1, v2) and (v2, v3) instead. Since the optimal
value of the LP on the new instance of the problem is an upper bound on the w(opt),
we obtain that w(P ) ≥ w(opt)/2 + (w(M1) + wv1v2 + wv2v3)/4 ≥ 5/8w(opt).

4. Polynomial time implementation of the algorithm. The algorithm de-
scribed in the previous section might obviously run in exponential time. The reason
is that the number D (defined as the minimum number such that all numbers Dx∗

uv

are integers) can be exponentially big and therefore the algorithm will produce an
exponential number of cycle covers. The simple way to deal with this problem is to
round each number x∗

uv down to the nearest multiple of ε/n2, where ε > 0 is some
precision parameter such that ε = 1/s for some integer s. Let x̄uv be the value of
variable xuv obtained after rounding x∗

uv. Let D̄ be a minimum number such that
all numbers D̄x̄uv are integers. Clearly, D̄ ≤ sn2. Consider the multigraph D̄ · G,
i.e., the multigraph having D̄x̄uv copies of edge (u, v). Since we rounded x∗

ij down,

the indegree and outdegree of any vertex in D̄ ·G are at most D̄; moreover, there are
at most D̄ edges between any pair of vertices u and v by the 2-cycle constraint. By
applying Lemma 2.3 we can partition D̄ ·G into D̄ collections of vertex-disjoint cycles
and paths. By adding the matching M to each of these collections and eliminating
all three types of “bad” configurations as in the previous section, we obtain D̄ graphs
satisfying conditions of Lemma 2.2. Therefore, applying Lemma 2.2 to each of these
graphs we get 2D̄ partial tours which can be completed to the Hamiltonian cycle. We
now estimate the value of the best Hamiltonian path obtained this way. If W is a
maximum weight of the edge in the input graph G, then clearly W ≤ w(opt). The
total weight of the graph D̄ ·G is

D̄
∑
u,v∈V

wuvx̄uv ≥ D̄
∑
u,v∈V

wuv(x
∗
uv − ε/n2) ≥ D̄

∑
u,v∈V

wuvx
∗
uv − D̄εW.

Therefore, the Hamiltonian cycle delivered by the algorithm has weight at least
5
8w(opt)− εW

2 ≥ ( 5
8 − ε

2 )w(opt).
We now describe a more complicated procedure of implementing our algorithm

in polynomial time without losing ε in the performance guarantee. A matrix is called
doubly stochastic if all of its entries are nonnegative and the sum of all the elements
in any row or column is exactly one. A doubly stochastic matrix with integer entries
is called a permutation matrix.

Lemma 4.1 (Birkhoff–von Neumann [15]). Any doubly stochastic n × n matrix
can be represented as a convex combination of at most n2 permutation matrices and
such representation can be found in polynomial time.

This lemma can be derived by recursive application of Hall’s theorem [9]. The
actual representation can be found by at most n2 applications of the algorithm for
finding a perfect matching in bipartite graph.

The optimal solution of the LP X = {x∗
uv}u,v∈K(V ) is a doubly stochastic matrix

by indegree, outdegree, and nonnegativity constraints. Applying Lemma 4.1 we obtain
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X =
∑n2

i=1 λiΠi, where Πi are permutation matrices and λi ≥ 0 are coefficients in

the convex combination, i.e.,
∑n2

i=1 λi = 1. Each permutation matrix Πi corresponds
to a cycle cover Ci in the original graph G. Moreover, if we consider the multigraph
D ·G, where D is the minimal number such that λiD are integers for all i = 1, . . . , n2

(such a D is not necessarily polynomially bounded), then Πi represents λiD identical
cycle covers in the cycle cover decomposition of D ·G guaranteed by Lemma 2.3. We
now implement our algorithm working with cycle covers Ci, i = 1, . . . , n2, instead of
working with D cycle covers explicitly.

In the first stage we add the matching M to each of the cycle covers Ci, i =
1, . . . , n2. If all graphs Gi = Ci∪M, i = 1, . . . , n2, don’t contain “bad” configurations
(Figures 1 and 2), then by the Lemma 2.2 we can find a 2-path-coloring of each
Ci ∪M . Let Pi and P ′

i be collections of paths corresponding to a 2-path-coloring of
Ci ∪M . Then the weight of the heaviest collection P of paths is at least 3/4w(opt)

since w(P ) ≥ ∑n2

i=1 λi(w(Pi) + w(P ′
i ))/2 =

∑n2

i=1 λi(w(Ci) + w(M))/2 ≥ 3/4w(opt).
So, what we need to show is that we can remove all “bad” configurations, as before,
by deleting at most half of the edges from M on average.

Removing Configuration 1 and its counterpart Configuration 3. We now
prove a generalization of the balancing lemma used in the previous section.

Lemma 4.2 (generalized balancing lemma). Let m = (u, v) ∈M and let S2 be a
subset of the set {1, . . . , n2} such that m is contained in an F1 in each graph Ci ∪M
for i ∈ S2. Then there is a set S0 ⊂ {1, . . . , n2} such that (1) for each i ∈ S0 the
cycle cover Ci in the graph Gi = Ci ∪M does not contain (u, v) and (v, u) and (2)∑
i∈S0

λi ≥
∑
i∈S2

λi.

Proof. Let S0 ⊆ {1, . . . , n2} be the set of cycle covers which do not contain (u, v)
and (v, u) and let S1 = {1, . . . , n2}\(S2∪S0), i.e., S1 is the set of cycle covers Ci having
exactly one edge ((u, v) or (v, u)) between vertices u and v. By the 2-cycle constraint,
x∗
uv + x∗

vu ≤ 1. Hence,
∑
i∈S2

2λi +
∑
i∈S1

λi ≤ 1. However,
∑
i∈S2∪S1∪S0

λi = 1 and
therefore

∑
i∈S0

λi ≥
∑
i∈S2

λi.

Consider the edge m = (u, v) ∈ M . Let S̄0 ⊆ S0 be any minimal subset of S0

such that
∑
i∈S̄0

λi ≥
∑
i∈S2

λi. If
∑
i∈S̄0

λi >
∑
i∈S2

λi, then we take any t ∈ S̄0 and
define two copies t′ and t′′ of the cycle cover Ct having weights in a convex combination
λt′′ =

∑
i∈S̄0

λi −
∑
i∈S2

λi and λt′ = λt − λt′′ . Redefine S̄0 = S̄0 ∪ {t′} \ {t} and
S0 = S0 ∪ {t′, t′′} \ {t}. By construction we have

∑
i∈S̄0

λi =
∑
i∈S2

λi. We now

partition the set S̄0 into two sets S′
0 and S′′

0 . The set S′
0 consists of those graphs Gi

from S̄0 where edge m is on a maximal chain (Configuration 3), and there were no
edges reversed on this maximal chain on prior steps. Let S′′

0 = S̄0 \S′
0. After that we

partition the set S2 into two sets S′
2 and S′′

2 in such a way that
∑
i∈S′

0
λi =

∑
i∈S′

2
λi

and
∑
i∈S′′

0
λi =

∑
i∈S′′

2
λi. If there is no such S′

2, then we make two copies j′ and j′′

of some graph Gj , j ∈ S2, and define weights λj′ and λj′′ such that λj = λj′ + λj′′ .
Put one copy into S′

2 and another into S′′
2 . We pair set S′

0 with set S′
2 and set S′′

0

with set S′′
2 . For the first pair of sets we reverse edge (u, v) in graphs Gi, i ∈ S′

0, and
delete (v, u) in S′

2 as we did in section 2.3. For the second pair we just delete edge
(u, v) from all Gi, i ∈ S′′

2 . We repeat this step for all other edges (u, v) ∈ M which
belong to some “bad” configuration F1. Each such step increases the number of cycle
covers in the convex combination by at most two; moreover, we delete at most half of
any matching edge on average. Therefore, in the end of this exclusion step we don’t
have configurations F1 and we have at most 3n2 cycle covers in a convex combination
and corresponding graphs Gi.
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Removing Configuration 3. We do exactly what we did in section 2.3. We
just remove the cheapest edge in any maximal chain that has not been paired with
Configuration 1 edges.

Removing Configuration 2. Applying Lemma 2.5, we remove at most half of
any matching edge participating in such a configuration.

5. Conclusion. An obvious open question is to close the gap between the best
known positive result 5/8 and negative result 319/320 for Max TSP. On one hand,
we don’t even know the gap between the value of an optimal fractional solution of
the linear programming relaxation considered in this paper and the optimal solution
of Max TSP. The worst instance we know has gap 2/3. On the other hand, our LP
is rather weak; we could add many valid inequalities known for TSP [11]. The most
promising set of constraints is∑

u,v∈S
xuv ≤ |S| − 1 for all S ⊂ V.

These constraints are known as the subtour elimination inequalities and they guar-
antee that the graph D · G considered in section 2 is strongly D-edge-connected.
Unfortunately, we don’t know how to use this property in the rounding procedure.
However, we point out that it does eliminate the example showing a 2/3 gap for the
LP with weaker constraints.

Acknowledgments. The authors would like to thank A. Ageev, R. Hassin, and
A. Yeo for helpful discussions on the subject of the paper.
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1. Introduction. Let M = (N,B) be a matroid over N := {1, . . . , n} with a
collection of bases B ⊆ 2N . Let w : N −→ R

d be a weighting of matroid elements
by vectors in d-space. For any subset J ⊆ N let w(J) :=

∑
j∈J w(j) with w(φ) := 0.

Finally, let c : R
d −→ R be a convex functional on R

d. We consider the following
algorithmic problem.

Convex matroid optimization. Given data as above, find a basis B ∈ B maximiz-
ing c(w(B)).

We begin with some examples of specializations of this problem.
Example 1.1 (linear matroid optimization). This is the special case of our problem

with d = 1, w : N −→ R a weighting of elements by scalars, and c : R −→ R : x �→ x
the identity. The problem is to find a basis of maximum weight and is quickly solvable
by the greedy algorithm.

Example 1.2 (positive semidefinite quadratic assignment). This is the NP-hard
problem [8] of finding a vector x ∈ {0, 1}n maximizing ||Wx||2 = xTWTWx with W
a given d × n matrix. For fixed d it is solvable in polynomial time [3]. The variant
of this problem in which one asks for x with restricted support |supp(x)| = r is the
special case of our problem with M := Ur

n the uniform matroid of rank r over N , with
w(j) := W j the jth column of W for all j ∈ N , and with c : R

d −→ R : x �→ ||x||2 the
l2-norm (squared or not). The positive semidefinite quadratic assignment problem
can be solved by solving the variant for r = 0, . . . , n and picking the best x.

Example 1.3 (minimal variance balanced clustering). This is the problem of
partitioning a given set {w1, . . . , wn} of points in R

d into two clusters C1, C2 of equal
size m := n

2 so as to minimize the sum of cluster variances given by

1

m

∑
wj∈C1

∣∣∣∣∣∣
∣∣∣∣∣∣wj −


 1

m

∑
wj∈C1

wj



∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
1

m

∑
wj∈C2

∣∣∣∣∣∣
∣∣∣∣∣∣wj −


 1

m

∑
wj∈C2

wj



∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

It can be shown by suitable manipulation of the variance expression that this is the
special case of our problem with M the uniform matroid of rank m over N , with
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w(j) := wj for all j ∈ N , and with c : R
d −→ R : x �→ ||x||2 + ||w(N) − x||2 with

w(N) =
∑n
j=1 wj the sum of all points.

This problem often arises in the analysis of statistical data and may include
constraints requiring some points to be in the same or different clusters, based on
some a priori knowledge on the sampled points. Our framework, which allows M to
be any matroid, can sometimes accommodate such constraints as well. For instance, if
the sample points come in pairs {w2i−1, w2i}, i = 1, . . . ,m, and each cluster is required
to contain precisely one point of each pair, then the problem is cast in our framework
with the same data as above except that M is now taken to be the transversal matroid
with base collection B := {B ⊂ N : |B ∩ {2i− 1, 2i}| = 1, i = 1, . . . ,m}.

While the linear matroid optimization problem (Example 1.1) is greedily solvable
(cf. [4]), the general convex matroid optimization problem is NP-hard as indicated
by Example 1.2. Here, however, we show that for fixed d the problem can be solved
efficiently for an arbitrary matroid M and an arbitrary convex functional c. The
assumption of fixed d is quite natural in applications: in Example 1.2 it is the rank
of the corresponding quadratic form and in Example 1.3 it is the dimension of the
sampled points. We assume that c is presented by an evaluation oracle that given
x ∈ R

d returns c(x), and that M is presented by an independence oracle that given
J ⊆ N asserts whether or not J is an independent set of M . We establish the following
theorem.

Theorem 1.4. For any fixed d, the convex matroid optimization problem with
oracle presented matroid M over N := {1, . . . , n}, weighting w : N −→ R

d, and
oracle presented convex functional c : R

d −→ R, can be solved in polynomial oracle
time using O(n2d−1 log n) operations and queries.

The computational complexity is measured in terms of the number of real arith-
metic operations and oracle queries. For rational input the algorithm is (strongly)
polynomial time in the Turing computation model, where the input includes the bi-
nary encoding of the weighting w : N −→ Q

d and the binary encoding of an upper
bound U := maxJ⊆N c(w(J)) on the relevant values of the convex functional, but we
do not dwell on the details here.

The special case of the convex matroid optimization problem for uniform matroids
coincides with the special case of the so-called shaped partition problem [10] for two-
parts. Therefore, the specializations to two-parts of the lower bounds of [1, 2] imply
a lower bound of Ω(nd−1) on the complexity of the convex matroid optimization
problem. This shows that the linear occurrence of d in the exponent of n in the
complexity cannot be avoided, and so our algorithm is optimal in that sense. It would
be interesting to determine the best possible constant 1 ≤ α ≤ 2 for which the problem
is solvable using O(nαd+β) arithmetic operations and queries. It would also be very
interesting to further study a plausible common generalization of the convex matroid
optimization problem for arbitrary matroids and the shaped partition problem for
arbitrary number of parts.

2. Proof of the theorem. For a matroid M = (N,B) and a weighting w :
N −→ R

d, consider the following convex polytope:

PMw := conv {w(B) : B ∈ B } ⊂ R
d.

The convex matroid problem can be reduced to maximizing the convex functional c
over PMw : there will always be an optimal basis B ∈ B for which w(B) is a vertex
of PMw , and so the problem can be solved by picking the best such vertex. However,
as the number of matroid bases is typically exponential in n, it is not possible to
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construct PMw directly in polynomial time. As we shall see, the most efficient way
around that is enhanced by constructing the following zonotope:

Pw :=
∑

1≤i<j≤n
[−1, 1] · (w(i)− w(j)) ⊂ R

d.

Proposition 2.1. Fix any d. Then the number of vertices of the zonotope Pw
is O(n2(d−1) ). Further, in polynomial time using that many arithmetic operations,
all its vertices can be listed, each vertex v along with a linear functional a(v) ∈ R

d

maximized over Pw uniquely at v.
Proof. It has been known for a long time [9], in the dual setup of hyperplane ar-

rangements, that for fixed d, the number of vertices of any zonotope Z :=
∑m
i=1[−1, 1]·

zi generated by m line segments in R
d is O(md−1). The algorithmic analogue of this

result (again in the dual setup of hyperplane arrangements) is provided in [5, 6] (the
latter reference provides a necessary correction of the former); it asserts that all ver-
tices of any such zonotope can be enumerated in polynomial time using an optimal
number O(md−1) of arithmetic operations, each vertex v along with a linear functional
maximized over Z uniquely at v. The algorithm is incremental, that is, it computes
consecutively the partial zonotopes Zk :=

∑k
i=1[−1, 1] · zi (or rather, the partial dual

hyperplane arrangements). The precise details are quite complicated—indeed, the
original proof in [5] was erroneous and was corrected in the later reference [6]. We
refer the reader to these two papers for more information and to [7, 11] for some
extensions and further applications.

Since our zonotope Pw is the sum of m :=
(
n
2

)
line segments in R

d, these re-

sults imply the claimed bound O(md−1) = O(n2(d−1)) on the number of vertices of
Pw and on the computational arithmetic complexity of constructing its vertices and
corresponding linear functionals.

Let PM := conv{1B : B ∈ B} ⊂ R
n be the basis polytope of the matroid

M = (N,B), where 1B :=
∑
j∈B ej is the incidence vector of B ∈ B with ej the jth

standard unit vector in R
n. We include the short proof of the following statement.

Proposition 2.2. Every edge of the basis polytope is parallel to ei− ej for some
pair i, j ∈ N .

Proof. Consider any pair A,B ∈ B of bases such that [1A,1B ] is an edge (that is,
a 1-face) of PM , and let a ∈ R

n be a linear functional maximized over PM uniquely
on that edge. If A \B = {i} is a singleton, then B \A = {j} is a singleton as well, in
which case 1A−1B = ei−ej and we are done. Suppose then, indirectly, that it is not,
and pick an element i in the symmetric difference A∆B := (A \B)∪ (B \A) of A and
B of minimum value ai. Without loss of generality assume i ∈ A \B. Then there is a
j ∈ B \A such that C := A \ {i}∪ {j} is a basis of M . Since |A∆B| > 2, C is neither
A nor B. By the choice of i, this basis satisfies a · 1C = a · 1A − ai + aj ≥ a · 1A, and
hence 1C is also a maximizer of a over PM and so lies in the 1-face [1A,1B ]. But no
{0, 1}-vector is a convex combination of others, yielding a contradiction.

The normal cone of a face of a polyhedron P in R
d is the relatively open cone of

those linear functionals a ∈ R
d maximized over P uniquely on that face. The collection

of normal cones of all faces of P is called the normal fan of P. A polyhedron Z is a
refinement of a polyhedron P if the normal fan of Z is a refinement of that of P, that
is, the closure of each normal cone of P is the union of closures of normal cones of Z.
We have the following lemma.

Lemma 2.3. The zonotope Pw is a refinement of the polytope PMw .
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Proof. It is known that if Z =
∑m
i=1[−1, 1] · zi and every edge of a polytope P

is parallel to some zi, then Z refines P. To see this, consider any vertex u of Z.
Then u =

∑m
i=1 λizi for some λi = ±1, and hence its normal cone consists of those

a satisfying a · λizi > 0 for all i. Let v be a vertex of P at which some such â is
maximized. Consider any edge [v, w] of P. Then v −w = αizi for some scalar αi �= 0
and some zi, and 0 ≤ â · (v−w) = â ·αizi, implying αiλi > 0. It follows that every a
in the cone of the vertex u of Z satisfies a · (v−w) > 0 for every edge of P containing
v, and therefore a is also in the cone of the vertex v of P. This shows that the normal
cone of any vertex of Z is contained in the normal cone of some vertex of P, and
therefore Z refines P.

Now, let π : R
n −→ R

d : ej �→ w(j) be the natural linear projection sending the
unit vector ej corresponding to the matroid element j ∈ N to the vector w(j) ∈ R

d.
Then for each B ∈ B we have π(1B) = w(B), and hence

PMw = conv{w(B) : B ∈ B } = conv{π(1B) : B ∈ B } = π(PM ),

so PMw is a projection of PM . Thus, each edge of PMw is the projection of some edge of
PM and hence, by Proposition 2.2, is parallel to π(ei−ej) = w(i)−w(j) for some pair
i, j ∈ N . Thus, as explained above, the zonotope Pw =

∑
1≤i<j≤n[−1, 1]·(w(i)−w(j))

refines PMw as claimed.
We are now in position to prove our theorem.
Proof of Theorem 1.4. Given data M,w, c, the algorithm proceeds with the fol-

lowing steps: first, compute via Proposition 2.1 the list of O(n2(d−1) ) vertices v of
Pw, each v along with a linear functional a(v) ∈ R

d maximized over Pw uniquely at v.
Second, for each v do the following: let a := a(v) and define the following weighting
of matroid elements by scalars:

b : M −→ R : j �→ a · w(j) =
d∑
i=1

aiw(j)i;

now apply a greedy algorithm to obtain a basis B(v) ∈ B of maximum weight b(B),
that is, sort N by decreasing b-value (using O(n log n) operations) and find, using at
most n calls to the independence oracle presenting M , the lexicographically first basis
B(v). Third, for each v compute the value c(w(B(v))) using the evaluation oracle
presenting c; an optimal basis for the convex matroid optimization problem is any
B(v) achieving maximal such value among the bases B(v) of vertices v of Pw. The
complexity is dominated by the second step, which takes O(n log n) operations and
queries and is repeated O(n2(d−1) ) times, giving the claimed bound.

We now justify the algorithm. First, we claim that each vertex u of PMw satisfies
u = w(B(v)) for some B(v) produced in the second step of the algorithm. Consider
any such vertex u. Since Pw refines PMw by Lemma 2.3, the normal cone of the vertex
u of PMw contains the normal cone of some (possibly more than one) vertex v of Pw.
Then a := a(v) is maximized over PMw uniquely at u. Now, consider the second step of
the algorithm applied to v, and let b be the corresponding scalar weighting of matroid
elements. Then the b-weight of any basis B satisfies

b(B) =
∑
j∈B

a · w(j) = a ·
∑
j∈B

w(j) = a · w(B) ≤ a · u

with equality if and only if w(B) = u. Thus, the maximum b-weight basis B(v)
produced by the greedy algorithm will satisfy u = w(B(v)). Thus, as claimed, each
vertex u of PMw is obtained as u = w(B(v)) for some B(v).
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Now, since c is convex, the maximum value c(w(B)) of any basis B ∈ B will occur
at some vertex u = w(B(v)) of PMw = conv{w(B) : B ∈ B }. Therefore, any basis
B(v) with maximum value c(w(B(v))) is an optimal solution to the convex matroid
optimization problem. The third step of the algorithm produces such a basis, and so
the algorithm is justified.

The use of the refining zonotope Pw enhances the efficient enumeration of the
vertices of the polytope PMw = conv{w(B) : B ∈ B } by the algorithm underlying
the proof Theorem 1.4. In particular, it shows that the number of vertices of PMw ,
which is a projection of the basis polytope of M , is O(n2(d−1)). Since the dimension d
is assumed to be fixed, and since each facet of PMw is determined by some d vertices,
this implies at once that all facets of PMw can be enumerated in arithmetic complexity

no(d
2). However, as pointed out by one of the referees, the facets can be enumerated

directly in complexity no(d) as well; this procedure can, in turn, be used to enumer-
ate the vertices, albeit in complexity no(d

2) versus the no(d) bound guaranteed by
Theorem 1.4.

Acknowledgment. Many thanks to the referees for useful suggestions that im-
proved the presentation of this article.
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Abstract. Shannon suggested investigating a binary multiplying channel and asked for a max-
imal uniquely decodable symmetric code. Motivated by his example, we define such a code, called a
Shannon set, for an arbitrary ring. We investigate the Shannon sets for the rings F

n×n
q for n ∈ N,

and the rings Zm = Z/(mZ) for m ∈ N.
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1. Introduction. In 1961, Shannon [3] formulated the following problem. Two
terminals, T1 and T2, wish to communicate over a binary multiplicative channel. To
this end, they choose a code, i.e., a set X ⊆ {0, 1}n, which is also the set of input
vectors to the channel. If x, y ∈ X are input vectors, then the output vector is given
by z = (zi)i=1,...,n = (xiyi)i=1,...,n (the usual product of natural numbers). Each
terminal should be able to determine uniquely the vector transmitted by the other
terminal on the basis of its own vector and the output vector. Since both terminals
are using the same set X, the set is called a symmetric code.

Shannon’s question was to determine the possible sets X and to find a set with
highest possible cardinality. A set X with this property is called uniquely decodable.
This problem and its generalizations have been studied by several authors; see, e.g.,
[1, 4] for more references.

We can reformulate Shannon’s question in a ring theoretic setting by considering
{0, 1}n as the ring R = Z

n
2 , i.e., the n-fold product of the ring Z2 = Z/(2Z). Then

Shannon’s problem comes down to finding a subset X ⊂ R such that for all given x,
y ∈ X the knowledge of x and xy allows one to find y ∈ X uniquely, and similarly,
a knowledge of y and xy allows one to determine x ∈ X uniquely. This subset X is
then said to have the unique decoding property.

In this paper we study Shannon’s question for arbitrary rings R. We introduce
the notion of a Shannon set of a ring R as a subset with the unique decoding property
which has maximal cardinality. The cardinality of a Shannon set is called the Shannon
number of the ring.

After some preliminary definitions and some general observations, we will study
the ring F

n×n
q , i.e., the ring of n × n-matrices with entries in the finite field Fq of

characteristic p, where q = pα is the number of elements of Fq and p is a prime
number. We shall prove that the set of invertible matrices is the only Shannon set of
the ring F

n×n
q .
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We shall also study the ring Zm = Z/mZ, i.e., the set of integers modulo m with
addition and multiplication modulo m. We shall show that the Shannon number of
Z/(m) is equal to φ(m), where φ is Euler’s totient function. However, contrary to
the result in the case of the ring F

n×n
q , there may be several Shannon sets. Table 1

provides a complete list.

Table 1
The number of different Shannon sets for the ring Zm.

Properties of m Number of Shannon sets
gcd(m, 6) = 1 1

m = 2m′ and gcd(m′, 6) = 1 2φ(m
′)

m = 4m′ and gcd(m′, 2) = 1 2φ(m
′) + 1

m = 2αm′, α ≥ 3, and gcd(m′, 6) = 1 1
m = 3βm′, β ≥ 1, and gcd(m′, 6) = 1 1

m = 6m′ and gcd(m′, 6) = 1 22φ(m
′)+1 − 2φ(m′)

m = 2 · 3βm′, β ≥ 2, and gcd(m′, 6) = 1 23
βφ(m′)

m = 2α3βm′, α ≥ 3, β ≥ 1, and gcd(m′, 6) = 1 1

2. Shannon sets of a ring. From now on, R denotes a ring with 1 and 0. For
r ∈ R and a subset A ⊂ R, we write rA as abbreviation for the set {ra | a ∈ A}. The
cardinality of A is denoted by |A|. For s ∈ R we define ls : R → R and rs : R → R
as

ls(t) = st and rs(t) = ts,

respectively.
Definition 2.1. A subset X of R has the unique decoding property if for every

s ∈ X the maps ls : X→ R and rs : X→ R are injective, respectively.
In case of a finite ring R one has the following obvious lemma.
Lemma 2.2. Let R be a finite ring. A subset X of R has the unique decoding

property if and only if |rX| = |Xr| = |X| holds for all r ∈ X.
In the case that R is commutative, it is sufficient to consider either ls or rs. If,

furthermore, R is finite, then a subset X of R has the unique decoding property if
|xX| = |X| for all x ∈ X.

Note that the problem of finding a subset X satisfying the requirements of Defi-
nition 2.1 is equivalent to Shannon’s problem mentioned in the introduction. Indeed,
if terminal T1 knows x ∈ X and xy ∈ R, then, due to the fact that lx : X → R is
injective, it can uniquely determine y ∈ X. The same holds for terminal T2 and its
knowledge of y ∈ X and xy ∈ R.

The set of all subsets of R having the unique decoding property is denoted U(R).
If x ∈ R, then {x} ∈ U(R). We state some elementary properties without proof.

Lemma 2.3.
• If X ∈ U(R), then any subset of X has the unique decoding property.
• If X1, X2 ∈ U(R), then X1 ∩X2 ∈ U(R).
• If R1 and R2 are rings, then U(R1)× U(R2) ⊂ U(R1 ×R2).

The relation ⊂ defines a partial order on U(R). It is therefore meaningful to speak
of maximal elements of U(R). In the case of a finite ring certain maximal elements
in U(R) are special.

Definition 2.4. Let R be a finite ring. The set X ∈ U(R) is called a Shannon
set of the finite ring R if

|X| = max{|Y | | Y ∈ U(R)}.
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The cardinality |X| of a Shannon set is called the Shannon number of the ring R and
is denoted as χ(R).

In particular, Shannon sets of R are maximal in U(R). On the other hand, of
course, not every maximal element of U(R) is a Shannon set. For example, the set
{0} is a set with the unique decomposition property and {0} is maximal in U(R).

The following lemma provides a lower bound for the Shannon number of a ring.
Lemma 2.5. If R
 denotes the set of units of the finite ring R, then χ(R) ≥ |R∗|.
The proof is obvious. As the ring (Z2)

n shows, this estimate can be very poor.
In fact, we have only one unit and large sets with the unique decoding property (see,
e.g., [4]). If a finite commutative ring with 0 and 1 has large Shannon sets, then it is
already a field, as shown by the following theorem.

Theorem 2.6. Let R be a finite commutative ring with 0 and 1. R is a field if
and only if χ(R) = |R| − 1.

Proof. If R is a field, then the assertion is obviously true.
If χ(R) = |R| − 1, then for any r �= 0 the map lr : R \ {0} → R, x �→ rx is

injective. Now suppose that there exist r, s ∈ R \ {0} such that rs = 0. We compute
r(s + 1) = rs + r = r · 1 and conclude that, due to the injectivity property of lr,
it follows that either s + 1 = 0 or s + 1 = 1. If s + 1 = 0, then it follows that
r = 0, and if s + 1 = 1, then it follows that s = 0; this contradicts our assumption.
Therefore any map lr restricted to R\{0} is injective with image R\{0}; thus R is a
field.

We conclude the section with some examples.
1. For m ≥ 2 we define a ring structure on {0, . . . ,m − 1} by using addition

mod m and multiplication given by rs = 0 for all r, s. The thus defined ring
has Shannon number 1. Any r �= 0 defines a Shannon set {r}.

2. For m ≥ 2 we define a ring structure on {0, . . . ,m − 1} by using addition
mod m and multiplication given by 0r = r0 = 0 for all r and r1 = 1r = r
and rs = 0 for all other possibilities. The thus defined ring has Shannon
number 2. In fact, if r �∈ {0, 1}, then {1, r} is a Shannon set. If r, s are
different and both are different from 1 and 0, then {r, s} is not a Shannon
set.

3. If R = Z
3
2, then a Shannon set is given by {(0, 1, 1), (1, 0, 1), (1, 1, 0)}.

4. Let R = Z, the ring of integers; then the set Z
∗ = Z \ {0} has the unique

decoding property. Moreover, Z
∗ is maximal in the sense that every set

X ∈ U(Z), X �= {0}, is a subset of Z
∗. This observation generalizes to every

integral domain, i.e., a commutative ring R without zero divisors.
5. Let R = Z

n×n, n ≥ 1, be the ring of n× n-matrices with entries in Z. Then

X =
{
A | detA �= 0, A ∈ Z

n×n}
belongs to U(Zn×n). Furthermore, X is maximal in U(Zn×n).

3. Shannon sets of the ring F
n×n
q . In this section, we study the ring of

matrices over a finite field of characteristic p, where p is a prime number. We will
show that for rings of this type there exists only one Shannon set.

Theorem 3.1. Let R = F
n×n
q be the ring of n × n-matrices with entries in the

field Fq of characteristic p. The set Gl(n,F) of invertible matrices is the only Shannon
set of F

n×n
q .

Proof. The set Gl(n,Fq) of invertible n × n-matrices has the unique decoding

property. The cardinality of Gl(n,Fq) is given by
∏n−1
j=0 (q

n − qj). Now suppose that

X ∈ U(Fn×nq ) is such that |X| > |Gl(n,Fq)|. Then X contains at least one matrix
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A such that A �∈ Gl(n,Fq). If we consider A as a linear map from the Fq-vector
space F

n
q to itself, then A

(
F
n
q

)
is an at most (n − 1)-dimensional subspace of F

n
q .

This gives that the cardinality of the set AF
n×n
q = {AB | B ∈ F

n×n
q } is less than or

equal to qn(n−1). On the other hand, A ∈ X, and therefore |AX| = |X|. This yields
|Gl(n,Fq)| =

∏n−1
j=0 (q

n − qj) < |X| = |AX| ≤ qn(n−1), which is a contradiction.

Therefore, no element of U(Fn×nq ) has a cardinality greater than Gl(n,Fq). As
the above arguments show, a Shannon set does not contain a noninvertible matrix.
This shows that Gl(n,Fq) is the only Shannon set.

As a consequence we note the following.
Corollary 3.2.

χ
(
F
n×n
q

)
=

n−1∏
j=0

(qn − qj).

4. Shannon sets of the ring Zm. In this section we study the residue class
rings Zm = Z/(mZ), where m is a natural number. Theorem 4.2 shows that the
Shannon number of the ring Zm is equal to the cardinality of the set of units Z

∗
m.

Moreover, we provide the proofs for the results listed in Table 1.
We begin with an auxiliary lemma and some notation.
Lemma 4.1. If 1 < p2 < p3 < · · · < pL are natural numbers, then

L∏
j=2

pj
pj − 1

≤ pL,

where equality holds if and only if j = pj for all j = 2, . . . , L.
The simple proof is omitted.
The function φ : N → N defined as φ(m) = m

∏
p|m(1 − 1

p ), where the product

runs over all prime numbers p that dividem, is called Euler’s totient function (see [2]).
φ(m) is equal to the number of units in the ring Zm. Moreover, φ has the following
two properties:

• For all prime numbers and all α ∈ N \ {0},
φ(pα) = pα−1φ(p).

• If m1 and m2 are relatively prime, i.e., gcd(m1,m2) = 1, then

φ(m1m2) = φ(m1)φ(m2).

If d is a divisor of m, then the set Zm(d) denotes the set {l ∈ Zm | gcd(l,m) = d},
and we have

|Zm(d)| = φ
(m
d

)
.

Moreover, for two divisors d1 and d2 ofm we have that d1Zm(d2) = Zm(gcd(d1d2,m)).
The collection of sets Zm(d), d divides m, forms a partition of Zm, i.e., Zm =
∪d|mZm(d), and every x ∈ Zm is contained in a unique Zm(d).

Moreover, as a consequence of Lemma 4.1, we have the inequality

m

φ(m)
=
∏
p|m

p

p− 1
≤ pL,(1)

where pL is the largest prime divisor of m.
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Theorem 4.2. If R = Zm, then the set of units Z
∗
m of Zm is a Shannon set.

Proof. We suppose that X is a Shannon set such that |X| > φ(m) = |Z∗
m| and

show that this leads to a contradiction. We begin with two auxiliary results.
1. If d1 = 1 < d2 < · · · < dM are the divisors of m such that dj <

m
φ(m) for all

j = 1, . . . ,M , then

X ⊆
M⋃
j=1

Zm(dj).

Proof. Suppose x ∈ X and x ∈ Zm(d), where d ≥ m
φ(m) ; then, due to our

assumption on |X| > φ(m) and the fact that X is a Shannon set, we have

φ(m) < |X| = |xX| ≤ |dZm| = m
d
≤ φ(m),

which is a contradiction.
2. If d is a proper divisor of m, i.e., d > 1 such that d < m

φ(m) , then X ∩
Zm(d) = ∅.
Proof. Let d be the largest proper divisor of m such that Zm(d)∩X �= ∅ and
let d1 = 1 < d2 < · · · < dK−1 < dK = d be all divisors of m less than or equal
to dK . By 1, it follows that dK <

m
φ(m) . If m

∗ = lcm(d1, . . . , dK) denotes the

least common multiple of d1, . . . , dK , then we can write

m = m∗
L∏
i=1

pβi

i m
′,

where p1 < · · · < pL are the prime divisors of m∗ and the prime divisors of
m′ are all greater than dK .
By 1 we have that

X ⊆ Zm(d1) ∪ · · · ∪ Zm(dK).
Let y ∈ X ∩ Zm(d). Since X is a Shannon set of cardinality greater than
φ(m), it follows that

φ(m) < |X| = |yX| ≤ |dK (Zm(d1) ∪ · · · ∪ Zm(dK))| ,
which implies

φ(m) <

∣∣∣∣∣∣
K⋃
j=1

Zm(gcd(dKdj ,m))

∣∣∣∣∣∣ =
∣∣∣∣∣∣
K⋃
j=1

Zm

(
dK gcd

(
dj ,
m∗

dK

L∏
i=1

pβi

i m
′
))∣∣∣∣∣∣ .

This can be estimated by

φ(m) <

∣∣∣∣∣∣
K⋃
j=1

Zm

(
dK gcd

(
dj ,
m∗

dK

L∏
i=1

pβi

i m
′
))∣∣∣∣∣∣ ≤

∣∣∣∣∣
⋃
δ

Zm(dKδ)

∣∣∣∣∣ ,
where δ runs over the divisors of m

∗
dK

∏L
i=1 p

βi

i . Using Euler’s totient function
φ, we obtain the inequality

φ(m) <

∣∣∣∣∣
⋃
δ

Zm(dKδ)

∣∣∣∣∣ =
∑
δ

φ

(
m

dKδ

)
= φ(m′)

∑
δ

φ

(
m∗∏L

i=1 p
βi

i

dKδ

)
.
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Since the sum is over all divisors of m
∗

dK

∏L
i=1 p

βi

i , we obtain the inequality

φ(m) < φ(m′)
m∗

dK

L∏
i=1

pβi

i .

With φ(m) = φ(m∗∏L
i=1 p

βi

i m
′) = φ(m∗∏L

i=1 p
βi

i )φ(m′) and the fact that

φ

(
m∗

L∏
i=1

pβi

i

)
= m∗

L∏
i=1

pβi

i

L∏
i=1

(
1− 1

pi

)
= φ(m∗)

L∏
i=1

pβi

i ,

we obtain the final inequality

φ(m∗) <
m∗

dK

or dK <
m∗

φ(m∗) . Since p1 < · · · < pL are the prime divisors of m∗, there exists
a j0 ∈ {1, . . . ,K} such that dj0 = pL ≤ dK , and thus we have (see (1)),

pL ≤ dK < m∗

φ(m∗)
=

L∏
j=1

pj
pj − 1

,

which contradicts Lemma 4.1. Therefore we can conclude that no proper
divisor d of m exists such that X ∩ Zm(d) �= ∅. This proves the second
auxiliary result.

We are now prepared to finish the proof of Theorem 4.2. By 1, we have X ⊆ Zm(d1)∪
· · ·∪Zm(dM ), where dM is the largest divisor less than m/φ(m). By 2, it follows that
X ⊆ Zm(1), which contradicts our assumption that |X| > φ(m). This completes the
proof of Theorem 4.2.

Theorem 4.3. If gcd(m, 6) = 1, then Z
∗
m is the unique Shannon set of the ring

Zm.
Proof. If X is a Shannon set different from Z

∗
m, then there exists a largest non-

trivial divisor d of m such that X∩Zm(d) �= ∅. Due to the above observations in 1 of
the previous proof, d has to satisfy d ≤ m

φ(m) . Following the arguments given in 2 of

the proof of Theorem 4.2, d also satisfies

d ≤ m∗

φ(m∗)
,

where m∗ is the lowest common multiple of all divisors of m which are less than or
equal to d. If p2 < · · · < pL denote the prime divisors of m∗, then we have that

pL ≤ d ≤ m∗

φ(m∗)
=

L∏
j=2

pj
pj − 1

.(2)

Since gcd(m, 6) = 1, we have 4 < p2 < · · · < pL and Lemma 4.1 implies

L∏
j=2

pj
pj − 1

< pL,

which contradicts inequality (2).
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The proof of Theorem 4.3 gives a hint of how to construct Shannon sets X ⊂ Zm

such that X �= Zm(1). If X is a Shannon set and d a maximal divisor of m such that
X ∩ Zm(d) �= ∅, then our above considerations yield the inequalities

m∗

φ(m∗)
≤ pL ≤ d ≤ m∗

φ(m∗)
,

where m∗ = lcm(d1, . . . , dK = d) and p1 < · · · < pL are the prime divisors of m∗.
It follows that pL = m∗/φ(m∗) and, due to inequality (1), it follows that the prime
divisors ofm∗ may be either p1 = 2 or p1 = 2 < p2 = 3. This implies thatX∩Zm(d) �=
∅ is only possible for d = 2, 3.

For natural numbersm such that gcd(m, 6) �= 1, the existence of a unique Shannon
set depends on divisibility properties of m w.r.t. 2 and 3.

Theorem 4.4. Let m = 2α3βm′ such that α, β ∈ N and gcd(m′, 6) = 1.
1. If α = 0 and β ≥ 1, then Zm(1) is the only Shannon set of Zm.
2. If α ≥ 3 and β ≥ 0, then Zm(1) is the only Shannon set of Zm.
Proof. 1. A Shannon set X different from Zm(1) satisfies X ∩ Zm(3) �= ∅. In

particular, X ⊂ Zm(1) ∪ Zm(3).
For β = 1 and x ∈ X ∩ Zm(3), we have the inequality

φ(m) = φ(3m′) = |xX| ≤ |x(Zm(1) ∪ Zm(3))| = |Zm(3)| .
By the elementary properties of φ, one obtains φ(3m′) = 2φ(m′) ≤ φ(m′), which is a
contradiction.

For β ≥ 2, i.e., m = 3βm′, the assumption x ∈ X ∩Zm(3) leads to the inequality

φ(m) = |xX| ≤ |x(Zm(1) ∪ Zm(3))| ≤ |Zm(3) ∪ Zm(9)| ,
which gives φ(3βm′) ≤ φ(3β−1m′) + φ(3β−2m′). This yields

φ(3β) ≤ φ(3β−1) + φ(3β−2),

which is equivalent to

32φ(3β−2) ≤ 3φ(3β−2) + φ(3β−2).

This leads to the contradiction 9 ≤ 3 + 1.
2. We start with β = 0, i.e., m = 2αm′, α ≥ 3. If X is a Shannon set such that

x ∈ X ∩ Zm(2), then, by similar arguments as in 1, we obtain the inequality

φ(2α) ≤ φ(2α−1) + φ(2α−2)

which gives 4 ≤ 3, which is a contradiction.
For β = 1, i.e., m = 2α 3m′, a Shannon set X different from Zm(1) satisfies

X ∩ (Zm(2) ∪ Zm(3)) �= ∅. Suppose there exists a x ∈ X ∩ Zm(3); then we have
φ(m) = |X| = |xX| ≤ |Zm(3) ∪ Zm(6)|, which gives the inequality

φ(2α 3) ≤ φ(2α) + φ(2α−1),

which yields 4 ≤ 3, which is a contradiction. Thus we conclude that X satisfies
X ∩ Zm(3) = ∅.

For x ∈ X∩Zm(2) we obtain xX ⊂ Zm(2)∪Zm(4), which yields that the estimate

φ(2α 3) ≤ φ(2α−1 3) + φ(2α−2 3)

is not true for all α ≥ 3.
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Finally, we consider β ≥ 2, i.e.,m = 2α 3βm′. Then the assumption x ∈ X∩Zm(3)
leads to the inequality

φ(2α 3β) ≤ φ(2α 3β−1) + φ(2α−1 3β−1) + φ(2α 3β−2),

which is equivalent to 6 ≤ 3 + φ(3β−2)
3β−2 ≤ 4, which is a contradiction. The assumption

x ∈ X ∩ Zm(2) leads again to a contradiction.
In the remaining cases, i.e., m = 2m′, gcd(m′, 2) = 1 and m = 4m′, gcd(m′, 2) =

1, there exists more than one Shannon set.
Theorem 4.5. For a natural number of the form m = 2αm′, where α = 1, 2 and

gcd(m′, 2) = 1, the following holds.
1. If α = 1 and m = 2 · 3βm′, where gcd(6,m′) = 1 and β �= 1, then there exist

2φ(3βm′) different Shannon sets of Zm.
2. If α = 1 and m = 6m′, where gcd(m′, 6) = 1, then there exist 22φ(m′)+1 −

2φ(m′) different Shannon sets of Zm.
3. If α = 2, then there exist 2φ(m′) + 1 different Shannon sets of Zm.
Proof. 1 (a) We begin with the case β = 0, i.e., m = 2m′. By the arguments given

in the proof of Theorem 4.3, a Shannon set X has to be a subset of Zm(1) ∪ Zm(2),
and we write

X = X(1) ∪X(2),

where X(i) = X∩Zm(i) for i = 1, 2. Note that |Zm(2)| = |Zm(1)| = φ(m). Moreover,
since 2Zm(2) = Zm(2), it follows that Zm(2) has the unique decoding property. Since
the cardinality of Zm(2) equals the cardinality of Zm(1), it follows that Zm(2) is a
Shannon set. Finally, we note that the map Zm(2) � x �→ x+m′ ∈ Zm(1) is bijective.

Let X be a Shannon set and let x ∈ X(2). Since X is a Shannon set, it follows
that x2 ∈ xX. On the other hand, one has that x(x + m′) = x2, and x + m′,
being an element of Zm(1), is therefore not an element of X(1). Thus we see that
X(1) = Zm(1) \ (X(2) +m′) and X = (Zm(1) \ (X(2) +m′)) ∪X(2).

On the other hand, if Y is any subset of Zm(2), then (Zm(1) \ (Y+m′)∪Y is a
Shannon set. Therefore, there are 2|Zm(2)| Shannon sets for β = 0.

(b) Now suppose that m = 2 · 3βm′, where β ≥ 2. A Shannon set X is a subset
of Zm(1) ∪ Zm(2) ∪ Zm(3), and we write

X = X(1) ∪X(2) ∪X(3),

where X(i) = X ∩ Z(i), i = 1, 2, 3.
If x ∈ X(3), then it follows that φ(m) = |xX| ≤ |Zm(3) ∪ Zm(6) ∪ Zm(9)|. We

therefore obtain the inequality

φ(2 · 3βm′) ≤ φ(2 · 3β−1m′) + φ(3β−1m′) + φ(2 · 3β−2m′),

which is impossible. This shows that X ⊂ Zm(1) ∪ Zm(2) and an application of the
same arguments as above gives the desired result.

2. For m = 6m′, where gcd(m′, 6) = 1, we have the following facts.
• Zm(1) = Zm(2) + 3m′.
• Zm(1) = (Zm(3) + 2m′)∪(Zm(3) + 4m′) and (Zm(3)+2m′)∩(Zm(3)+4m′) =
∅.
• |Zm(1)| = |Zm(2)| = 2φ(m′) and |Zm(3)| = φ(m′).
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As before, we have X = X(1) ∪X(2) ∪X(3). If X(3) = ∅, then the arguments of 1
(a) for β = 0 apply and, since m = 2(3m′), we count 2φ(3m′) = 22φ(m′) Shannon sets.

If x ∈ X(3), then X(1) does not contain x + 2m′ and x + 4m′, since x2 =
x(x + 2m′) = x(x + 4m′). Moreover, if x′ ∈ X(1), then there exists ζ ∈ Zm(3) such
that either x′ = ζ + 2m′ or x′ = ζ + 4m′. On the other hand, for x ∈ X(3) we have
that xx′ = x(ζ + 2m′) = x(ζ + 4m′). That is, x′ = ζ + 2m′ ∈ X(1) if and only if
ζ + 4m′ �∈ X(1). We conclude that |X(1)| ≤ φ(m′) − |X(3)|. On the other hand, we
have that

|X| = 2φ(m′) = |X(1)|+ |X(2)|+ |X(3)| ≤ φ(m′) + |X(2)| .

Therefore |X(2)| ≥ φ(m′).
If x′ ∈ Zm(2), then either x′ + 2m′ ∈ Zm(2) or x′ + 4m′ ∈ Zm(2). In any case it

follows for x ∈ X(3) and x′ ∈ X(2) that either xx′ = x(x′+2m′) or xx′ = x(x′+4m′).
Therefore |X(2)| ≤ φ(m′). By our above inequality, it follows that |X(2)| = φ(m′).

Finally, if x′ ∈ X(2), then x′ + 3m′ �∈ X(1); otherwise x′x′ = x′(x′ + 3m′). This
gives that

X(1) = Zm(1) \ ((X(2) + 3m′) ∪ (X(3) + 2m′) ∪ (X(3) + 4m′)) .

On the other hand, for a given nonempty subset Y(3) of Z(3) and a subset Y(2) ⊂
Z(2) such that |Y(2)| = φ(m′) and such that for given x1, x2 ∈ X(2) with x1 �≡
x2 mod 2m′, we define Y(1) as in the above formula (replace X by Y). Then Y(1)∪
Y(2) ∪Y(3) is a Shannon set.

This gives 2φ(m′)(2φ(m′)−1) Shannon sets ifX(3) �= ∅, plus the number of Shannon
sets in case X(3) = ∅, which gives a total of 22φ(m′)+1 − 2φ(m′) Shannon sets.

3. Let m = 4 · 3βm′, where gcd(m′, 6) = 1. As a first step we consider the case
β = 0, i.e., m = 4m′. We have that |X(1)| = 2 |X(2)| = 2 |X(4)|. Moreover, since
the map Zm(2) � x �→ 2x ∈ Zm(4) is bijective, it follows that Zm(2) has the unique
decoding property. The map Zm(1) � x �→ x+ 2m′ ∈ Zm(1) is bijective.

If X = X(1) ∪X(2) is a Shannon set such that X(2) �= ∅, then x ∈ X(1) implies
x + 2m′ �∈ X(1); otherwise we would have, for y ∈ X(2), yx = y(x + 2m′). This
shows that |X(1)| ≤ φ(m′). Since X is a Shannon set, it follows that |X(2)| = φ(m′),
i.e., X(2) = Zm(2), and |X(1)| = φ(m′). Note that X(1) is such that (X(1) + 2m′) ∩
X(1) = ∅.

Let Y ⊂ Zm(1) be such that (Y + 2m′) ∩Y = ∅; then Y ∪ Zm(2) is a Shannon
set. This gives 2φ(m′) Shannon sets. Since Zm(1) is also a Shannon set, the assertion
follows.

As a next step we consider m = 12m′, where gcd(m′, 6) = 1. A Shannon set X
is a subset of Zm(1) ∪ Zm(2) ∪ Zm(3). If we assume that there exists x ∈ X(3), then
we arrive at the inequality φ(12) ≤ φ(4) + φ(2), which is a contradiction. Thus we
conclude that X ⊂ Zm(1) ∪ Zm(2), and we apply the same arguments as for the case
m = 4m′.

The case m = 4 · 3β for β ≥ 2 is treated in a similar way. The assumption
X(3) �= ∅ leads to a contradiction. Thus X ⊂ Zm(1) ∪ Zm(2), and we can use the
same arguments as in 1 for β = 0.

REFERENCES

[1] R. Ahlswede, N. Cai, and Z. Zhang, On interactive communication, IEEE Trans. Inform.
Theory, 43 (1997), pp. 22–37.



SYMMETRIC CODES OVER RINGS 263

[2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford
Clarendon Press, Oxford, UK, 1979.

[3] C. E. Shannon, Two-way communication channels, in Proceedings of the 4th Berkeley Sympo-
sium on Mathematics, Statistics, and Probability, Berkeley, CA, 1961, pp. 611–644.

[4] L. Tolhuizen, New rate pairs in the zero-error capacity region of the binary multiplying channel
without feedback, IEEE Trans. Inform. Theory, 46 (2000), pp. 1043–1046.



LABELING PLANAR GRAPHS WITH
CONDITIONS ON GIRTH AND DISTANCE TWO∗

WEI-FAN WANG† AND KO-WEI LIH‡

SIAM J. DISCRETE MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 17, No. 2, pp. 264–275

Abstract. For a planar graph G, let ∆(G), g(G), and λ(G; p, q) denote, respectively, its max-
imum degree, girth, and L(p, q)-labeling number. We prove that (1) λ(G; p, q) ≤ (2q − 1)∆(G) +
4p + 4q − 4 if g(G) ≥ 7; (2) λ(G; p, q) ≤ (2q − 1)∆(G) + 6p + 12q − 9 if g(G) ≥ 6; (3) λ(G; p, q) ≤
(2q − 1)∆(G) + 6p + 24q − 15 if g(G) ≥ 5. These bounds have consequences on conjectures by
Wegner [Graphs with Given Diameter and a Coloring Problem, preprint, University of Dortmund,
Dortmund, Germany, 1977] and Griggs and Yeh [SIAM J. Discrete Math., 5 (1992), pp. 586–595].
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1. Introduction. All graphs considered in this paper are finite simple graphs.
A plane graph is a particular drawing of a planar graph on the Euclidean plane. For
a plane graph G, let V (G), E(G), F (G), ∆(G), and δ(G) denote, respectively, its
vertex set, edge set, face set, maximum degree, and minimum degree. The girth g(G)
of a graph G is the length of a shortest cycle of G.

A coloring of a graph G is a mapping φ from V (G) to the set {0, 1, . . . , k − 1}
for some positive integer k. A coloring is said to be proper if φ(x) �= φ(y) for every
edge xy of G. The chromatic number χ(G) is the smallest k such that G has a proper
coloring into the set {0, 1, . . . , k− 1}. The distance between two vertices is the length
of a shortest path connecting them. The square G2 of a graph G is the graph defined
on the vertex set V (G) such that distinct vertices are adjacent in G2 if and only if
their distance is at most 2 in G.

Obviously, χ(G2) ≥ ∆(G)+1. A tree of order at least 2 attains this lower bound.
Moreover, it is easy to see that χ(G2) ≤ ∆2(G) + 1 for any graph G. There exist
infinitely many graphs that attain this upper bound. Two of the simplest examples
are a cycle of length 5 and the Petersen graph.

Wegner [13] first investigated the chromatic number of the square of a planar
graph. He proved that χ(G2) ≤ 8 for every planar graph G with ∆(G) = 3 and
conjectured that the upper bound could be reduced to 7. Recently, Thomassen [12]
has established Wegner’s conjecture. In [13], Wegner also proposed the following
conjecture. The upper bounds are sharp if the conjecture is true.

Conjecture 1. Let G be a planar graph. Then

χ(G2) ≤
{

∆(G) + 5 if 4 ≤ ∆(G) ≤ 7,
�3∆(G)/2�+ 1 if ∆(G) ≥ 8.
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This conjecture remains open. Van den Heuvel and McGuinness [7] have proved
χ(G2) ≤ 2∆(G)+ 25 for any planar graph G. The main result in Borodin, Broersma,
Glebov, and van den Heuvel [1] implies that, for a planar graphG, χ(G2) ≤ 	 95∆(G)
+
1 when ∆(G) ≥ 47. The present authors in [10] proved that every outerplanar graph
G satisfies χ(G2) ≤ ∆(G) + 2. Moreover, χ(G2) = ∆(G) + 1 when ∆(G) ≥ 7. This
establishes Conjecture 1 for outerplanar graphs.

Let p, q be two nonnegative integers. An L(p, q)-labeling of a graph G is a function
φ from its vertex set V (G) to the set {0, 1, . . . , k} for some positive integer k such
that |φ(x) − φ(y)| ≥ p if x and y are adjacent, and |φ(x) − φ(y)| ≥ q if x and y are
at distance 2. The L(p, q)-labeling number λ(G; p, q) of G is the smallest k such that
G has an L(p, q)-labeling with max{φ(v) | v ∈ V (G)} = k. An L(1, 1)-labeling of the
graph G is a proper coloring of its square G2, and λ(G; 1, 1) = χ(G2) − 1. Georges
and Mauro [4] obtained λ(G; p, q) for cycles, paths, complete multipartite graphs, and
t-point suspensions of paths and cycles.

The L(2, 1)-labelings have been studied rather extensively in recent years [2, 3,
5, 6, 7, 8, 11, 14]. It is clear that λ(G; 2, 1) ≥ ∆(G) + 1 for any graph G. Griggs and
Yeh [6] proposed the following conjecture.

Conjecture 2. For any graph G with ∆(G) ≥ 2, we have λ(G; 2, 1) ≤ ∆2(G).
Conjecture 2 was verified in [6] for a few special cases, e.g., paths, cycles, trees,

graphs with diameter 2, etc. The best known upper bound is λ(G; 2, 1) ≤ ∆2(G) +
∆(G) by Chang and Kuo [2]. It was proved in [7] that λ(G; p, q) ≤ (4q−2)∆(G)+10p+
38q − 23 for every planar graph G. This result implies that λ(G; 2, 1) ≤ 2∆(G) + 35
for every planar graph G. It is reported in [1] that λ(G; p, q) ≤ 	 95∆(G)
(2q − 1) +
8p − 8q + 1 for every planar graph G with ∆(G) ≥ 47. This in turn implies that
λ(G; 2, 1) ≤ 	 95∆(G)
+ 9 for such graphs.

In this paper, we study the L(p, q)-labeling of a planar graph with conditions on
its girth. More precisely, we will prove the following.

Theorem 1. Let G be a planar graph and p and q two positive integers.
(1) If g(G) ≥ 7, then λ(G; p, q) ≤ (2q − 1)∆(G) + 4p+ 4q − 4.
(2) If g(G) ≥ 6, then λ(G; p, q) ≤ (2q − 1)∆(G) + 6p+ 12q − 9.
(3) If g(G) ≥ 5, then λ(G; p, q) ≤ (2q − 1)∆(G) + 6p+ 24q − 15.
Corollary 2. Let G be a planar graph.
(1) If g(G) ≥ 7, then χ(G2) ≤ ∆(G) + 5 and λ(G; 2, 1) ≤ ∆(G) + 8.
(2) If g(G) ≥ 6, then χ(G2) ≤ ∆(G) + 10 and λ(G; 2, 1) ≤ ∆(G) + 15.
(3) If g(G) ≥ 5, then χ(G2) ≤ ∆(G) + 16 and λ(G; 2, 1) ≤ ∆(G) + 21.
Note that �3∆(G)/2�+1 ≥ ∆(G)+5 when ∆(G) ≥ 8, �3∆(G)/2�+1 ≥ ∆(G)+10

when ∆(G) ≥ 18, and �3∆(G)/2� + 1 ≥ ∆(G) + 16 when ∆(G) ≥ 30. Thus the
following result is an immediate consequence of Corollary 2.

Corollary 3. Conjecture 1 holds for planar graphs G with g(G) ≥ 7, or g(G) =
6 and ∆(G) ≥ 18, or g(G) = 5 and ∆(G) ≥ 30.

Furthermore, since ∆(G)+8 ≤ ∆2(G) when ∆(G) ≥ 4, ∆(G)+15 ≤ ∆2(G) when
∆(G) ≥ 5, and ∆(G) + 21 ≤ ∆2(G) when ∆(G) ≥ 6, we have the following.

Corollary 4. Conjecture 2 holds for planar graphs G with g(G) ≥ 7 and
∆(G) ≥ 4, or g(G) = 6 and ∆(G) ≥ 5, or g(G) = 5 and ∆(G) ≥ 6.

2. Structural lemmas. Let G be a plane graph. For f ∈ F (G), we use b(f)
to denote the boundary walk of f and write f = [u1u2 . . . un] if u1, u2, . . . , un are the
vertices of b(f) in the clockwise order. Repeated occurrences of a vertex are allowed.
The degree of a face is the number of edge-steps in its boundary walk. Note that each
cut-edge is counted twice. For x ∈ V (G) ∪ F (G), let dG(x), or simply d(x), denote
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the degree of x in G. A vertex (or face) of degree k is called a k-vertex (or k-face).
We say that f is an (m1,m2, . . . ,mn)-face if d(ui) = mi for i = 1, 2, . . . , n. Let Vi(f)
denote the set of i-vertices incident to the face f . Let pi(f) denote the number of
occurrences of i-vertices in b(f). When v is a k-vertex, we say that there are k faces
incident to v. However, these faces are not required to be distinct, i.e., v may have
repeated occurrences on the boundary walk of some of its incident faces.

In this section, we always assume thatG is a connected plane graph with minimum
degree at least 2.

Using Euler’s formula |V (G)| − |E(G)|+ |F (G)| = 2 and
∑{d(v) | v ∈ V (G)} =∑{d(f) | f ∈ F (G)} = 2|E(G)|, we can derive the following identity:∑

v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(d(f)− 4) = −8.(1)

Lemmas 6, 7, and 8 of this section will be proved by the method of contradiction.
In each case, we assume that G is a counterexample to the lemma under consideration.
We define the weight function w by w(x) = d(x)−4 for all x ∈ V (G)∪F (G). It follows
from identity (1) that the total sum of weights is equal to −8. In each lemma, we
will define appropriate discharging rules and redistribute weights accordingly. Once
the discharging is finished, a new weight function w′ is produced. However, the total
sum of weights is kept fixed when the discharging is in process. Nevertheless, we can
show that w′(x) ≥ 0 for all x ∈ V (G) ∪ F (G). This leads to the following obvious
contradiction,

0 ≤
∑
{w′(x) | x ∈ V (G) ∪ F (G)} =

∑
{w(x) | x ∈ V (G) ∪ F (G)} = −8 < 0,

and hence demonstrates that no such counterexample can exist.
For x, y ∈ V (G) ∪ F (G), we will use W(x → y) to denote the sum of weights

discharged from x to y and W(x→) to denote the total weight discharged from x to
all its adjacent or incident elements.

Lemma 5. Let G be a plane graph such that no two adjacent vertices in G can
both be 2-vertices. Let f be a face of G. Then p2(f) ≤ �d(f)/2�. Furthermore, if,
for some k ≥ 3, G does not contain any path xyz such that d(x) = 2, d(y) = 3, and
d(z) ≤ k, then p3(f) ≤ d(f)− 2p2(f).

Proof. The first conclusion is obvious. The second conclusion holds because, if we
start moving along b(f) from a 2-vertex, then we must encounter a vertex of degree
at least 4 before we reach the next 2-vertex.

Lemma 6. Let G be a connected plane graph with δ(G) = 2 and g(G) ≥ 7.
Then G contains a vertex v whose neighbors v1, v2, . . . , vk satisfy one of the following
conditions, assuming d(v1) ≤ d(v2) ≤ · · · ≤ d(vk):

(A1) k = 2 and d(v1) = 2;
(A2) k = 3, d(v1) = 2, and d(v2) ≤ 3;
(A3) k = 3, d(v1) = 2, and d(v2) = d(v3) = 4 such that vi is adjacent to a

2-vertex ui for i = 2 and 3.
(A4) k = 4, either d(v1) = d(v2) = d(v3) = 2 or d(v1) = d(v2) = 2 and d(v3) = 3

such that v3 is adjacent to a 2-vertex u3.
Proof. Suppose that the lemma is false. Let G be a connected plane graph with

δ(G) = 2 and g(G) ≥ 7 such that none of its vertices satisfies one of (A1), (A2), (A3),
and (A4). The discharging rules are defined as follows.

(R1) Let v be a vertex with degree at least 5 and f a face incident to v. For each
occurrence of v in b(f), we transfer the amount w(v)/d(v) from v to f .
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(R2) Let α(f) denote the sum of weights discharged into the face f from its
incident vertices of degree at least 5 according to (R1). For each occurrence of a
vertex v in b(f), we transfer the amount 1 from f to v if d(v) = 2, or the amount
(w(f) + α(f)− p2(f))/p3(f) from f to v if d(v) = 3.

We carry out (R1) and (R2) in succession. Let w′ denote the resultant weight
function after discharging.

Claim 1. If f is a face of degree at least 8 and v is a 3-vertex incident to f , then
W(f → v) ≥ 1/2.

Suppose f = [u1u2 . . . ud(f)]. Since (A1) and (A2) fail, G does not contain two
adjacent 2-vertices and a path xyz with d(x) = 2, d(y) = 3, and d(z) ≤ 3. Hence
p2(f) ≤ �d(f)/2� and p3(f) ≤ d(f)− 2p2(f) by Lemma 5. If d(f) ≥ 8, then 2(w(f)+
α(f)−p2(f)) ≥ 2(w(f)−p2(f)) ≥ 2d(f)−8−d(f)+p3(f) ≥ p3(f). This proves that
W(f → v) ≥ 1/2.

Claim 2. Suppose that f is a 7-face and v is a 3-vertex incident to f . Then one
of the following holds.

(1) W(f → v) ≥ 1/2 when p2(f) = 1, or p2(f) = 0 and p3(f) ≤ 6, or p2(f) = 2
and p3(f) ≤ 2.

(2) W(f → v) = 0 when f is a (2, 4, 2, 4, 2, 4, 3)-face.

(3) W(f → v) = 1/5 when f is a (2, 5, 2, 4, 2, 4, 3)-face, or a (2, 4, 2, 5, 2, 4, 3)-face,
or a (2, 4, 2, 4, 2, 5, 3)-face.

(4) W(f → v) ≥ 1/3 in all other cases.

First note that w(f) = 3 and p2(f) ≤ 3. If p2(f) = 0, then W(f → v) = 3/7
when p3(f) = 7, and W(f → v) ≥ 1/2 when p3(f) ≤ 6. If p2(f) = 1, then p3(f) ≤ 4,
and hence W(f → v) ≥ 1/2. If p2(f) = 2, then p3(f) ≤ 3. When p3(f) = 3, W(f →
v) ≥ (w(f) + α(f)− p2(f))/3 ≥ 1/3. When p3(f) ≤ 2, we have W(f → v) ≥ 1/2.

Now assume that p2(f) = 3. Then p3(f) ≤ 1 and v is the only 3-vertex on b(f).
If b(f) does not contain a vertex of degree at least 5, then f is a (2, 4, 2, 4, 2, 4, 3)-face
and W(f → v) = 0. If b(f) contains at least one vertex, say x, of degree ≥ 6, then we
transfer at least 1/3 from x to f according to (R1), and α(f) ≥ 1/3. Thus W(f →
v) ≥ w(f) + α(f) − p2(f) ≥ 1/3. If b(f) contains at least two 5-vertices, say x1 and
x2, then W(f → v) ≥ w(f)+α(f)−p2(f) = α(f) ≥W(x1 → f)+W(x2 → f) ≥ 2/5
according to (R1). If b(f) contains exactly one 5-vertex, we have W(f → v) = 1/5. In
this case, f is a (2, 5, 2, 4, 2, 4, 3)-face, or a (2, 4, 2, 5, 2, 4, 3)-face, or a (2, 4, 2, 4, 2, 5, 3)-
face. This concludes the proof of Claim 2.

It remains to verify that w′(x) ≥ 0 for all x ∈ V (G)∪F (G). Let f ∈ F (G). Since
the degree of a face is never less than the girth of the graph, we have d(f) ≥ 7. Since
p2(f) ≤ �d(f)/2� and w(f) +α(f)− p2(f) ≥ d(f)− 4−�d(f)/2� = 	d(f)/2
− 4 ≥ 0,
it follows that w′(f) ≥ 0 by (R2).

Next let v ∈ V (G). If d(v) = 2, we transfer 1 into v from each of the incident
faces of v by (R2). Thus w′(v) = w(v) + 2 = 0. If d(v) = 4, then w′(v) = w(v) = 0.
If d(v) ≥ 5, then w(v) = d(v)− 4 ≥ 1, and (R1) implies that w′(v) = 0.

Finally, assume that d(v) = 3. Thus w(v) = −1. Let f1, f2, and f3 denote the
faces in G incident to v. We may assume that, among the three faces, f1 discharges
the least amount to v. If W(f1 → v) ≥ 1/3, then w′(v) ≥ 0. Otherwise, according to
Claim 2, we only need to consider the following two cases.

Case 1. W(f1 → v) = 0.

From Claims 1 and 2, we know that f1 is a (2, 4, 2, 4, 2, 4, 3)-face. We will show
that W(fi → v) ≥ 1/2 for i = 2, 3, and thus w′(v) ≥ 0. Let f1 = [vxx1x2x3x4y] with
d(x) = d(x2) = d(x4) = 2 and d(x1) = d(x3) = d(y) = 4. We may suppose that f1



268 WEI-FAN WANG AND KO-WEI LIH

and f2 share the edge vy and f1 and f3 share the path vxx1.

By Claim 1, W(f2 → v) ≥ 1/2 if d(f2) ≥ 8. Now let f2 = [vyy1y2y3y4z]. Since
(A2) fails at v, we must have d(z) ≥ 4. Since (A4) fails at y, we also have d(y1) ≥ 3.
If p2(f2) = 0, then p3(f2) ≤ 5, and hence W(f2 → v) ≥ 3/5. If exactly one among
y2, y3, and y4 is a 2-vertex, then W(f2 → v) ≥ 1/2. If exactly two of them are 2-
vertices, we must have d(y2) = d(y4) = 2. Thus d(y3) ≥ 4. It follows that p3(f2) ≤ 2
and W(f2 → v) ≥ 1/2.

Similarly, we have W(f3 → v) ≥ 1/2 if d(f3) ≥ 8. Now let f3 = [vzz1z2z3x1x].
Since (A4) fails at x1, we have d(z3) ≥ 3.

Suppose that d(z3) = 3. Again since x1 does not satisfy (A4), we have d(z2) ≥ 3.
If d(z2) = 3, then d(z1) ≥ 3, implying p2(f3) = 1, and hence W(f3 → v) ≥ 1/2 by
Claim 2. If d(z2) ≥ 4, then either p2(f3) = 1 or p2(f3) = 2 and p3(f3) ≤ 2, hence
W(f3 → v) ≥ 1/2.

Suppose that d(z3) ≥ 4. In this case, either p2(f3) = 1, or p2(f3) = 2 and
p3(f3) ≤ 2. Therefore W(f3 → v) ≥ 1/2.

Case 2. W(f1 → v) = 1/5.

Again let f1 = [vxx1x2x3x4y] such that f1 and f2 share the edge vy, and f1 and
f3 share the path vxx1. By Claim 2, we first suppose that d(x) = d(x2) = d(x4) = 2,
d(x3) = d(y) = 4, and d(x1) = 5, i.e., f1 is a (2, 5, 2, 4, 2, 4, 3)-face.

Since (A2) fails at v, we have d(z) ≥ 4. Similar to Case 1, W(f2 → v) ≥ 1/2.
Let f3 = [vzz1z2z3x1x]. Since the degrees of the three consecutive vertices x1, x, v
are 5, 2, 3, f3 cannot be a (2, 4, 2, 4, 2, 4, 3)-face, or a (2, 4, 2, 5, 2, 4, 3)-face, or a
(2, 4, 2, 4, 2, 5, 3)-face. If it is a (4, 2, 4, 2, 5, 2, 3)-face, then d(z1) = d(z3) = 2 and
d(z) = d(z2) = 4. Thus, v satisfies (A3) since y and z are, respectively, adjacent to
at least one 2-vertex. This is not allowed. From Claim 2, all remaining possibilities
lead to W(f3 → v) ≥ 1/3. Consequently, w′(v) ≥ −1+ (1/5) + (1/2) + (1/3) = 1/30.

Similar arguments can be constructed when f1 is either a (2, 4, 2, 5, 2, 4, 3)-face or
a (2, 4, 2, 4, 2, 5, 3)-face. This concludes the proof of Case 2.

Lemma 7. Let G be a connected plane graph with δ(G) = 2 and g(G) ≥ 6. If
G does not contain a 6-face [u1u2 . . . u6] satisfying d(u2) ≤ 5 and d(u1) = d(u3) =
d(u5) = 2, then G contains a vertex v whose neighbors v1, v2, . . . , vk satisfy one of the
following conditions, assuming d(v1) ≤ d(v2) ≤ · · · ≤ d(vk):

(B1) k = 2 and d(v1) = 2;

(B2) k = 3, d(v1) = 2, and d(v2) ≤ 5;

(B3) k = 4, d(v1) = 2, d(v2) ≤ 3, and d(v3) ≤ 5.

Proof. Suppose that the lemma is false. Let G be a connected plane graph with
δ(G) = 2, g(G) ≥ 6, and without any 6-face [u1u2 . . . u6] satisfying d(u2) ≤ 5 and
d(u1) = d(u3) = d(u5) = 2. We further assume that none of its vertices satisfies one
of (B1), (B2), and (B3).

For f ∈ F (G), let V ′
3(f) denote the set of those 3-vertices on the boundary of f ,

each of which is not adjacent to any 2-vertex on that boundary. Thus V ′
3(f) ⊆ V3(f).

Furthermore, for k = 0, 1, 2, let V k
2 (f) denote the set of those 2-vertices on the

boundary of f , each of which is adjacent to k vertices of degree at least 6 on that
boundary. By definition, V2(f) = V 0

2 (f) ∪ V 1
2 (f) ∪ V 2

2 (f).

We define the following discharging rules.

(R1) For every vertex v of degree at least 6, we transfer the amount w(v)/d(v)
from v to each of its adjacent vertices of degree less than 6.

(R2) For a vertex v with 4 ≤ d(v) ≤ 5, let γ(v) denote the sum of weights
discharged to v from its adjacent vertices of degree at least 6 according to (R1). If f
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is a face incident to v, then, for each occurrence of v in b(f), we transfer the amount
(w(v) + γ(v))/d(v) from v to f .

(R3) Let v be a vertex of degree at most 3 and f a face incident to v. For each
occurrence of v in b(f), we transfer the amount 1/3 from f to v when v ∈ V ′

3(f), or
2/3 from f to v when v ∈ V 2

2 (f), or 5/6 from f to v when v ∈ V 1
2 (f), or 1 from f to

v when v ∈ V 0
2 (f).

We carry out (R1), (R2), and (R3) in succession. Let w′ denote the resultant
weight function after discharging. It remains to verify that w′(x) ≥ 0 for all x ∈
V (G) ∪ F (G).

Let v ∈ V (G). If d(v) ≥ 6, then w(v) ≥ 2 and w′(v) ≥ 0 by (R1). If 4 ≤
d(v) ≤ 5, then w(v) + γ(v) ≥ w(v) ≥ 0 and thus w′(v) ≥ 0 by (R2). Assume
that d(v) = 3. Thus w(v) = −1. Let x1, x2, and x3 denote the neighbors of v
in G with d(x1) ≤ d(x2) ≤ d(x3). If d(x1) ≥ 3, then v receives three times 1/3
from the incident faces by (R3), and w′(v) ≥ 0. If d(x1) = 2, then d(x2) ≥ 6
and d(x3) ≥ 6 since (B2) fails at v. It follows from (R1) that, for i = 2 and 3,
W(xi → v) = (d(xi) − 4)/d(xi) = 1 − 4/d(xi) ≥ 1/3. Note that the face whose
boundary walk contains the path x3vx2 discharges 1/3 to v by (R3). Hence w′(v) ≥ 0.

Assume that d(v) = 2. So w(v) = −2. Let y1 and y2 denote the neighbors of v
with d(y1) ≤ d(y2), and f1 and f2 denote the faces of G incident to v. If d(y1) ≥ 6,
then for i = 1 and 2, W(yi → v) ≥ 1/3 by (R1) and W(fi → v) = 2/3 by (R3).
Consequently, w′(v) ≥ −2 + 2(2/3) + 2(1/3) = 0. If d(y1) ≤ 5, we consider two
possibilities. When d(y2) ≤ 5, each of f1 and f2 discharges 1 to v by (R3), and hence
w′(v) ≥ −2 + 2 = 0. When d(y2) ≥ 6, W(y2 → v) ≥ 1/3 and W(f1 → v) = W(f2 →
v) = 5/6, hence w′(v) ≥ −2 + 2(5/6) + (1/3) = 0.

Let f ∈ F (G) and let α(f) denote the sum of weights discharged into f from all its
incident 4-vertices and 5-vertices according to (R2). Suppose that f = [u1u2 . . . ud(f)].
Since G does not contain two adjacent 2-vertices, p2(f) ≤ �d(f)/2� by Lemma 5. By
(R3), W(f →) = (|V ′

3(f)|/3) + (2|V 2
2 (f)|/3) + (5|V 1

2 (f)|/6) + |V 0
2 (f)|. We will show

W(f →) ≤ w(f) + α(f). Then w′(f) = w(f) + α(f) −W(f →) ≥ 0. It is obvious
that W(f →) ≤ p2(f) + p3(f)/3.

Let d(f) ≥ 8. Since G does not contain a path xyz with d(x) = 2, d(y) = 3,
and d(z) ≤ 5, it follows that p3(f) ≤ d(f) − 2p2(f) by Lemma 5. Thus W(f →) ≤
p2(f)+p3(f)/3 ≤ p2(f)+(d(f)−2p2(f))/3 = (d(f)+p2(f))/3 ≤ d(f)/2 ≤ d(f)−4 =
w(f) ≤ w(f) + α(f).

Let d(f) = 7. Then w(f) = 3 and p2(f) ≤ 3. If p2(f) ≤ 1, then W(f →) ≤
1+6(1/3) = 3. If p2(f) = 2, then p3(f) ≤ 3, and W(f →) ≤ 2+3(1/3) = 3. Assume
that p2(f) = 3. So p3(f) ≤ 1. If p3(f) = 0, then W(f →) ≤ 3. If p3(f) = 1, then
the unique 3-vertex on the boundary of f , say z, is adjacent to some 2-vertex on the
boundary. By (R3), nothing is discharged from f to z. Thus W(f →) ≤ 3.

Let d(f) = 6. Thus w(f) = 2 and p2(f) ≤ 3. Suppose d(u1) = d(u3) = d(u5) = 2.
By our assumptions on G, the degrees of u2, u4, and u6 must all be greater than 5.
Now we transfer 2/3 from f to each incident 2-vertex by (R3), and henceW(f →) = 2.
If p2(f) = 0, it is clear that W(f →) ≤ 6(1/3) = 2. If p2(f) = 1, it is easy to see that
p3(f) ≤ 3 and W(f →) ≤ 1+ 3(1/3) = 2. Finally, suppose that p2(f) = 2. It suffices
to handle the following two cases.

Case 1. d(u1) = d(u4) = 2.

Note that any 3-vertex on b(f), if it exists, must be adjacent to either u1 or u4.
It follows from (R3) that W(f →) ≤ 2.

Case 2. d(u1) = d(u3) = 2.
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It is easy to see that d(u2) ≥ 4 since (B2) fails at u2. Moreover, p3(f) ≤ 2.

If p3(f) = 0, then W(f →) ≤ 2.

Assume that p3(f) = 1. If either d(u4) = 3 or d(u6) = 3, then it is obvious that
W(f →) ≤ 2. Suppose d(u5) = 3. We see that d(u4) ≥ 4 and d(u6) ≥ 4 as (B2) fails
at these vertices, and W(f → u5) = 1/3 by (R3).

If d(u2) ≥ 6, then W(f → ui) ≤ 5/6 for i = 1 and 3. Thus W(f →) ≤
2(5/6)+ 1/3 = 2. If d(u2) = 5, then W(u2 → f) = (w(u2)+ γ(u2))/d(u2) ≥ (d(u2)−
4)/d(u2) = 1/5. If d(u2) = 4, let z1 and z2 denote the other two neighbors of u2

different from u1 and u3. For i = 1 and 2, we have d(zi) ≥ 6 since (B3) fails at u2, and
W(zi → u2) ≥ 1/3 by (R1). So γ(u2) ≥ 2/3 and W(u2 → f) ≥ γ(u2)/d(u2) ≥ 1/6
by (R2).

In summary, u2 discharges at least 1/6 to the face f when 4 ≤ d(u2) ≤ 5. This
implies that α(f) ≥ 1/6. If d(u4) ≥ 6, then W(f → u3) = 5/6 by (R3), and hence
W(f →) ≤ (5/6)+1+(1/3) = 2+1/6 ≤ w(f)+α(f). If 4 ≤ d(u4) ≤ 5, we can reason
similarly to obtain W(u4 → f) ≥ 1/6. Thus α(f) ≥W(u2 → f)+W(u4 → f) ≥ 1/3.
Hence W(f →) ≤ 2 + 1/3 ≤ w(f) + α(f).

Finally, assume p3(f) = 2. The only possibility is d(u4) = d(u6) = 3. Since both
u4 and u6 are adjacent to a 2-vertex on the boundary of f , it follows that W(f →) ≤ 2
by (R3).

Lemma 8. Let G be a connected plane graph with g(G) ≥ 5, δ(G) ≥ 2, and
without a path x1x2x3x4 such that d(x2) = d(x3) = 3, d(x1) ≤ 11, and d(x4) ≤ 11.
Then G contains a vertex v whose neighbors v1, v2, . . . , vk satisfy one of the following
conditions, assuming d(v1) ≤ d(v2) ≤ · · · ≤ d(vk):

(C1) k = 2 and d(v1) = 2;

(C2) k = 3, d(v1) = 2, and d(v2) ≤ 11;

(C3) k = 4, d(v1) = 2, d(v2) ≤ 7, and d(v3) ≤ 7;

(C4) k = 5, d(v1) = d(v2) = d(v3) = 2, and d(v4) ≤ 7;

(C5) k = 6 and d(v1) = d(v2) = d(v3) = d(v4) = d(v5) = 2;

(C6) k = 7 and d(v1) = d(v2) = · · · = d(v7) = 2.

Proof. Suppose that the lemma is false. Let G be a connected plane graph with
g(G) ≥ 5, δ(G) ≥ 2, and without any path x1x2x3x4 satisfying d(x2) = d(x3) = 3,
d(x1) ≤ 11, and d(x4) ≤ 11. We further assume that none of its vertices satisfies one
of (C1) to (C6).

For a face f ∈ F (G), let V ∗
3 (f) denote the set of 3-vertices in V3(f), each of which

has two neighbors of degree at most 7 but no neighbors of degree 2. Let V ∗
2 (f) denote

the set of 2-vertices in V2(f), each of which has two neighbors of degree at least 12.

The discharging rules are defined as follows:

(R1) For every vertex v of degree at least 8, we transfer the amount w(v)/d(v)
from v to each of its adjacent vertices of degree at most 7.

(R2) For a vertex v with 3 ≤ d(v) ≤ 7, we transfer the amount 1/2 from v to
each of its adjacent 2-vertices.

(R3) Let f be a face of degree at least 6 incident to a vertex v. For each occurrence
of v in b(f), we transfer the amount 1/2 from f to v if v ∈ V2(f) and the amount 1/3
from f to v if v ∈ V3(f).

(R4) Let f be a 5-face. For each occurrence of a vertex v in b(f), we transfer
the amount 1/3 from f to v if v ∈ V ∗

2 (f) ∪ V ∗
3 (f) and the amount 1/2 from f to v

if v ∈ V2(f) \ V ∗
2 (f). Afterwards, the remaining weight of f is evenly distributed to

other 3-vertices in b(f).



DISTANCE TWO LABELINGS OF PLANAR GRAPHS 271

We carry out (R1), (R2), (R3), and (R4) in succession. Let w′ denote the resultant
weight function after discharging. It remains to verify that w′(x) ≥ 0 for all x ∈
V (G) ∪ F (G).

Let f ∈ F (G). Since g(G) ≥ 5, we have d(f) ≥ 5. Again, we know that
p2(f) ≤ �d(f)/2� by Lemma 5. It suffices to show W(f →) ≤ w(f). If d(f) ≥ 7, it
follows from (R3) that W(f →) ≤ p2(f)/2+ p3(f)/3 ≤ p2(f)/2+ (d(f)− p2(f))/3 =
d(f)/3 + p2(f)/6 ≤ d(f)/3 + d(f)/12 = 5d(f)/12 ≤ d(f)− 4 = w(f).

Assume that d(f) = 6. We see that w(f) = 2 and p2(f) ≤ 3. If p2(f) = 3, then
p3(f) = 0 and W(f →) ≤ 3/2. If 1 ≤ p2(f) ≤ 2, then p3(f) ≤ 3 and W(f →) ≤
2(1/2) + 3(1/3) = 2. If p2(f) = 0, then W(f →) ≤ 6(1/3) = 2.

Assume that d(f) = 5. Then w(f) = 1 and p2(f) ≤ 2. Let β(f) = (|V ∗
2 (f)| +

|V ∗
3 (f)|)/3 + |V2(f) \ V ∗

2 (f)|/2. It suffices to prove β(f) ≤ 1. If p2(f) = 0, we claim
that p3(f) ≤ 3 and thus β(f) ≤ 3(1/3) = 1. In fact, if p3(f) ≥ 4, then G would
contain a path x1x2x3x4 such that d(xi) = 3 for all 1 ≤ i ≤ 4, contradicting the
assumptions on G. Let p2(f) = 1. Suppose that f = [u1u2u3u4u5] and d(u1) = 2.
Both u2 and u5 cannot belong to V ∗

3 (f). If at most one of u3 and u4 is of degree
3, then β(f) ≤ 1/2 + 1/3 = 5/6 by (R4). Assume that d(u3) = d(u4) = 3. If both
u2 and u5 are of degree at least 12, then W(f → u1) = 1/3 by (R4), and thus
β(f) ≤ 3(1/3) = 1. Suppose that at least one of u2 and u5, say u2, is of degree at
most 11. Let z denote the neighbor of u4 that differs from u3 and u5. It follows that
d(z) ≥ 12 and d(u5) ≥ 12, for otherwise u2u3u4z or u2u3u4u5 would be a forbidden
path. Thus u4 /∈ V ∗

3 (f) and β(f) ≤ 5/6. Let p2(f) = 2. It is easy to see that each
3-vertex on b(f), if it exists, is adjacent to some 2-vertex on b(f). Hence V ∗

3 (f) = ∅
and β(f) ≤ 1.

Let v ∈ V (G). List all neighbors of v as v1, v2, . . . , vk such that d(v1) ≤ d(v2) ≤
· · · ≤ d(vk). If d(v) ≥ 8, it is obvious that w′(v) ≥ 0 by (R1). If d(v) = 2, then
w(v) = −2. Note that d(v1) ≥ 3. Let f1 and f2 denote the faces incident to v.
When d(v1) ≥ 12, W(v1 → v) ≥ (d(v1) − 4)/d(v1) ≥ 2/3, W(v2 → v) ≥ 2/3,
and W(fi → v) = 1/3 for i = 1 and 2 by (R1), (R3), and (R4). Consequently,
w′(v) ≥ −2 + 2(2/3) + 2(1/3) = 0. When d(v1) ≤ 11, each of v1, v2, f1, and f2

discharges at least 1/2 to v, thus w′(v) ≥ −2 + 2 = 0.

Let d(v) = 3. If d(v1) = 2, then d(v2) ≥ 12 and d(v3) ≥ 12 since (C2) fails at v.
Let f∗ denote the face of G whose boundary contains the path v2vv3. If d(f∗) ≥ 6,
then f∗ discharges the amount 1/3 to v by (R3). Thus w′(v) ≥ −1 + 2(2/3) +
1/3 − 1/2 = 1/6 by (R1) and (R2). Assume that d(f∗) = 5. Since both d(v2) and
d(v3) are ≥ 12, we see that p2(f

∗) ≤ 1 and p2(f
∗) + p3(f

∗) ≤ 3. It follows from
(R4) that W(f∗ → v) ≥ 1/4. Therefore w′(v) ≥ −1 + 2(2/3) + 1/4 − 1/2 = 1/12.
Suppose that d(v1) ≥ 3. If d(v2) ≥ 8, then W(vi → v) ≥ 1/2 for i = 2 and 3, thus
w′(v) ≥ −1+ 2(1/2) = 0. If d(v2) ≤ 7, then each of the faces incident to v discharges
1/3 to v by (R3) and (R4). Consequently, w′(v) ≥ −1 + 3(1/3) = 0.

Let d(v) = 4. Thus w(v) = 0. If d(v1) ≥ 3, then it is evident that w′(v) ≥ 0. If
d(v1) = 2, then d(v3) ≥ 8 since (C3) fails at v. By (R1), W(vi → v) ≥ 1/2 for i = 3
and 4. On the other hand, v discharges at most 1/2 to each of v1 and v2 by (R2). It
follows that w′(v) ≥ 0.

Let d(v) = 5. Thus w(v) = 1. If d(v3) ≥ 3, then w′(v) ≥ w(v) − 2(1/2) = 0. If
d(v3) = 2, we see that d(v4) ≥ 8 since (C4) fails at v. So w′(v) ≥ 1−3(1/2)+2(1/2) =
1/2.

Let d(v) = 6. Since (C5) fails at v, it follows that d(v5) ≥ 3 and w′(v) ≥
w(v)− 4(1/2) = 0.
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Let d(v) = 7. Since (C6) fails at v, it follows that d(v7) ≥ 3 and w′(v) ≥
w(v)− 6(1/2) = 0.

3. Proof of the main theorem. Let G be a plane graph. For a vertex v
of G and an integer i ≥ 1, let Ni(v) denote the set of vertices in G at distance i
to v. Let N1(v) = {x1, x2, . . . , xd(v)}. Suppose that we are trying to construct an
L(p, q)-labeling φ of G and v is a yet-to-be-labeled vertex. For every labeled vertex
x ∈ N1(v), there are 2p−1 consecutive labels φ(x)−p+1, φ(x)−p+2, . . . , φ(x), φ(x)+
1, . . . , φ(x) + p− 1 that are forbidden for use on v. Similarly, for every labeled vertex
y ∈ N2(v), there are 2q−1 consecutive labels φ(y)−q+1, φ(y)−q+2, . . . , φ(y), φ(y)+
1, . . . , φ(y) + q − 1 that are forbidden for use on v. Let σ(v) denote the number of
labels forbidden for v. Then σ(v) ≤ (2p−1)d∗(v)+(2q−1)

∑{d∗(xi) | 1 ≤ i ≤ d(v)},
where d∗(w) denotes the number of vertices adjacent to w that have already been
labeled.

We are going to prove the following slightly stronger form of Theorem 1.
Theorem 9. For positive integers p, q, and M , let G be a plane graph satisfying

2 ≤ ∆(G) ≤M . Then the following statements hold:
(1) If g(G) ≥ 7, then λ(G; p, q) ≤ (2q − 1)M + 4p+ 4q − 4.
(2) If g(G) ≥ 6, then λ(G; p, q) ≤ (2q − 1)M + 6p+ 12q − 9.
(3) If g(G) ≥ 5, then λ(G; p, q) ≤ (2q − 1)M + 6p+ 24q − 15.
Proof. We may assume that G is connected and prove the theorem by induction on

|V (G)|+|E(G)|. When ∆(G) = 2, the theorem can be checked easily or it follows from
results in [4]. Hence the induction basis holds for a cycle of length 5. Now let G be a
plane graph with |V (G)|+ |E(G)| ≥ 10 satisfying 3 ≤ ∆(G) ≤M . If there is a vertex
v of degree 1, we can extend an L(p, q)-labeling of G−v to an L(p, q)-labeling of G for
cases (1), (2), and (3) since σ(v) ≤ (2p−1)+(2q−1)(∆(G)−1) ≤ (2q−1)M+2p−2q.
Suppose that δ(G) ≥ 2.

Part 1. By Lemma 6, there is a vertex v with neighbors v1, v2, . . . , vk such that
at least one among (A1) to (A4) holds. Let H = G − v1. Evidently, H is a plane
graph with g(H) ≥ 7 and ∆(H) ≤M . By the induction hypothesis, H has an L(p, q)-
labeling φ with the label set L1 = {0, 1, . . . , n1}, where n1 = (2q− 1)M +4p+4q− 4.
Now we label G as follows. Note that the order of labeling is essential for determining
the bounds for forbidden labels.

If either (A1) or (A2) holds, erase φ(v). First label v, then label v1.
If (A3) holds, erase φ(v), φ(u2), and φ(u3). Then label v, u2, u3, and v1 in

succession.
If (A4) holds, erase φ(v), φ(v2), and φ(v3) when d(v3) = 2, or erase φ(v), φ(v2),

and φ(u3) when d(v3) = 3. Afterwards, label v, v2, v3 (or u3), and v1 in succession.
For any vertex x that is ready to be labeled in the above process, the number of

forbidden labels σ(x) can be estimated as follows:

σ(x) ≤ 2(2p− 1) + (2q − 1)(∆(G)− 1 + 3)

≤ 2(2p− 1) + (2q − 1)(M + 2) = n1

for x ∈ {v1, v2, v3, u2, u3},
σ(v) ≤ max{2(2p− 1) + 5(2q − 1), 2(2p− 1) + (2q − 1)(∆(G) + 2)}

≤ 2(2p− 1) + (2q − 1)(M + 2) = n1.

Thus φ can be extended to an L(p, q)-labeling of G with the label set L1.
Part 2. If G contains a 6-face [u1u2 . . . u6] such that d(ui) = 2 for i = 1, 3, 5,

d(u2) ≤ 5, and d(uj) ≤ ∆(G) for j = 4, 6, then let H = G−u1−u3+u2u5. Otherwise,
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there is a vertex v with neighbors v1, v2, . . . , vk such that at least one among (B1)
to (B3) in Lemma 7 holds. Let H = G − v1. Obviously, H is a plane graph with
g(H) ≥ 6, ∆(H) ≤ M , and |V (H)| + |E(H)| < |V (G)| + |E(G)|. By the induction
hypothesis, H has an L(p, q)-labeling φ with the label set L2 = {0, 1, . . . , n2}, where
n2 = (2q − 1)M + 6p+ 12q − 9. Now we label G as follows.

If G contains a 6-face satisfying the conditions given above, we label u1 and u3

in succession.
If one of (B1), (B2), and (B3) holds, first erase φ(v). Then label v and v1 in

succession.
It is easy to see the following:

σ(uj) ≤ 2(2p− 1) + (2q − 1)(∆(G)− 1 + 4)

≤ 2(2p− 1) + (2q − 1)(M + 3)

= (2q − 1)M + 4p+ 6q − 5 < n2

for j = 1, 3,

σ(v1) ≤ 2(2p− 1) + (2q − 1)(∆(G)− 1 + 3)

≤ (2q − 1)M + 4p+ 4q − 4 < n2

σ(v) ≤ 3(2p− 1) + (2q − 1)(∆(G)− 1 + 1 + 2 + 4)

≤ (2q − 1)M + 6p+ 12q − 9 = n2.

Thus φ can be extended to an L(p, q)-labeling of G with the label set L2.
Part 3. If G contains a path x1x2x3x4 with d(x2) = d(x3) = 3 and d(xi) ≤ 11

for i = 1 and 4, then let H = G−x2x3. Otherwise, there is a vertex v with neighbors
v1, v2, . . . , vk such that at least one among (C1) to (C6) in Lemma 8 holds. Let
H = G − v1. Obviously, H is a plane graph with g(H) ≥ 5, ∆(H) ≤ M , and
|E(H)| < |E(G)|. By the induction hypothesis, H has an L(p, q)-labeling φ with the
label set L3 = {0, 1, . . . , n3}, where n3 = (2q− 1)M +6p+24q− 15. Now we label G
as follows.

If G contains a path satisfying the conditions given above, first erase φ(x2) and
φ(x3). Then label x2 and x3 in succession. Note that σ(xi) ≤ 3(2p − 1) + (2q −
1)(∆(G)− 1 + 10 + 2) ≤ (2q − 1)M + 6p+ 22q − 14 < n3 for i = 2 and 3.

If one of (C1), (C2), and (C3) holds, first erase φ(v). Then label v and v1 in
succession. It is easy to see the following.

σ(v1) ≤ 2(2p− 1) + (2q − 1)(M + 2) < n3,

σ(v) ≤ max{(2p− 1) + (2q − 1)(∆(G)− 1 + 1),

2(2p− 1) + (2q − 1)(∆(G)− 1 + 10 + 1),

3(2p− 1) + (2q − 1)(∆(G)− 1 + 6 + 6 + 1)}
≤ 3(2p− 1) + (2q − 1)(M + 12)

= (2q − 1)M + 6p+ 24q − 15 = n3.

If one of (C4), (C5), and (C6) holds, then erase φ(v) and φ(u) for any of its
adjacent 2-vertices u. Afterwards, first label v, then label these adjacent 2-vertices,
and finally label v1.

It is easy to verify that, for cases (C4) to (C6),

σ(u) ≤ 2(2p− 1) + (2q − 1)(M + 5)

= (2q − 1)M + 4p+ 10q − 7 < n3
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if d(u) = 2,

σ(v) ≤ max{2(2p− 1) + (2q − 1)(∆(G) + 8),

(2p− 1) + (2q − 1)(∆(G) + 4), 7(2q − 1)} ≤ n3.

Thus φ can be extended to an L(p, q)-labeling of G with the label set L3.

4. Concluding remarks. Since both χ(G2) and λ(G; 2, 1) are greater than or
equal to ∆(G) + 1, it follows from Corollary 2 that each of them is equal to the
maximum degree plus a constant if G is a planar graph of girth at least 5. Let
c′(g) denote the smallest integer k′ such that all planar graphs G of girth at least g
satisfy χ(G2) ≤ ∆(G) + k′. Let c′′(g) be defined similarly with respect to λ(G; 2, 1).
Both c′(g) and c′′(g) are well defined when g ≥ 5. A 5-cycle C5 satisfies χ(C2

5 ) =
5 = ∆(C5) + 3 and λ(C5; 2, 1) = 4 = ∆(C5) + 2; a 7-cycle C7 satisfies χ(C2

7 ) =
λ(C7; 2, 1) = 4 = ∆(C7) + 2. Let H denote the graph obtained by inserting a new
vertex into each of the edges of a complete graph on four vertices. It is easy to verify
that χ(H2) = 5 = ∆(H)+2 and λ(H; 2, 1) = 6 = ∆(H)+3. These examples together
with Corollary 2 show that

(i) 3 ≤ c′(5) ≤ 16 and 2 ≤ c′′(5) ≤ 21;
(ii) 2 ≤ c′(6) ≤ 10 and 3 ≤ c′′(6) ≤ 15;
(iii) 2 ≤ c′(7) ≤ 5 and 2 ≤ c′′(7) ≤ 8.

Given g ≥ 5, determining the precise values of c′(g) and c′′(g) seems to be an inter-
esting problem.

We remark that neither c′(g) nor c′′(g) is well defined when g ≤ 4. Infinitely
many counterexamples have been constructed in [9].

In conclusion, we would like to propose the following.
Conjecture 3. For any integer g ≥ 5, there exists a sufficiently large integer

M(g) such that if G is a planar graph with girth g and ∆(G) ≥M(g), then χ(G2) =
λ(G; 2, 1) = ∆(G) + 1.
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Abstract. In this paper, we consider the problem of determining when the capacities of distinct
(d, k)-constrained systems can be equal. A (d, k)-constrained system consists of binary sequences
which have at least d zeros and at most k zeros between any two successive ones. If we let C(d, k)
denote the capacity of a (d, k)-constrained system, then it is known that C(d, 2d) = C(d+ 1, 3d+ 1)
and C(d, 2d + 1) = C(d + 1,∞). Repeated application of these two identities also yields the chain
of equalities C(1, 2) = C(2, 4) = C(3, 7) = C(4,∞). We show that these are the only equalities
possible among the capacities of (d, k)-constrained systems. In the process, we also provide useful
factorizations of the characteristic polynomials for these constraints.
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1. Introduction. Given nonnegative integers d, k, with d < k, we say that a
binary sequence is (d, k)-constrained if every run of zeros has length at most k and
any two successive ones are separated by a run of zeros of length at least d. A (d, k)-
constrained system is defined to be the set of all finite-length (d, k)-constrained binary
sequences. The above definition can be extended to the case k =∞ by not imposing
an upper bound on the lengths of zero-runs. In other words, a binary sequence is said
to be (d,∞)-constrained if any two successive ones are separated by at least d zeros,
and a (d,∞)-constrained system is defined to be the set of all finite-length (d,∞)-
constrained binary sequences. From now on, when we refer to (d, k)-constrained
systems, we shall also allow k to be ∞.

Let S(d, k) be a (d, k)-constrained system, and let qd,k(n) be the number of length-
n sequences in S(d, k). The Shannon capacity, or simply capacity, of S(d, k) is defined
as

C(d, k) = lim
n→∞

1

n
log2 qd,k(n).(1)

It is well known (see, e.g., [2]) that C(d, k) = log2 ρd,k, where ρd,k is the unique largest-
magnitude root of a certain polynomial, χd,k(z), called the characteristic polynomial
of the constraint. When k is finite, χd,k(z) takes the form

χd,k(z) = zk+1 −
k−d∑
j=0

zj ,(2)

and when k =∞,
χd,∞(z) = zd+1 − zd − 1.(3)

ρd,k is always real and lies in the interval (1, 2] so that 0 < C(d, k) ≤ 1. In fact,
C(d, k) = 1 if and only if (d, k) = (0,∞).
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Interest in constrained systems and their capacities dates back to the work of
Shannon [8]. In the mathematical literature, constrained systems are the subject of
study of symbolic dynamics (cf. [3]), where the capacity of a constrained system is
referred to as its entropy. (d, k)-constrained systems in particular have applications
in magnetic and optical recording systems [5].

It is easily verified that certain pairs of (d, k)-constrained systems have the same
capacity. For example, we have the identities

C(d, 2d) = C(d+ 1, 3d+ 1),(4)

C(d, 2d+ 1) = C(d+ 1,∞)(5)

true for all d ≥ 0. The first equality is a consequence of the fact that χd+1,3d+1(z) =
(zd+1+1)χd,2d(z), since all the roots of z

d+1+1 lie on the unit circle so that ρd,2d =

ρd+1,3d+1. Similarly, the factorization χd,2d+1(z) = χd+1,∞(z)
∑d
i=0 z

i yields (5),

since
∑d
i=0 z

i = (zd+1 − 1)/(z − 1) has all its roots on the unit circle as well.
Repeatedly applying the two identities above also yields the chain of equalities

C(1, 2) = C(2, 4) = C(3, 7) = C(4,∞).(6)

It is the aim of this paper to show that (4), (5), and (6) capture all the equalities
possible among the capacities of (d, k)-constrained systems. More precisely, we shall
prove the following theorem.

Theorem 1. If C(d, k) = C(d̂, k̂) for (d, k) �= (d̂, k̂), then one of the following
holds:

(i) {(d, k), (d̂, k̂)} = {(, 2), (+ 1, 3+ 1)} for some integer  ≥ 0,
(ii) {(d, k), (d̂, k̂)} = {(, 2+ 1), (+ 1,∞)} for some integer  ≥ 0,
(iii) (d, k), (d̂, k̂) are among the pairs listed in (6).
The key to our proof of this result is an explicit factorization we obtain for the

characteristic polynomials of the (d, k)-constraints. We show that χd,k(z) can be
factored as

χd,k(z) = Φd,k(z)Ψd,k(z),

where Φd,k(z),Ψd,k(z) ∈ Z[z], Ψd,k(z) is irreducible (over Z), and Φd,k(z) either is 1 or
has all its roots on the unit circle. We can, in fact, determine an explicit form for the
polynomials Φd,k(z), from which we can deduce an expression for Ψd,k(z) for certain

(d, k) pairs. An immediate consequence of this result is that C(d, k) = C(d̂, k̂) if and
only if Ψd,k(z) = Ψd̂,k̂(z). Theorem 1 is then obtained by identifying all the cases

where we can have Ψd,k(z) = Ψd̂,k̂(z). This last step relies heavily on the explicit
form we derive for the Φ and Ψ polynomials.

The rest of the paper is organized as follows. In section 2, we present the factor-
ization of χd,k(z), which we use in section 3 to prove Theorem 1.

2. Factorization of χd,k(z). We shall first consider the factorization of χd,∞(z),
as it follows directly from existing results. Throughout this paper, we shall be con-
cerned only with polynomials with integer coefficients. Any such polynomial is called
reducible if it can be factored over the integers, and irreducible otherwise.

If F (z) ∈ Z[z] is a polynomial of degree n, then F ∗(z) = znF (1/z) is called the
reciprocal polynomial of F (z). Thus, for example, if F (z) = z5 − 4z4 + 6z3 − 4z2 − 1,
then F ∗(z) = 1− 4z + 6z2 − 4z3 − z5 is its reciprocal polynomial.
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Observe that χ∗
d,∞(z) = 1 − z − zd+1, so that when d is odd, −χ∗

d,∞(−z) =
zd+1− z−1, and when d is even, χ∗

d,∞(−z) = zd+1+ z+1. The following result deals
with the irreducibility of the polynomials zn − z − 1 and zn + z + 1.

Theorem 2 (see [7, Theorem 1]). (i) zn − z − 1 is irreducible for all n. (ii) For
n > 2, zn + z + 1 is irreducible if and only if n �≡ 2 (mod 3). If n ≡ 2 (mod 3), then
z2 + z + 1 is a factor and the other factor is irreducible.

Thus, by part (i) of the above theorem, for odd d, −χ∗
d,∞(−z) is irreducible and

hence so is χd,∞(z). When d is even, it is either 0, 2, or 4 (mod 6). In the first two
cases, d+1 �≡ 2 (mod 3), and so by part (ii) of the above result, χ∗

d,∞(−z) is irreducible
and therefore so is χd,∞(z). When d ≡ 4 (mod 6), we have d + 1 ≡ 2 (mod 3), and
applying part (ii) of the theorem again, we see that χ∗

d,∞(−z) = (z2 + z + 1)p(z) for

some irreducible p(z). Therefore, in this case, we have χd,∞(z) = (z2−z+1)Ψd,∞(z),
with Ψd,∞(z) = p∗(−z) being irreducible. In fact, one can easily verify by means of
an inductive argument that when d ≡ 4 (mod 6), then

Ψd,∞(z) = z3 − z − 1 +
(d+2)/6∑
l=2

(z6l−3 − z6l−5 − z6l−6 + z6l−8).(7)

We summarize these results in the following theorem.
Theorem 3. For d �≡ 4 (mod 6), χd,∞(z) is irreducible. For d ≡ 4 (mod 6),

χd,∞(z) = (z2−z+1)Ψd,∞(z), with Ψd,∞(z) irreducible and of the form given by (7).
When k is finite, the factorization we obtain for χd,k(z) is based on a technique

originally due to Ljunggren [4], which was further developed by Filaseta [1]. We
briefly describe this technique here.

We define F (z) ∈ Z[z] to be self-reciprocal if F (z) = ±F ∗(z). Note that F (z) is
self-reciprocal if and only if λ being a root of F (z) implies that λ−1 is also a root. An
example of a polynomial that is self-reciprocal is z5 − 10z3 + 10z2 − 1.

Now, any F (z) ∈ Z[z] can always be written as F (z) = Φ(z)Ψ(z), where Φ(z)
is the product of all the irreducible self-reciprocal factors of F (z) that have positive
leading coefficients. If F (z) has no irreducible self-reciprocal factors, then we take
Φ(z) = 1 and Ψ(z) = F (z). We call Φ(z) the reciprocal part of F (z), while Ψ(z) is
called the nonreciprocal part of F (z). It is worth pointing out that this definition does
not preclude Ψ(z) from being self-reciprocal itself. For example, F (z) = z6 + z5 +
z4 + 3z3 + z2 + z + 1 = (z3 + z2 + 1)(z3 + z + 1), and both the factors are irreducible
but not self-reciprocal. Thus, the nonreciprocal part of F (z) is F (z) itself, which is a
self-reciprocal polynomial. On the other hand, the reciprocal part of any polynomial
is always self-reciprocal.

Note that if we take F (z) = χd,∞(z), then Theorem 3 shows that the reciprocal
part of F (z) is 1 when d �≡ 4 (mod 6) and is z2 − z + 1 when d ≡ 4 (mod 6). Thus,
the nonreciprocal part of F (z) is F (z) itself in the former case and is Ψd,∞(z) as given
by (7) in the latter case. Observe that in either case, the nonreciprocal part of F (z)
is irreducible.

The following result [1, Lemma 1] tells us precisely when the nonreciprocal part
of a polynomial is reducible.

Lemma 4 (Ljunggren–Filaseta lemma). The nonreciprocal part of F (z) ∈ Z[z] is
reducible if and only if there exists G(z) different from ±F (z) and ±F ∗(z) such that
G(z)G∗(z) = F (z)F ∗(z).

The “only if” part of this lemma is sufficient for our purposes. To verify this
part, note that if the nonreciprocal part, Ψ(z), is reducible, then Ψ(z) = A(z)B(z) for
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some non-self-reciprocal polynomials A(z) and B(z). Setting G(z) = A(z)B∗(z)Φ(z),
where Φ(z) is the reciprocal part of F (z), we see that G(z) has the properties stated
in the lemma.

We shall use the Ljunggren–Filaseta lemma to prove the irreducibility of the
nonreciprocal part of χd,k(z) (k <∞). Once this is done, we shall study the reciprocal
part of the polynomial. Recall that χd,k(z) is a polynomial of the form f(z) =
zn − zm − zm−1 − · · · − z − 1 for some n > m > 0. It is well known (see, e.g., [9])
that when n = m + 1, the polynomial f(z) is itself irreducible. So, we need only
consider the case when n ≥ m+ 2. We shall show that if g(z) ∈ Z[z] is a polynomial
such that g(z)g∗(z) = f(z)f∗(z), then g(z) = ±f(z) or ±f∗(z). The “only if” part
of the Ljunggren–Filaseta lemma then shows that the nonreciprocal part of f(z) is
irreducible.

So, let g(z) =
∑n
i=0 giz

i be a polynomial in Z[z] such that g(z)g∗(z) = f(z)f∗(z).
Note that g(z) must itself be a polynomial of degree n. Without loss of generality, we
may assume that gn > 0 (else, replace g(z) by −g(z)).

Lemma 5. The coefficients gi of g(z) must satisfy the following equations:

gn = 1 , g0 = −1,(8)

g1 − gn−1 = −1,(9)
n−2∑
i=1

gigi+1 = m− 1,(10)

n−1∑
i=1

g2
i = m.(11)

Proof. Let f(z) =
∑n
i=0 fiz

i so that fn = 1, fi = 0 for m + 1 ≤ i ≤ n − 1, and
fi = −1 for 0 ≤ i ≤ m.

Equating the constant coefficients of f(z)f∗(z) and g(z)g∗(z), we see that g0gn =
−1. Since g0, gn ∈ Z and gn > 0, we must have gn = 1, g0 = −1.

(9) is obtained by equating the coefficients of z in f(z)f∗(z) and g(z)g∗(z). The
coefficient of z in g(z)g∗(z) is g0gn−1 + g1gn = g1 − gn−1. Now, note that since n ≥
m+2, we have fn−1 = 0. Hence, the coefficient of z in f(z)f

∗(z) is f0fn−1+f1fn = −1.
To get (10), we equate the coefficients of zn−1. In g(z)g∗(z), this coefficient is∑n−1

i=0 gigi+1, while in f(z)f
∗(z), it is

∑n−1
i=0 fifi+1 =

∑m−1
i=0 fifi+1, since fi+1 = 0 for

m ≤ i ≤ n−2, and fi = 0 for i = n−1. But in the range 0 ≤ i ≤ m−1, fi = fi+1 = −1,
which shows that

∑m−1
i=0 fifi+1 = m. Thus, we have

∑n−1
i=0 gigi+1 = m, which reduces

to (10) upon using (8) and (9).

Finally, the coefficient of zn in g(z)g∗(z) is
∑n
i=0 g

2
i , and correspondingly, in

f(z)f∗(z) is
∑n
i=0 f

2
i = m + 2. Hence,

∑n
i=0 g

2
i = m + 2, and since g2

0 = g2
n = 1, we

see that
∑n−1
i=1 g2

i = m, which proves (11).

We use this lemma to prove the following proposition.

Proposition 6. The nonreciprocal part of f(z) = zn − zm − zm−1 − · · · − z − 1,
n > m > 0, is irreducible.

Proof. As noted above, we need only prove the result for n ≥ m + 2. Lemma 5
(which applies for n ≥ m+2) shows that any g(z) =

∑n
i=0 giz

i such that g(z)g∗(z) =
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f(z)f∗(z) and gn > 0 must satisfy (8)–(11). Now, observe that

n−2∑
i=1

(gi − gi+1)
2 =

n−2∑
i=1

g2
i +

n−2∑
i=1

g2
i+1 − 2

n−2∑
i=1

gigi+1

= 2

n−1∑
i=1

g2
i − g2

1 − g2
n−1 − 2

n−2∑
i=1

gigi+1

= 2m− g2
1 − g2

n−1 − 2(m− 1)

with the last equality using (10) and (11). Thus, we see that

g2
1 + g2

n−1 +

n−2∑
i=1

(gi − gi+1)
2 = 2.(12)

Since all the gi’s are integers, this equation is satisfied if and only if exactly n− 2 of
the quantities g1, gn−1, gi − gi+1 (i = 1, 2, . . . , n − 2) are 0, and the remaining two
nonzero quantities take values from the set {−1, 1}. In particular, g1 ∈ {−1, 0, 1}.
We consider each of the three choices for g1 in turn.

If g1 = −1, then (9) shows that gn−1 = 0. Hence, there exists a k ∈ {1, 2, . . . , n−
2} such that gk − gk+1 = ±1 and gi − gi+1 = 0 for i = 1, 2, . . . , n − 2, i �= k. Now,
if gk − gk+1 = 1, then we must have gi = −1 for 1 ≤ i ≤ k, and gi = −2 for
k+1 ≤ i ≤ n−1, which contradicts gn−1 = 0. Hence, gk−gk+1 must be −1, in which
case gi = −1 for 1 ≤ i ≤ k, and gi = 0 for k + 1 ≤ i ≤ n− 1. Using (11), we see that
k = m, which forces g(z) to be zn − zm − zm−1 − · · · − z − 1 = f(z).

If g1 = 0, then (9) yields gn−1 = 1. As above, we must have gk − gk+1 = ±1 for
some k ∈ {1, 2, . . . , n− 2}, and gi− gi+1 = 0 for i = 1, 2, . . . , n− 2, i �= k. This time,
choosing gk − gk+1 to be 1 leads to gn−1 = −1, which contradicts gn−1 = 1. Thus,
gk−gk+1 = −1, so that gi = 0 for 1 ≤ i ≤ k, and gi = 1 for k+1 ≤ i ≤ n−1. From (11),
we now get k+1 = n−m. Hence, g(z) must be zn+ zn−1+ · · ·+ zn−m−1 = −f∗(z).

If g1 = 1, then (9) implies that gn−1 = 2, which means that (12) cannot be
satisfied. So, g1 cannot be 1.

Thus, we have shown that if g(z) is such that g(z)g∗(z) = f(z)f∗(z) and gn > 0,
then g(z) = f(z) or g(z) = −f∗(z). For any g(z) with gn < 0, we can apply the above
reasoning to −g(z). This proves that if g(z) ∈ Z[z] is such that g(z)g∗(z) = f(z)f∗(z),
then g(z) = ±f(z) or ±f∗(z). The proposition now follows from the Ljunggren–
Filaseta lemma.

Having shown the irreducibility of the nonreciprocal part of f(z) = zn − zm −
zm−1 − · · · − z − 1, we move on to analyzing the reciprocal part, φ(z), of f(z). Our
first goal is to show that all the roots of φ(z) are in fact certain roots of unity, which
will help us in determining the exact form of φ(z).

Lemma 7. If λ is a root of φ(z), then λ is a root of either
∑m−1
i=0 zi or

∑m+1
i=0 zi.

In other words, λ is either an mth or an (m+ 2)nd root of unity, distinct from 1.

Proof. Let λ be a root of φ(z). Note that λ �= 0 because 0 cannot be a root of
f(z), as f(0) = −1. Since φ(z) is a self-reciprocal polynomial, λ−1 is also a root of
φ(z). Since φ(z) is a factor of f(z), we have f(λ) = f(λ−1) = 0. This implies that

λn − λm − λm−1 − · · · − λ− 1 = 0,(13)

λn + λn−1 + · · ·+ λn−m+1 + λn−m − 1 = 0.(14)
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Equating the left-hand sides of these two equations, cancelling out the common terms,
and rearranging, we obtain

(λn−1 + λn−2 + · · ·+ λn−m) + (λm + λm−1 + · · ·+ λ) = 0.

Dividing through by λ �= 0, we see that the above equation simplifies to
(λn−m−1 + 1)(λm−1 + λm−2 + · · ·+ 1) = 0.

Hence λ is a root of either zn−m−1+1 or
∑m−1
i=0 zi. However, if λ is a root of zn−m−1+

1, then λn−m−1 = −1. Now, note that (14) can be rewritten as λn−m−1(λm+1+λm+
· · ·+λ)− 1 = 0, which reduces to −λm+1−λm−· · ·−λ− 1 = 0, since λn−m−1 = −1.
Hence if λ is a root of zn−m−1 + 1, then it is also a root of

∑m+1
i=0 zi, which proves

the lemma.
We can actually say something more about the roots of φ(z), as we shall see in

the next few lemmas.
Lemma 8. If λ is a root of φ(z) that is also a root of

∑m−1
i=0 zi, then λ is in fact

a root of
∑q−1
i=0 z

i, where q = gcd(m,n).
Proof. Suppose that λ is as in the hypothesis of the lemma. Since φ(λ) = 0, we

also have f(λ) = 0, which means that

λn −
m∑
i=0

λi = 0.(15)

But since λ is a root of
∑m−1
i=0 zi, we have

∑m−1
i=0 λi = 0 and, moreover, λm = 1. Hence

(15) reduces to λn = 1. Hence λ is also an nth root of unity distinct from 1, i.e., λ

is a root of
∑n−1
i=0 zi. Therefore, λ is a root of gcd(

∑m−1
i=0 zi,

∑n−1
i=0 zi) =

∑q−1
i=0 z

i,
where q = gcd(m,n).

When λ is an (m+ 2)nd root of unity, things get a little more complicated.

Lemma 9. If λ is a root of φ(z) that is also a root of
∑m+1
i=0 zi, then (i) m is

even, (ii) λ is a root of zr + 1, where r = gcd(m2 + 1, n + 1), and (iii) (n + 1)/r is
odd.

Proof. Let λ be as in the hypothesis of the lemma. Again, the fact that f(λ) = 0

leads to (15). This time, since λ �= 1 is an (m+2)nd root of unity, we have∑m+1
i=0 λi =

0, which implies that −∑m
i=0 λ

i = λm+1 = 1/λ, using λm+2 = 1. Therefore, (15)
reduces to λn + 1/λ = 0 or, equivalently, λn+1 = −1.

Now, since λ is a root of
∑m+1
i=0 zi, it is of the form λ = e2πi

k
m+2 for some k ∈

{1, 2, . . . ,m+1}. Therefore, −1 = λn+1 = e2πi
k

m+2 (n+1). Hence 2k
m+2 (n+1) = 2j +1

for some integer j, which upon rearrangement becomes

(2k)(n+ 1) = (2j + 1)(m+ 2).(16)

Since the left-hand side (LHS) of the above equation is even, so is the right-hand side
(RHS). This means that m must be even, since 2j + 1 is odd. This proves (i).

Rearranging (16), we get k n+1
m/2+1 = 2j + 1. Defining r to be gcd(m2 + 1, n + 1),

we let m′ = (m2 + 1)/r and n′ = (n + 1)/r. Thus, m′, n′ are integers such that
gcd(m′, n′) = 1, and n+1

m/2+1 =
n′
m′ . Therefore, we have

k
n′

m′ = 2j + 1.(17)
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Since gcd(m′, n′) = 1, the fact that k n
′

m′ is an integer implies that m
′|k. Writing

k = lm′ and plugging into (17), we get ln′ = 2j + 1. Therefore, n′|(2j + 1), which
shows that n′ is odd, thus proving (iii). Note that as l|(2j + 1), l is also odd.

Finally, λ = e2πi
k

m+2 = eπi
k

m/2+1 = eπi
lm′
rm′ = eπi

l
r . Since l is odd, λr = −1, which

shows that λ is a root of zr + 1, thus completing the proof of the lemma.
Now, from Lemmas 7, 8, and 9, we see that every root of φ(z) is also a root of

(
∑q−1
i=0 z

i)(zr + 1). In fact, for odd m, Lemma 9(i) shows that no root of φ(z) can be

a root of zr + 1, so that every root of φ(z) is actually a root of
∑q−1
i=0 z

i. Now, if we
can show that φ(z) has no repeated roots, it immediately follows that φ(z) is a factor

of
∑q−1
i=0 z

i for odd m, and of (
∑q−1
i=0 z

i)(zr + 1) for even m. We proceed to show this
next.

Lemma 10. φ(z) has no repeated roots.
Proof. Suppose that λ is a repeated root of φ(z). Note that |λ| = 1 since any

root of φ(z) is some root of unity. Define g(z) = (z− 1)f(z) = zn+1 − zn − zm+1 +1.
If λ is a repeated root of φ(z), then it must be a repeated root of g(z) as well. Hence
g(λ) = g′(λ) = 0, which implies that

λn+1 − λn − λm+1 + 1 = 0,(18)

(n+ 1)λn − nλn−1 − (m+ 1)λm = 0.(19)

Multiplying (18) by (n+ 1) and subtracting the result from λ times (19), we get

λn + (n−m)λm+1 = n+ 1.(20)

However, this leads to a contradiction because

n+ 1 = |λn + (n−m)λm+1| ≤ |λ|n + (n−m)|λ|m+1
= 1 + n−m ≤ n,

with the last inequality arising from the fact that m > 0. This contradiction proves
the lemma.

As observed prior to the statement of Lemma 10, we can now conclude that φ(z)

is a factor of
∑q−1
i=0 z

i for odd m and of (
∑q−1
i=0 z

i)(zr + 1) for even m.

In fact, for odd m, we can show that φ(z) =
∑q−1
i=0 z

i. Since we already know

that φ(z)|(∑q−1
i=0 z

i) in this case, we need only to show that (
∑q−1
i=0 z

i)|φ(z). It actu-
ally suffices to show that (

∑q−1
i=0 z

i)|f(z). This is because any factor, irreducible or
otherwise, of

∑q−1
i=0 z

i is always self-reciprocal (recall that φ(z) is the product of all

irreducible self-reciprocal factors of f(z)): if π(z) is a factor of
∑q−1
i=0 z

i and λ is a
root of π(z), then so is its complex conjugate, λ = λ−1.

So, to show that (
∑q−1
i=0 z

i)|f(z), we write n = n′q, m = m′q, so that

f(z) = zn
′q −

m′q∑
i=0

zi

= zn
′q − zm

′q −
m′q−1∑
i=0

zi

= zm
′q(z(n′−m′)q − 1)−

(
q−1∑
i=0

zi

)
m′−1∑

l=0

zlq
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= zm
′q(zq − 1)


n′−m′−1∑

l=0

zlq


−

(
q−1∑
i=0

zi

)
m′−1∑

l=0

zlq




= zm
′q(z − 1)

(
q−1∑
i=0

zi

)
n′−m′−1∑

l=0

zlq


−

(
q−1∑
i=0

zi

)
m′−1∑

l=0

zlq




=

(
q−1∑
i=0

zi

)
zm′q(z − 1)

n′−m′−1∑
l=0

zlq −
m′−1∑
l=0

zlq




=

(
q−1∑
i=0

zi

)
n′−1∑
l=m′

zlq+1 −
n′−1∑
l=0

zlq


 .(21)

Thus, we have proved that (
∑q−1
i=0 z

i)|f(z), which implies that φ(z) =∑q−1
i=0 z

i. Note
that the factorization in (21) is true for any m and n, not just for odd m. However,

odd m ensures that
∑q−1
i=0 z

i is the reciprocal part of f(z) and the other factor is the
nonreciprocal part.

The above argument, in conjunction with Proposition 6, proves the following
theorem.

Theorem 11. Let f(z) = zn−∑m
i=0 z

i, n > m > 0, m odd, and let q = gcd(m,n).

Then, f(z) = (
∑q−1
i=0 z

i)ψ(z), with ψ(z) =
∑n

q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq irreducible. In

particular, for odd m, f(z) is irreducible if and only if gcd(m,n) = 1.

We next tackle the case when m is even, which is a little less clean. The first
observation to be made here is that when (n+ 1)/r is also even, where r = gcd(m2 +
1, n + 1), then it follows from Lemma 9(iii) that φ(z) cannot share any roots with∑m+1
i=0 zi. So, it must share all its roots with

∑q−1
i=0 z

i, q being gcd(m,n) as above,

implying that φ(z)|∑q−1
i=0 z

i. So, applying the argument given prior to the statement

of Theorem 11, we see that in this case as well, we have f(z) = (
∑q−1
i=0 z

i)ψ(z),
with ψ(z) irreducible and of the form stated in the theorem. This situation holds,
for example, when n is odd and 4|m, since then m

2 + 1 is odd and so is r because
r|(m2 + 1), leading to the conclusion that (n+ 1)/r is even.

So, we are left with the case when m is even, but (n+ 1)/r is odd. This is dealt
with in the following proposition.

Proposition 12. When m is even and (n + 1)/r is odd, then φ(z) is the least

common multiple (lcm) of
∑q−1
i=0 z

i and zr + 1.

Proof. From Lemmas 7, 8, and 9, we know that φ(z) is a factor of φ1(z)φ2(z),

where we have defined φ1(z) = zr + 1 and φ2(z) =
∑q−1
i=0 z

i. In fact, as φ(z) has

no repeated roots, it must be a factor of φ1(z)φ2(z)
gcd(φ1(z),φ2(z))

= lcm(φ1(z), φ2(z)), since

dividing by gcd(φ1(z), φ2(z)) takes out some roots common to φ1(z) and φ2(z).

So, we need to show the converse, i.e., that lcm(φ1(z), φ2(z)) is a factor of φ(z).
Equivalently, we need to show that φ1(z)|φ(z) and φ2(z)|φ(z). Recalling that φ(z)
is the product of all the irreducible self-reciprocal factors of f(z), it suffices to show
that φ1(z)|f(z) and φ2(z)|f(z). This is because any factor, irreducible or otherwise, of
either φ1(z) or φ2(z) is self-reciprocal. Indeed, if π(z) is a factor of either polynomial
and λ is a root of π(z), then so is its complex conjugate λ. But as λ, being a root
of φ1(z) or φ2(z), lies on the unit circle, we have λ = λ−1, implying that π(z) is
self-reciprocal.
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We have already seen (see (21)) that φ2(z)|f(z). To prove that φ1(z)|f(z), we
shall show that f(λ) = 0 for any root λ of φ1(z), which is sufficient because φ1(z) has
no repeated roots. Since λ /∈ {0, 1}, it is enough to show that λ(λ− 1)f(λ) = 0, i.e.,
λn+2−λn+1−λm+2+λ = 0. Now, λn+1 = (λr)

(n+1)/r
= (−1)(n+1)/r

= −1 as (n+1)/r
is odd. Moreover, defining m′ = (m2 + 1)/r, we have λ

m+2 = (λr)2m
′
= (−1)2m′

= 1.
Hence λn+2 − λn+1 − λm+2 + λ = −λ− (−1)− 1 + λ = 0, as desired.

The next lemma explicitly determines the lcm of
∑q−1
i=0 z

i and zr + 1.
Lemma 13. If q is even, then

lcm

(
q−1∑
i=0

zi, zr + 1

)
=

zr + 1

z + 1

q−1∑
i=0

zi =

(
r−1∑
i=0

(−z)i
)(

q−1∑
i=0

zi

)
.

Otherwise,

lcm

(
q−1∑
i=0

zi, zr + 1

)
= (zr + 1)

q−1∑
i=0

zi.

Proof. Let φ1(z) = zr +1 and φ2(z) =
∑q−1
i=0 z

i. Since gcd(φ1, φ2) · lcm(φ1, φ2) =
φ1(z)φ2(z), the lemma is proved once we show that gcd(φ1, φ2) is z + 1 if q is even,
and 1 otherwise.

We first show that if gcd(φ1, φ2) �= 1 then q is even and gcd(φ1, φ2) = z + 1.
Suppose that π(z) is a nontrivial factor of both φ(z) and φ2(z), so that there exists

a λ such that φ1(λ) = φ2(λ) = 0. Such a λ must be of the form λ = e2πi
k
q for some

k ∈ {1, 2, . . . , q − 1} and must satisfy λr = −1. Hence e2πi kr
q = −1, which means

that 2k rq must be an odd integer.

Now, as q|n and r|(n+1), gcd(q, r) = 1. So, for 2k rq to be an integer, 2k must be
a multiple of q. Let 2k = ql so that 2k rq = lr. Thus, lr is an odd integer, which shows
that r and l are both odd. Furthermore, since 2k = ql, the fact that l is odd implies

that q is even. In fact, this also forces λ to be −1, because λ = e2πi
k
q = eπil = −1,

since l is odd.
Thus, if π(z) is a nontrivial factor of both φ1(z) and φ2(z), then λ = −1 is the

only root that π(z) can have. Since neither φ1(z) nor φ2(z) has repeated roots, −1
must be a simple root of π(z), which shows that π(z) = z + 1. We have thus shown
that if gcd(φ1, φ2) is nontrivial, then q is even and gcd(φ1, φ2) = z + 1.

It remains to show only that if q is even, then gcd(φ1, φ2) = z + 1. Note that
if q = gcd(m,n) is even, then so is n. Therefore, n + 1 is odd, and since r|(n + 1),
so is r. But, for even q and odd r, it is clear that φ1(−1) = φ2(−1) = 0. Hence
(z + 1)| gcd(φ1, φ2), meaning that gcd(φ1, φ2) is nontrivial. But as we have already
shown, this implies that gcd(φ1, φ2) = z + 1.

We compile all the results proved above for the case when m is even in the
following theorem.

Theorem 14. Let f(z) = zn −∑m
i=0 z

i, n > m > 0, m even, and let q =
gcd(m,n), r = gcd(m2 +1, n+1), n

′ = (n+1)/r. Then, f(z) = φ(z)ψ(z), where ψ(z)
is irreducible and

φ(z) =



∑q−1
i=0 z

i if n′ is even,(∑r−1
i=0 (−z)i

)(∑q−1
i=0 z

i
)
if q is even,

(zr + 1)
∑q−1
i=0 z

i otherwise.
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We would like to remark that when q is even, n′ = (n+ 1)/r is odd, so that the
statement of the theorem is indeed consistent.

At this stage, it is worth pointing out that the results of Theorems 11 and 14
can be partially obtained from results in the existing literature, specifically [4] and
[6]. Observe that, as noted in the proof of Lemma 10, we may define g(z) = (z −
1)f(z) = zn+1 − zn − zm+1 + 1. Now, Ljunggren [4] considered the factorization
of polynomials of the form q(x) = xn ± xm ± xp ± 1 with n > m > p > 0 and
claimed to show that all such polynomials can be factored as q(x) = φ(x)ψ(x), where
φ(x) is self-reciprocal and has all its zeros on the unit circle and ψ(x) is either 1
or a non-self-reciprocal irreducible polynomial. However, there was a minor error
in Ljunggren’s work, which was subsequently corrected by Mills [6]. Mills’s work
shows that Ljunggren’s claim is in fact true for any polynomial g(z) as above. Since
m+ 1 ≥ 2, g(z) is not self-reciprocal and hence must have a nontrivial nonreciprocal
part ψ(z). Thus, these results show that g(z), and hence f(z), can be written as
the product of a self-reciprocal polynomial having all its roots on the unit circle and
a nontrivial, irreducible, non-self-reciprocal polynomial. Of course, these results do
not go so far as to provide the specific forms of the reciprocal and nonreciprocal
parts of f(z) that we have derived above. So, in the interest of keeping our paper self-
contained, we have chosen to include complete proofs of the aforementioned theorems.

3. Identifying equalities among (d, k) capacities. We shall use the factor-
ization obtained in the previous section for the characteristic polynomials of (d, k)
constraints to determine all possible equalities among the capacities of such con-
straints. We begin by showing that this problem is equivalent to the one of deter-
mining when the nonreciprocal parts of the characteristic polynomials of two such
constraints can be equal. Throughout this section, we consider (d, k) pairs such that
0 < d < k ≤ ∞, and Φd,k(z) and Ψd,k(z) will be used to denote the reciprocal and
nonreciprocal parts, respectively, of the characteristic polynomial χd,k(z). Also, given
polynomials f(z), g(z), we shall use f(z) = g(z) to denote that the two polynomials
are identical.

Theorem 15. C(d, k) = C(d̂, k̂) if and only if Ψd,k(z) = Ψd̂,k̂(z).

Proof. We shall show that ρd,k = ρd̂,k̂ if and only if Ψd,k(z) = Ψd̂,k̂(z), the ρ’s
being the largest roots of their respective characteristic polynomials.

Observe first that since the reciprocal parts of the characteristic polynomials have
all their roots on the unit circle, and the ρ’s are strictly greater than 1, the ρ’s must
be roots of the nonreciprocal parts. So, if Ψd,k(z) = Ψd̂,k̂(z), then their largest roots
must be identical, i.e., ρd,k = ρd̂,k̂.

Conversely, suppose that ρd,k = ρd̂,k̂. Since Ψd,k(z) is irreducible and has ρd,k as

a root, it must be the minimal polynomial (over Z) of ρd,k. Similarly, Ψd̂,k̂(z) is the
minimal polynomial of ρd̂,k̂. Hence by the uniqueness of the minimal polynomial of

an algebraic integer, ρd,k = ρd̂,k̂ implies that Ψd,k(z) = Ψd̂,k̂(z).

With this theorem in hand, we can begin our investigation of equalities among the
capacities of (d, k)-constrained systems. We shall first consider the case when at least
one of the (d, k) constraints has k =∞. Observe that since Ψd,∞(z) is either χd,∞(z)
itself or of the form given in (7), we can have C(d,∞) = C(d̂,∞), or equivalently,
Ψd,∞(z) = Ψd̂,∞(z), if and only if d = d̂. So, we need only concern ourselves with the

situation when C(d,∞) = C(d̂, k̂) with k̂ finite.

At this point, we shall find it convenient to introduce some definitions.
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Definition 16. A polynomial f(z) = zn −∑m
i=0 z

i, n > m > 0, is defined as
being of

• Type I if its reciprocal part, φ(z), is of the form ∑q−1
i=0 z

i, with q ≥ 1 odd;
• Type II if φ(z) is of the form (zr + 1)

∑q−1
i=0 z

i, with q ≥ 1 odd, r ≥ 1; and
• Type III if φ(z) is of the form (

∑r−1
i=0 (−z)i)(

∑q−1
i=0 z

i), with q ≥ 2 even and
r ≥ 3 odd.

Theorems 11 and 14 show that any such f(z) is always of Type I, II, or III, with
q = gcd(m,n) and r = gcd(m2 + 1, n+ 1). These theorems can be used to determine
exactly when f(z) is of a particular type. For example, f(z) is of Type I precisely
when one of the following three conditions holds: (i) m is odd, (ii) m and (n + 1)/r
are even, and (iii) m and n are even and r = 1. Note that when f(z) is of Type I, its

nonreciprocal part, ψ(z), is of the form
∑n

q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq, as shown by (21).

The following simple fact about f(z)’s of Type II or III will be used often.

Lemma 17. Let m be even and let f(z) be of Type II or III. If q = gcd(m,n) and
r = gcd(m2 + 1, n+ 1), then q �= r.

Proof. If q = r, then f(z) cannot be of Type III, since the definition requires q
to be even and r to be odd. So, suppose that f(z) is of Type II, with q = r. Note
that since q|n and r|(n + 1), we must have gcd(q, r) = 1, and hence q = r = 1. As
zr + 1 = z + 1 is a factor of f(z), we must have f(−1) = 0. Now, it is easily verified
that since f(z) has the form zn −∑m

i=0 z
i, f(−1) can be 0 only if m and n are both

even. So, q = gcd(m,n) is even, which is impossible since q = 1.

We will also find the following set of definitions to be useful.

Definition 18. Given a polynomial g(z) =
∑n
k=0 ckz

k, we define

• εi(g), i ≥ 1, to be the ith smallest k > 0 such that ck �= 0;
• ξi(g), i ≥ 1, to be the ith largest k > 0 such that ck �= 0.

Thus, for example, with g(z) = z6 − z3 − z2 − z − 1, we have εi(g) = i for
i = 1, 2, 3, ε4(g) = 6, ξ1(g) = 6, and ξi(g) = 5− i for i = 2, 3, 4. Note that if g(z), h(z)
are polynomials such that g(z) = h(z), then εi(g) = εi(h) and ξi(g) = ξi(h) for all
i ≥ 1.

We tackle the equality C(d,∞) = C(d̂, k̂) through a series of lemmas, each of
which considers a special case in which χd,∞(z) is either irreducible (d �≡ 4 (mod 6))
or reducible (d ≡ 4 (mod 6)), and χd̂,k̂(z) is of one of the three types defined above.

Lemma 19. Let d �≡ 4 (mod 6) and d̂, k̂ be such that χd̂,k̂(z) is of Type I. Then,
C(d,∞) = C(d̂, k̂) only if (d̂, k̂) = (d− 1, 2d− 1).

Proof. Let n̂ = k̂ + 1, m̂ = k̂ − d̂ so that χd̂,k̂(z) = zn̂ −∑m̂
i=0 z

i, and let q̂ =

gcd(m̂, n̂). Under the assumptions of the lemma, Ψd,∞(z) = χd,∞(z) = zd+1− zd−1,
and Ψd̂,k̂(z) =

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂.

If C(d,∞) = C(d̂, k̂), then by Theorem 15, Ψd,∞(z) = Ψd̂,k̂(z), i.e.,

zd+1 − zd − 1 =
n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(22)

Now, note that ξ1(Ψd,∞) = d+ 1, while ξ1(Ψd̂,k̂) = n̂− q̂+ 1. Equating these, we get

d = n̂− q̂.(23)
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Next, observe that ε1(Ψd,∞) = d. Additionally, we claim that ε1(Ψd̂,k̂) = q̂. This

is because the smallest k > 0 such that the coefficient of zk in −∑ n̂
q̂ −1

l=0 zlq̂ is nonzero

is precisely q̂, and the term −zq̂ cannot be cancelled out by any term in
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1.

The reason that −zq̂ cannot get cancelled out is that the smallest exponent of z in∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 is m̂+1, which is larger than q̂, since q̂ = gcd(m̂, n̂). Therefore, equating

ε1(Ψd,∞) and ε1(Ψd̂,k̂), we get

d = q̂.(24)

From (23) and (24), we see that n̂ = 2d. Plugging this and q̂ = d into (22),

we get zd+1 − zd − 1 = ∑1
l= m̂

d
zld+1 − zd − 1. It follows that m̂ = d, and since

(m̂, n̂) = (k̂ − d̂, k̂ + 1) by definition, the fact that (m̂, n̂) = (d, 2d) implies that

(d̂, k̂) = (d− 1, 2d− 1).
The proof of the above lemma involves arguments typical of those used in the

proofs to follow. One especially important fact used in the above proof that should

be kept in mind is that the function ε1, when applied to the polynomial
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1−∑ n̂
q̂ −1

l=0 zlq̂, yields q̂. Also, in all that is to follow, we shall continue to take (m̂, n̂) to

be (k̂ − d̂, k̂ + 1) and q̂ to be gcd(m̂, n̂).

Lemma 20. If d �≡ 4 (mod 6) and d̂, k̂ are such that χd̂,k̂(z) is of Type II, then
C(d,∞) �= C(d̂, k̂).

Proof. With d, d̂, k̂ as in the statement of the lemma, we have Ψd,∞(z) = zd+1 −
zd − 1, and

Ψd̂,k̂(z) =
χd̂,k̂(z)

Φd̂,k̂(z)
=

zn̂ −∑m̂
i=0 z

i

(zr̂ + 1)
∑q̂−1
i=0 z

i
=

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂

zr̂ + 1
,

where r̂ = gcd( m̂2 + 1, n̂+ 1), and the last equality above comes from (21).

Suppose that C(d,∞) = C(d̂, k̂), so that Ψd,∞(z) = Ψd̂,k̂(z). Since the Ψ’s are as

given above, we have (zr̂ + 1)(zd+1 − zd − 1) =∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂, which upon

expanding out the LHS becomes

zd+r̂+1 + zd+1 − zd+r̂ − zr̂ − zd − 1 =
n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(25)

Our goal is to show that such an equality cannot arise for any d, d̂, k̂ satisfying the
hypothesis of the lemma, leading to a contradiction that proves the lemma.

Applying ξ1 to both sides of (25), we get d+ r̂ + 1 = n̂− q̂ + 1, implying

d+ r̂ = n̂− q̂.(26)

Next, note that the function ε1, when applied to the RHS of (25), yields q̂ and, when
applied to the LHS, yields either d or r̂, depending on whether d ≤ r̂ or d > r̂. So, if
d ≤ r̂, then d = q̂, and if d > r̂, then q̂ = r̂. However, we cannot have d > r̂, since
q̂ = r̂ is ruled out by Lemma 17.
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Thus, we see that d ≤ r̂, so that d = q̂. Plugging this into (26), we get n̂q̂ = 2+
r̂
d .

Using this and d = q̂, the RHS of (25) becomes

r̂
d+1∑
l= m̂

q̂

zld+1 −
r̂
d+1∑
l=0

zld =

r̂
d∑

l= m̂
q̂

zld+1 −
r̂
d∑
l=0

zld + zd+r̂+1 − zd+r̂.

Therefore, upon cancelling out some terms common to both sides, (25) simplifies to

zd+1−zr̂−zd−1 =∑ r̂
d

l= m̂
q̂

zld+1−∑ r̂
d

l=0 z
ld. Applying ξ1 to both sides of this equality,

we get d + 1 = r̂ + 1, i.e., d = r̂. We thus have q̂ = d = r̂, which is impossible by
Lemma 17.

Lemma 21. If d �≡ 4 (mod 6) and d̂, k̂ are such that χd̂,k̂(z) is of Type III, then
C(d,∞) �= C(d̂, k̂).

Proof. An argument similar to that at the beginning of the proof of Lemma 20
shows that if C(d,∞) = C(d̂, k̂), with d, d̂, k̂ as above, then

(
r̂−1∑
i=0

(−z)i
)
(zd+1 − zd − 1) =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.

Equivalently, multiplying both sides by z + 1, we have

(zr̂ + 1)(zd+1 − zd − 1) = (z + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .

Expanding out both sides of the above equation, we get

zd+r̂+1 + zd+1 − zd+r̂ − zr̂ − zd − 1 =
n̂
q̂ −1∑
l= m̂

q̂

zlq̂+2 −
m̂
q̂ −1∑
l=0

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(27)

Now, by definition of Type III, r̂ ≥ 3, so that the term −zd+r̂ on the LHS of the
above equation cannot get cancelled out by another term on the LHS. Therefore, the
RHS must also have a −zd+r̂ term, and due to the negative sign, it must be one of
the terms in −∑ m̂

q̂ −1

l=0 zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂. In other words, d + r̂ must be one of the
exponents of z in these two summations. Observe that the maximum exponent of z
in these summations is max(m̂ − q̂ + 1, n̂ − q̂) = max(m̂ + 1, n̂) − q̂ = n̂ − q̂, since
n̂ > m̂. Therefore, d+ r̂ ≤ n̂− q̂.

However, if we apply ξ1 to both sides of (27), we find that d+ r̂+1 = n̂− q̂+2, so
that d+ r̂ = n̂− q̂+1, which contradicts d+ r̂ ≤ n̂− q̂. So, (27) cannot hold under the
assumptions of the lemma, implying that C(d,∞) cannot be equal to C(d̂, k̂).

The last three lemmas show that when d �≡ 4 (mod 6), then C(d,∞) = C(d̂, k̂)

only if (d̂, k̂) = (d− 1, 2d− 1). The next three lemmas consider the case when d ≡ 4
(mod 6). Recall that for any such d, Ψd,∞(z) is as given in (7).

Lemma 22. Let d ≡ 4 (mod 6) and d̂, k̂ be such that χd̂,k̂(z) is of Type I. Then,
C(d,∞) = C(d̂, k̂) only if d = 4 and (d̂, k̂) = (1, 2).
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Proof. If C(d,∞) = C(d̂, k̂) with d, d̂, k̂ as above, then we have

z3 − z − 1 +
(d+2)/6∑
l=2

(z6l−3 − z6l−5 − z6l−6 + z6l−8) =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(28)

Applying ε1 to both sides of this equation, we get 1 = q̂. Therefore, Φd̂,k̂(z) =∑q̂−1
i=0 z

i = 1, and hence Ψd̂,k̂(z) = χd̂,k̂(z). Thus, we must have Ψd,∞(z) = χd̂,k̂(z).

Now, the polynomial on the LHS of (28) can be of the form zn̂ −∑m̂
i=0 z

i only
if d = 4, since in this case it has no terms of the form z6l−3 − z6l−5 − z6l−6 + z6l−8.
So, Ψd,∞(z) = χd̂,k̂(z) implies that d = 4, in which case Ψd,∞ = z3 − z − 1 = χ1,2(z).

Hence, (d̂, k̂) = (1, 2), which proves the lemma.
For the proofs of the next couple of lemmas, it is convenient to introduce the

following notation: we shall use Ω(zk) to denote an arbitrary polynomial of the form∑l
i=k ciz

i, with l ≥ k.

Lemma 23. Let d ≡ 4 (mod 6) and d̂, k̂ be such that χd̂,k̂(z) is of Type II. Then,
C(d,∞) = C(d̂, k̂) only if d = 4 and (d̂, k̂) = (2, 4).

Proof. Arguing as in the proof of Lemma 20, we find that for the above choice of
d, d̂, k̂, C(d,∞) = C(d̂, k̂) implies

(zr̂ + 1)


z3 − z − 1 +

(d+2)/6∑
l=2

(z6l−3 − z6l−5 − z6l−6 + z6l−8)


 =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.

As usual, we now apply ε1 to both sides of this equation, which yields 1 = q̂.
Hence Φd̂,k̂(z) = (zr̂ + 1)

∑q̂−1
i=0 z

i = zr̂ + 1. Therefore, χd̂,k̂(z) = Φd̂,k̂(z)Ψd̂,k̂(z) =

Φd̂,k̂(z)Ψd,∞(z), which shows that

χd̂,k̂(z) = (z
r̂ + 1)


z3 − z − 1 +

(d+2)/6∑
l=2

(z6l−3 − z6l−5 − z6l−6 + z6l−8)


 .(29)

Note that since q̂ = 1, by Lemma 17, r̂ ≥ 2.
Suppose first that d = 4 so that Ψd,∞(z) = z3 − z − 1. Then, (29) becomes

χd̂,k̂(z) = (z
r̂ + 1)(z3 − z − 1), which is the same as

χd̂,k̂(z) = zr̂+3 + z3 − zr̂+1 − zr̂ − z − 1.(30)

Since only the leading coefficient of the polynomial χd̂,k̂(z) is positive, either z
r̂+3 or

z3 must be eliminated by one of the other terms on the RHS of (30). As r̂ + 3 is
strictly larger than any other exponent of z on the RHS, z3 is the term that must
get eliminated, and this can happen only if either r̂ = 3 or r̂ + 1 = 3, i.e., r̂ = 2.
If r̂ = 3, then the RHS of (30) turns out to be z6 − z4 − z − 1, which is not of
the form zn̂ −∑m̂

i=0 z
i. So, we must have r̂ = 2, in which case the RHS of (30)

becomes z5 − z2 − z − 1 = χ2,4(z). So, one possible solution for C(d,∞) = C(d̂, k̂) is

(d, d̂, k̂) = (4, 2, 4).
Now, suppose that d > 4, so that d ≥ 10, as 10 is the next largest integer that is

equivalent to 4 (mod 6). Then, Ψd,∞(z) = −1−z+z3+z4+Ω(z5), and (29) becomes

χd̂,k̂(z) = zr̂+4 + zr̂+3 + z4 + z3 − zr̂+1 − zr̂ − z − 1 + Ω(z5).(31)
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Note that if r̂ ≥ 5, then the RHS above becomes z4+z3−z−1+Ω(z5), which cannot

be of the form zn̂ −∑m̂
i=0 z

i. So, we must have r̂ = 2, 3 or 4.

If r̂ = 2, then the RHS of (29) is of the form zd+r̂−1+
∑d+r̂−2
i=5 ciz

i+z4−z2−z−1,
which cannot be χd̂,k̂(z) for any d̂, k̂. Similarly, if r̂ = 4, then the RHS of (29) is of

the form zd+r̂−1 +
∑d+r̂−2
i=5 ciz

i + z3 − z − 1, which cannot be any χd̂,k̂(z).
Finally, if r̂ = 3, then the RHS of (29) becomes zd+r̂−1 +

∑d+r̂−2
i=5 ciz

i − z − 1,
which can at best be zd+r̂−1 − z − 1 = zd+2 − z − 1 = χd,d+1(z). But this too does

not yield a solution to C(d,∞) = C(d̂, k̂), since it is clear that C(d,∞) �= C(d, d+ 1)
for any d. This completes the analysis of the d > 4 case and hence the proof of the
lemma.

Lemma 24. Let d ≡ 4 (mod 6) and d̂, k̂ be such that χd̂,k̂(z) is of Type III. Then,
C(d,∞) = C(d̂, k̂) only if (d̂, k̂) = (d− 1, 2d− 1).

Proof. With d, d̂, k̂ as in the above statement, if C(d,∞) = C(d̂, k̂), then the
usual argument shows that we must have

(
r̂−1∑
i=0

(−z)i
)
Ψd,∞(z) =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂(32)

with Ψd,∞(z) having the form given in (7).
Note that as χd̂,k̂(z) is of Type III, we must have r̂ ≥ 3 odd. Suppose first that

r̂ = 3. Then the LHS of the above equation is (z2 − z + 1)Ψd,∞(z) = χd,∞(z) =
zd+1 − zd − 1 by Theorem 3. Therefore, (32) in this case is identical to (22) in the

proof of Lemma 19. As analyzed there, this equation implies (d̂, k̂) = (d− 1, 2d− 1).
So, we are left with the case r̂ ≥ 5. Note that the LHS of (32) may be written as(

z2 − z + 1 +

r̂−1∑
i=3

(−z)i
)
Ψd,∞(z) = (z2 − z + 1)Ψd,∞(z)− z3

(
r̂−4∑
i=0

(−z)i
)
Ψd,∞(z)

= zd+1 − zd − 1− z3

(
r̂−4∑
i=0

(−z)i
)
Ψd,∞(z).

Therefore, if we multiply both sides of (32) by
∑q̂−1
i=0 z

i and use (21), then the resulting
equation can be written as

χd̂,k̂(z) = (z
d+1 − zd − 1)

q̂−1∑
i=0

zi − z3

(
r̂−4∑
i=0

(−z)i
)
Ψd,∞(z)

q̂−1∑
i=0

zi

= zd+q̂ − zd −
q̂−1∑
i=0

zi + z3 +Ω(z4),(33)

where we have used the fact that (zd+1 − zd − 1)∑q̂−1
i=0 z

i = zd+q̂ − zd −∑q̂−1
i=0 z

i.
Now, the fact that r̂ = gcd( m̂2 + 1, n̂ + 1) ≥ 5 implies that m̂

2 + 1 ≥ 5, which

means that m̂ ≥ 8. Therefore, χd̂,k̂(z) = zn̂ −∑m̂
i=0 z

i must contain the sequence

−z8 − z7 − · · · − z − 1. In particular, the coefficient of z3 in χd̂,k̂(z) is −1. However,
on the RHS of (33), there are at most two z3 terms, one of which is +z3, and the

other is −z3 from the summation −∑q̂−1
i=0 z

i if q̂ − 1 ≥ 3. So, the coefficient of z3
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on the RHS of (33) can either be 0 or +1, which implies that the RHS cannot be of

the form required by χd̂,k̂(z). Therefore, we cannot have C(d,∞) = C(d̂, k̂) when
r̂ ≥ 5.

Lemmas 19–24 together prove the following result, which is the part of Theorem 1
dealing with the case when one of the (d, k) constraints involved is a (d,∞) constraint.

Theorem 25. If d, d̂, k̂ are nonnegative integers such that C(d,∞) = C(d̂, k̂),
then one of the following holds:

(i) (d̂, k̂) = (d− 1, 2d− 1),
(ii) d = 4 and (d̂, k̂) is either (1, 2) or (2, 4).

We now move on to analyze the equality C(d, k) = C(d̂, k̂) when k, k̂ are both
finite. Once again, we perform a case-by-case analysis of the various situations that
arise when each of the characteristic polynomials involved is of one of the three types
defined earlier. Because of symmetry, there are only six cases to be considered—three
when χd,k(z) and χd̂,k̂(z) are of the same type and three more as follows: (a) χd,k(z)

of Type I, χd̂,k̂(z) of Type II, (b) χd,k(z) of Type I, χd̂,k̂(z) of Type III, and (c) χd,k(z)

of Type II, χd̂,k̂(z) of Type III.

The situation when χd,k(z) and χd̂,k̂(z) are both of Type I is the easiest to deal

with, and we dispose of this first. As usual, we define (m,n) = (k − d, k + 1),

(m̂, n̂) = (k̂ − d̂, k̂ + 1), q = gcd(m,n), and q̂ = gcd(m̂, n̂).

Lemma 26. Let d, k, d̂, k̂ be such that χd,k(z) and χd̂,k̂(z) are both of Type I.

Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d̂, k̂).

Proof. By Theorem 15, C(d, k) = C(d̂, k̂) implies Ψd,k(z) = Ψd̂,k̂(z). Since χd,k(z)

and χd̂,k̂(z) are both of Type I, we have an explicit form for their nonreciprocal parts,
using which we get

n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(34)

Applying ε1 to both sides of the above equation, we get q = q̂. But this means
that Φd,k(z) =

∑q−1
i=0 z

i =
∑q̂−1
i=0 z

i = Φd̂,k̂(z). Thus, the polynomials χd,k(z) and

χd̂,k̂(z) have identical reciprocal parts and identical nonreciprocal parts, which shows

that χd,k(z) = χd̂,k̂(z), i.e., (d, k) = (d̂, k̂).

When χd,k(z) and χd̂,k̂(z) are both of Type II or Type III, the analysis involves
the use of the following technical lemma, whose proof we defer to the end of this
paper.

Lemma 27. Let m,n, r, m̂, n̂, r̂ be positive integers such that n > m and n̂ > m̂.
If (zr + 1)

(
zn −∑m

i=0 z
i
)
= (zr̂ + 1)(zn̂ −∑m̂

i=0 z
i), then (m,n, r) = (m̂, n̂, r̂).

In all that is to follow, we shall take r = gcd(m2 +1, n+1) and r̂ = gcd(
m̂
2 +1, n̂+1),

whenever m, m̂ are even.
Lemma 28. Let d, k, d̂, k̂ be such that χd,k(z) and χd̂,k̂(z) are either both of Type II

or both of Type III. Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d̂, k̂).
Proof. Suppose first that χd,k(z) and χd̂,k̂(z) are both of Type II. As shown in

the proof of Lemma 20, we have

Ψd,k(z) =

∑n
q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq

zr + 1
, Ψd̂,k̂(z) =

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂

zr̂ + 1
.
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Therefore, if C(d, k) = C(d̂, k̂), then we have Ψd,k(z) = Ψd̂,k̂(z), from which it follows
that

(zr̂ + 1)




n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 = (zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(35)

We shall consider the following four cases individually: (i) r ≤ q̂ and q < r̂,
(ii) r ≤ q̂ and q ≥ r̂, (iii) r > q̂ and q < r̂, and (iv) r > q̂ and q ≥ r̂. Observe,

however, that (iv) is the same as (i), with the roles of (d, k) and (d̂, k̂) reversed. So,
it suffices to consider the first three cases only.

We consider case (i) first. In this case, applying ε1 to both sides of (35), we find
that q = r, which is impossible by Lemma 17.

In case (ii), applying ε1 to both sides of (35) yields r = r̂. Hence (35) reduces to
(34) in the proof of Lemma 26, which as shown in that proof, leads to the conclusion

that (d, k) = (d̂, k̂).
Moving on to case (iii), applying ε1 to (35) here yields q = q̂. Hence multiplying

both sides of (35) by
∑q−1
i=0 z

i, we get via (21) (zr̂+1)
(
zn −∑m

i=0 z
i
)
= (zr+1)(zn̂−∑m̂

i=0 z
i). But now Lemma 27 shows that (m,n) = (m̂, n̂), which implies that (d, k) =

(d̂, k̂) in this case as well. Thus, we have shown that when χd,k(z) and χd̂,k̂(z) are

both of Type II, then C(d, k) = C(d̂, k̂) is possible only if (d, k) = (d̂, k̂).
If χd,k(z), χd̂,k̂(z) are both of Type III, then using (21), we find that

Ψd,k(z) =

∑n
q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq∑r−1
i=0 (−z)i

, Ψd̂,k̂(z) =

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂∑r̂−1
i=0 (−z)i

.

So, from Ψd,k(z) = Ψd̂,k̂(z), we obtain

(
r̂−1∑
i=0

(−z)i
)


n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 =

(
r−1∑
i=0

(−z)i
)

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .

Multiplying both sides of the above equation by z+1, we obtain (35), which as shown

above, leads to (d, k) = (d̂, k̂).
At this point, we would like to remark that Lemmas 26 and 28 actually prove

the following interesting fact: if two polynomials of the same type (I, II, or III) have
identical nonreciprocal parts, then the polynomials themselves are identical. In other
words, within each of the three type classes, a polynomial is uniquely determined by
its nonreciprocal part.

We are now only left to deal with the three cases where the characteristic poly-
nomials are of different types. The next three lemmas consider each case in turn.

Lemma 29. Let d, k, d̂, k̂ be such that χd,k(z) is of Type I and χd̂,k̂(z) is of Type II.

Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d, 2d) and (d̂, k̂) = (d+ 1, 3d+ 1).

Proof. With d, k, d̂, k̂ as above, we have

Ψd,k(z) =

n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq, Ψd̂,k̂(z) =

∑ n̂
q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂

zr̂ + 1
.
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So, if Ψd,k(z) = Ψd̂,k̂(z), then it follows that

(zr̂ + 1)




n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 =

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂.(36)

Note that if r̂ ≤ q, then applying ε1 to both sides of (36), we get r̂ = q̂, which is
impossible by Lemma 17. Hence, we must have r̂ > q.

So, applying ε1 to (36) yields q = q̂. Therefore, multiplying both sides of (36) by∑q−1
i=0 z

i, we obtain, on account of (21), (zr̂ + 1)
(
zn −∑m

i=0 z
i
)
= zn̂ −∑m̂

i=0 z
i or,

equivalently,

zn+r̂ + zn −
m∑
i=0

zr̂+i −
m∑
i=0

zi = zn̂ −
m̂∑
i=0

zi.(37)

We claim that the equality in (37) is possible only if r̂ = m+1 and n = 2m+1, in
which case the LHS of the equation is χm+1,3m+1(z). To prove this claim, we observe
first that if r̂ ≤ m, then on the LHS of (37), the coefficient of zr̂ is −2. This is because
we have one −zr̂ term coming from the summation −∑m

i=0 z
r̂+i and another from

the summation −∑m
i=0 z

i, and neither of these terms can be cancelled out by zn or
zn+r̂, since n > m ≥ r̂. However, since there cannot be any term with coefficient −2
on the RHS, we must have r̂ > m.

Also, r̂ > m+1 is impossible, since if this were the case, zn−∑m
i=0 z

r̂+i−∑m
i=0 z

i

cannot be of the form −∑m̂
i=0 z

i, as can be easily verified. Thus, we are forced to
conclude that for (37) to hold, r̂ must be equal to m+ 1.

With r̂ = m+1, the LHS of (37) becomes zn+m+1+zn−∑2m+1
i=0 zi, which can be

of the form zn̂−∑m̂
i=0 z

i only if n = 2m+1, so that zn cancels out with −z2m+1. With

this choice of r̂ and m, the LHS of (37) reduces to z3m+2 −∑2m
i=0 z

i = χm+1,3m+1(z).

Hence we see that (d̂, k̂) = (m+1, 3m+1), and as (m,n) = (m, 2m+1), we also have
(d, k) = (m, 2m), which proves the lemma.

Lemma 30. Let d, k, d̂, k̂ be such that χd,k(z) is of Type I and χd̂,k̂(z) is of

Type III. Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d, 2d) and (d̂, k̂) = (d+ 1, 3d+ 1),

or (d, k) = (1, 2) and (d̂, k̂) = (3, 7).

Proof. For the above choice of d, k, d̂, k̂, it follows from Ψd,k(z) = Ψd̂,k̂(z) that

(
∑r̂−1
i=0 (−z)i)(

∑n
q −1

l=m
q
zlq+1 −∑n

q −1

l=0 zlq) =
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂, which upon mul-

tiplying by z + 1 becomes

(zr̂ + 1)




n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 = (z + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(38)

Now, the RHS above can be written as (z + 1)(
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=1 zlq̂) − z − 1.
Note that the −z term cannot get cancelled out by any other term, since the smallest

exponent of z in (z + 1)
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1 is m̂+ 1 ≥ 2. Therefore, ε1 applied to the RHS
of (38) yields 1.
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When ε1 is applied to the LHS of (38), we either get r̂ if r̂ ≤ q, or we get q if
r̂ > q. Therefore, either r̂ = 1 or q = 1. However, r̂ = 1 is impossible because r̂ ≥ 3
by definition of Type III polynomials. Hence, we must have q = 1.

Therefore, (38) reduces to

(zr̂ + 1)

(
zn −

m∑
i=0

zi

)
= (z + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(39)

We will show that if m ≥ 2, then the above equality is possible only if (d, k) =
(d, 2d) and (d̂, k̂) = (d+1, 3d+1), and if m = 1, then the equality above implies that

(d, k) = (1, 2) and (d̂, k̂) = (3, 7).
So, suppose first that m ≥ 2. The LHS of (39) can be written as zn+r̂ + zn −∑m

i=0 z
r̂+i −∑m

i=0 z
i. Since r̂ ≥ 3 and m ≥ 2, the coefficient of z2 in this polynomial

is −1. Now, since q̂ ≥ 2 by definition of Type III polynomials, there can be a −z2

term on the RHS of (39) only if q̂ = 2. Therefore, it follows from (21) that the RHS
of (39) is

(z + 1)
zn̂ −∑m̂

i=0 z
i∑q̂−1

i=0 z
i

= (z + 1)
zn̂ −∑m̂

i=0 z
i

z + 1
= zn̂ −

m̂∑
i=0

zi.

Thus, we see that whenm ≥ 2, we must have q̂ = 2, and furthermore, (39) reduces
to (37). But, as shown in the proof of Lemma 29, (37) holds only if (d, k) = (d, 2d)

and (d̂, k̂) = (d+ 1, 3d+ 1).
It only remains to consider the case when m = 1. In this case, the LHS of (39)

is (zr̂ + 1)(zn − z − 1) = zn+r̂ + zn − zr̂+1 − zr̂ − z − 1. Cancelling out −z − 1 from
both sides of (39), we get

zn+r̂ + zn − zr̂+1 − zr̂ = (z + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=1

zlq̂


 .(40)

Now, ε1 applied to the RHS above yields q̂, and the coefficient of z
q̂ is −1. The −zq̂

term on the RHS must correspond to either −zr̂ or −zr̂+1 on the LHS. Since q̂ �= r̂
by Lemma 17, the −zq̂ term on the RHS must correspond to the −zr̂+1 term on the
LHS, showing that q̂ = r̂ + 1. Therefore, ε1 when applied to the LHS of (40) must
yield r̂ + 1, which means that −zr̂ must get cancelled by zn so that we must have
n = r̂. Finally, applying ξ1 to (40), we also obtain n+ r̂ = n̂− q̂+2. Using q̂ = r̂+1
and n = r̂ to eliminate q̂ and r̂ from this last equation, we get n̂ = 3n− 1.

Since q̂ = r̂ + 1 = n+ 1 and q̂|n̂, we find that n+ 1 must divide 3n− 1. Writing
3n−1 as 3(n+1)−4, we see that n+1 must be a factor of 4. Hence n = 0, 1, or 3. But
as n > m ≥ 1, n must in fact be 3. Hence n̂ = 3n−1 = 8. Furthermore, q̂ = n+1 = 4,
and so the facts that q̂|m̂ and m̂ < n̂ now imply that m̂ = 4. Thus, we have shown
that when m = 1, equality in (38) is possible only if n = 3 and (m̂, n̂) = (4, 8). As

these values of (m,n) and (m̂, n̂) are equivalent to (d, k) = (1, 2) and (d̂, k̂) = (3, 7),
the proof of the lemma is complete.

Lemma 31. Let d, k, d̂, k̂ be such that χd,k(z) is of Type II and χd̂,k̂(z) is of

Type III. Then, C(d, k) = C(d̂, k̂) only if (d, k) = (d, 2d) and (d̂, k̂) = (d+1, 3d+1).
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Proof. When χd,k(z) is of Type II and χd̂,k̂(z) is of Type III, from the equality

Ψd,k(z) = Ψd̂,k̂(z) we get, via (21),

(
r̂−1∑
i=0

(−z)i
)


n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 = (zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .

Upon multiplying both sides of this equation by z + 1, we obtain

(zr̂ + 1)




n
q −1∑
l=m

q

zlq+1 −
n
q −1∑
l=0

zlq


 = (z + 1)(zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(41)

Using (zr + 1)(z + 1) = zr+1 + zr + z + 1, we can write the RHS above as

(z + 1)(zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+1 −
n̂
q̂ −1∑
l=1

zlq̂


− (zr+1 + zr + z + 1).(42)

Recall that the definition of Type III requires q̂ ≥ 2 even and r̂ ≥ 3 odd. Since
m̂ ≥ q̂ ≥ 2, the smallest exponent of z in (z + 1)(zr + 1)(∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1) is m̂+ 1 ≥ 3.
Hence the −z term in (42) cannot be cancelled out by any other term. It follows that
the coefficient of z on the RHS of (41) is nonzero, and so this must be true on the
LHS as well. But, the only way for the coefficient of z to be nonzero on the LHS is
if r̂ = 1 or q = 1. The former is impossible since r̂ ≥ 3. So, we must have q = 1,
and consequently the LHS of (41) simplifies to (zr̂ + 1)

(
zn −∑m

i=0 z
i
)
. Expanding

out the product (z+1)(
∑ n̂

q̂ −1

l= m̂
q̂

zlq̂+1 −∑ n̂
q̂ −1

l=0 zlq̂) on the RHS of (41), we can rewrite

(41) as

(zr̂ + 1)

(
zn −

m∑
i=0

zi

)
= (zr + 1)




n̂
q̂ −1∑
l= m̂

q̂

zlq̂+2 −
m̂
q̂ −1∑
l=0

zlq̂+1 −
n̂
q̂ −1∑
l=0

zlq̂


 .(43)

We have thus far shown that for Ψd,k(z) = Ψd̂,k̂(z) to be true for d, k, d̂, k̂ as in

the statement of the lemma, then we must have q = 1 and (43) must hold. Our aim
now is to show that for q = 1 and (43) to be true, we must also have r = 2 and q̂ = 4,

from which it will follow that (d, k) = (d, 2d) and (d̂, k̂) = (d+ 1, 3d+ 1).
The first step in this process is to show that q̂ �= 2 so that (since q̂ is even) q̂ ≥ 4.

If we assume that q̂ = 2, then it is easily seen that the RHS of (43) simplifies to

(zr + 1)(zn̂ −∑m̂
i=0 z

i). Therefore, by Lemma 27, (43) holds only if (m,n) = (m̂, n̂),

or equivalently (d, k) = (d̂, k̂), which cannot happen since χd,k(z) and χd̂,k̂(z) are of
different types. Hence, q̂ = 2 is impossible, and so q̂ ≥ 4. We next show that this,
along with the fact that q = 1, implies that r = 2.

Note that m is even, for if it were odd, then by Theorem 11, χd,k(z) would be
of Type I. Hence m ≥ 2, from which it follows that the LHS of (43) contains a −z2

term, i.e., the coefficient of z2 on the LHS is −1. Therefore, the RHS of (43) must
also contain a −z2 term, which since q̂ ≥ 4, can happen only if r = 1 or 2. But since
q = 1, Lemma 17 forces r to be 2.
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Setting r = 2, it can be verified that (43), upon multiplying out the product on
its RHS, becomes

(zr̂ + 1)

(
zn −

m∑
i=0

zi

)
=

n̂
q̂ −1∑
l= m̂

q̂

zlq̂+4 −
m̂
q̂ −1∑
l=0

(zlq̂+3 + zlq̂+2 + zlq̂+1)−
n̂
q̂ −1∑
l=0

zlq̂.(44)

We now show that the above equality can hold only if q̂ = 4. Suppose, to the
contrary, that q̂ �= 4, so that q̂ ≥ 6. Observe that since q̂ ≥ 6, no cancellation of terms
is possible among the various summations on the RHS of (44), as the exponents in
different summations leave different remainders modulo q̂. It follows that the RHS of
(44) is of the form −1 − z − z2 − z3 + Ω(z6), where Ω(z6) denotes some polynomial
of the form

∑
k≥6 ckz

k. In particular, the RHS cannot contain any z4 or z5 terms.

On the other hand, the LHS of (44) is zn+r̂+zn−∑m
i=0 z

r̂+i−∑m
i=0 z

i. Note that
neither zn+r̂ nor zn can cancel out any term in the summation −∑m

i=0 z
i, so that

all the terms in this summation remain intact on the LHS. But as the LHS cannot
contain any z4 or z5 terms (because the RHS does not contain such terms), we find
that m ≤ 3. However, as observed earlier, m is even, so that we must in fact have
m = 2. But now, in order for the LHS to contain a −z3 term, we must either have
r̂ = 3, or n = r̂ and r̂ + 1 = 3. The latter is impossible as it implies that n = 2 = m,
which cannot happen. But r̂ = 3 is also impossible, since with r̂ = 3 and m = 2, the
LHS reduces to zn+r̂+zn−∑5

i=0 z
i, which will always contain a z4 or z5 term. Thus,

if we assume that q̂ �= 4, we are forced to conclude that (44) cannot hold.
Therefore, for (44) to hold, we must have q̂ = 4. But with q̂ = 4, it is readily

verified that the RHS of (44) simplifies to zn̂ −∑m̂
i=0 z

i. As a result, (44) becomes
identical to (37) in the proof of Lemma 29, and as shown there, equality in (37) is

possible only if (d, k) = (d, 2d) and (d̂, k̂) = (d+ 1, 3d+ 1). This completes the proof
of the lemma.

Lemmas 26 and 28–31 together prove the following theorem, which in conjunction
with Theorem 25 forms Theorem 1.

Theorem 32. If d, k, d̂, k̂ are nonnegative integers such that C(d, k) = C(d̂, k̂),

but (d, k) �= (d̂, k̂), then one of the following holds:
(i) {(d, k), (d̂, k̂)} = {(, 2), (+ 1, 3+ 1)} for some integer  ≥ 0.
(ii) {(d, k), (d̂, k̂)} = {(1, 2), (3, 7)}.
There still remains a loose end that needs to be tied up, namely, a proof of

Lemma 27. We provide such a proof now.
Proof of Lemma 27. Suppose that m,n, r, m̂, n̂, r̂ are as in the statement of the

lemma and that

(zr + 1)

(
zn −

m∑
i=0

zi

)
= (zr̂ + 1)

(
zn̂ −

m̂∑
i=0

zi

)
.(45)

It suffices to show that r = r̂.
Multiplying both sides of (45) by z − 1, we obtain

(zr + 1)(zn+1 − zn − zm+1 + 1) = (zr̂ + 1)(zn̂+1 − zn̂ − zm̂+1 + 1).(46)

Observe first that upon comparing the degrees of both sides of the above equation,
we get

n+ r = n̂+ r̂.(47)
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Taking the derivative of both sides of (46) and setting z = 1 yields −2m = −2m̂,
so that m = m̂. Next, taking the second derivative of both sides of (46) and setting
z = 1, we get

4n− 2m2 − 2mr − 2m = 4n̂− 2m̂2 − 2m̂r̂ − 2m̂.

Using the fact that m = m̂, the above equation reduces to

4n− 2mr = 4n̂− 2mr̂.(48)

But now, using (47) and (48), we have

(2m+ 4)r = 4(r + n)− (4n− 2mr) = 4(r̂ + n̂)− (4n̂− 2mr̂) = (2m+ 4)r̂.

Since m �= −2, as m > 0, we must have r = r̂, as desired.

Acknowledgment. The authors would like to thank the anonymous reviewer
for a thorough review of the paper, for simplifying a few of the proofs in the paper,
and especially for the clever proof of Lemma 27.

REFERENCES

[1] M. Filaseta, On the factorization of polynomials with small Euclidean norm, in Number Theory
in Progress, Vol. 1, de Gruyter, Berlin, 1999, pp. 143–163.

[2] K.A.S. Immink, P.H. Siegel and J.K. Wolf, Codes for digital recorders, IEEE Trans. Inform.
Theory, 44 (1998), pp. 2260–2299.

[3] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Uni-
versity Press, Cambridge, UK, 1995.

[4] W. Ljunggren, On the irreducibility of certain trinomials and quadrinomials, Math. Scand., 8
(1960), pp. 65–70.

[5] B.H. Marcus, R.M. Roth, and P.H. Siegel, Constrained systems and coding for recording
channels, in Handbook of Coding Theory, R. Brualdi, C. Huffman, and V. Pless, eds.,
Elsevier, Amsterdam, The Netherlands, 1998.

[6] W.H. Mills, The factorization of certain quadrinomials, Math. Scand., 57 (1985), pp. 44–50.
[7] E.S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956), pp. 287–302.
[8] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), pp.

379–423.
[9] D.A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart., 36 (1998), pp.

129–145.



MAXIMIZING THE SHANNON CAPACITY OF CONSTRAINED
SYSTEMS WITH TWO CONSTRAINTS∗
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Abstract. In this paper, we consider the problem of finding the set {A,B} ⊂ {0, 1}m that
maximizes, among all 2-subsets of {0, 1}m, the Shannon capacity, H(A,B), of a constrained system of
binary sequences that do not contain A or B as a contiguous subsequence. This problem is motivated
by the problem of finding a pair of length-m binary sequences, called markers, that achieves the
maximum rate, R(2,m, n), of a (2,m, n) periodic prefix-synchronized (PPS) code. A (2,m, n) PPS
code is a binary block code with two length-m markers, A,B, and codewords of length n that inserts
A and B alternately at regular intervals in the encoded bitstream, with the additional constraint
that A and B may not appear anywhere in the encoded bitstream other than where inserted. We
show that for any m ≥ 2, limn→∞ R(2,m, n) = max{H(A,B) : {A,B} ⊂ {0, 1}m} = log2 ρm−1,
where ρm−1 is the largest-magnitude zero of the polynomial zm−1 − zm−2 − · · · − 1. Moreover,
we completely characterize the sequences A and B that achieve maxH(A,B), as well as those that
achieve R(2,m, n) for all sufficiently large n.

Key words. Shannon capacity, constrained codes, periodic prefix-synchronized codes, shifts of
finite type

AMS subject classifications. 68P30, 94A45, 94A55, 37B10

DOI. 10.1137/S0895480102402757

1. Introduction. We begin by defining the notion of Shannon capacity [1], [13]
of a constrained system of binary sequences. Given a constraint set (or forbidden set)
F of finite-length binary sequences, we define the corresponding constrained system,
S(F), to be the set of finite-length binary sequences that do not contain any member
of F as a contiguous subsequence. The Shannon capacity of the constrained system
S(F) is defined as H(F) = limn→∞ n−1 log2 qF (n), where qF (n) is the number of
length-n sequences in S(F). In this paper, we shall be concerned with constraint sets
F ⊂ {0, 1}m containing binary sequences of a fixed length m and, for the most part,
sets F of cardinality 2. The main contribution of this paper is a complete solution to
the problem of finding the set {A,B} that maximizes H(A,B)1 among all 2-subsets
of {0, 1}m.

The motivation for this problem comes from two sources. The first source is the
area of symbolic dynamics [10], where the problem may be reformulated in terms of
characterizing those shifts of finite type that have the maximum entropy among all
shifts that forbid 2-subsets of {0, 1}m. Indeed, a related problem was considered by
Lind [11], who provided computable bounds on the change in the entropy of a shift of
finite type when an extra sequence is added to the original set of forbidden sequences.

The second source for the problem is a closely related question that arises in
the context of periodic prefix-synchronized (PPS) codes, which were introduced re-
cently [8] as a family of sync-timing codes. Sync-timing codes are needed in most
communication systems where data synchronization is needed (cf. [12]), i.e., when a
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1For ease of notation, we use H(A), H(A,B), etc. instead of H({A}), H({A,B}), etc.
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Fig. 1. A fragment of the encoded bitstream.

sequence of data symbols must be encoded into bits and transmitted across a chan-
nel that can make arbitrary insertion, deletion, and substitution errors. These codes
not only enable the decoder to resynchronize rapidly upon cessation of such errors to
correctly reproduce data symbols, but also allow the decoder to produce estimates of
the time indices of the decoded data symbols in order to determine their positions in
the original source sequence.

PPS codes are binary block codes that insert synchronizing markers at regular in-
tervals (see Figure 1). They are characterized by positive integers p, m, n, distinct bi-
nary length-m sequences called markers M1, . . . ,Mp, and codebooks C1, . . . , Cp. Each
Ci contains all binary codewords of length n > m, with the following properties: (i)

each codeword begins with the marker Mi, and (ii) if Mi = a
(i)
1 . . . a

(i)
m , i = 1, 2, . . . , p,

and a
(i)
1 . . . a

(i)
m b1 . . . bn−m is a codeword from Ci, then none of the markers M1, . . . ,Mp

can be found as a contiguous subsequence of a
(i)
2 . . . a

(i)
m b1 · · · bn−ma(i+1)

1 . . . a
(i+1)
m−1 (the

superscript (p+ 1) is to be interpreted as the superscript (1)). The idea here is that
if a codeword from Ci were to be followed by one from Ci+1, then no marker can
appear at any place except at the beginning of each codeword. A specific PPS code
with period p and markers of length m, whose codebooks contain sequences of length
n, will be referred to as a (p,m, n) PPS code.

The sequence of data symbols (which we assume to be binary) to be encoded
is first divided into blocks of length K =

∑p
i=1 ki, where ki = �log2 |Ci|	, with |Ci|

denoting the cardinality of Ci. Each such block is then encoded by the PPS code
as follows: the first k1 data symbols are encoded using the codebook C1, the next
k2 data symbols are encoded using C2, and so on until the last kp data symbols are
encoded using Cp. Since the encoding procedure has a block structure with input
blocklength K and output blocklength N = pn, the rate of the code is R = K/N .
Note that R ≤ 1 since K ≤ N , and it is desirable to have codes with rates as close to
1 as possible, so as to minimize the redundancy introduced.

Due to the constraints on the codewords, it is clear that markers can only appear
at specific places in the sequence of encoded bits, and hence any marker can be used by
the decoder to recover synchronization. The idea behind inserting multiple markers in
a periodic manner in the encoded sequence is that, as explained in [8], this periodicity
allows the decoder to estimate the time index of each decoded data symbol, relative
to the beginning of the “period” to which it belongs, without compromising on the
delay in recovering synchronization.

For p = 1, the above description is simply that of a prefix-synchronized code, first
studied by Gilbert [3] and further analyzed by Guibas and Odlyzko [4]. The PPS
code with markers M1 = 000, M2 = 111 and codebooks C1 = {0001100, 0001010},
C2 = {1110011, 1110101} is an example of a (2, 3, 7) PPS code.

Let us define R(p,m, n) to be the maximum rate achievable by a (p,m, n) PPS
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code, if such a code exists, and to be zero otherwise. To find R(p,m, n), it is necessary
to find markers M1, · · · ,Mp that maximize the sizes of the codebooks C1, · · · , Cp
subject to the constraints defining the code. Due to the similarity of the constraints
involved, it is reasonable to expect that, asymptotically in n, R(p,m, n) is closely
related to Hp,m = maxF H(F), with the maximum being taken over all p-subsets
F ⊂ {0, 1}m.

The work of Gilbert [3], along with that of Guibas and Odlyzko [4], [5], showed
that such a relationship does indeed hold for p = 1, i.e., for prefix-synchronized codes.
Specifically, using generating functions, Gilbert showed that if m ≥ 1 is fixed, then
for all sufficiently large n, R(1,m, n) is achieved by choosing the single marker, M1,
in the code to be either the length-m all-zeros sequence, 0m, or the length-m all-ones
sequence, 1m. It also follows from his results that limn→∞R(1,m, n) = log2 ρm, where
ρm is the largest-magnitude zero of the polynomial zm − zm−1 − · · · − 1. Guibas and
Odlyzko subsequently used generating functions to show (among other things) that
for any A ∈ {0, 1}m, H(A) ≤ H(1m) = log2 ρm with equality iff A = 0m or 1m. Thus,
we see that for m ≥ 1, limn→∞R(1,m, n) = H1,m = log2 ρm.

In this paper, we derive a corresponding relationship for the case when p = 2.
The major part of this derivation lies in a proof of the fact that for all m ≥ 2,
H2,m = log2 ρm−1, where ρm−1 is the largest-magnitude zero of the polynomial zm−1−
zm−2 − · · · − 1. This fact is then used to show that limn→∞R(2,m, n) = log2 ρm−1

as well. Moreover, we identify (Theorem 1) all the pairs of length-m sequences that
achieve H2,m, as well as those (Theorem 2) that achieve R(2,m, n) for all sufficiently
large n. We also provide a partial result (Theorem 18) for p = 3, for which we show
that H3,m = log2 ρm−1 as well, and H3,m is achieved by the set {10m−1, 0m−11, 0m}.
However, this set of sequences cannot be used as markers in a (3,m, n) PPS code, as
any codeword that begins with 0m must have an occurrence of 0m or 0m−11 starting
at the second bit, which violates the constraints defining the code. Hence, it may not
be true that limn→∞R(3,m, n) = H3,m.

For higher values of p, not even Hp,m is known, although we conjecture that
if p = 2k for any k ≥ 0, then for m ≥ k + 1, Hp,m = log2 ρm−k, where ρm−k
is the largest-magnitude zero of the polynomial zm−k − · · · − 1. This conjecture
is based on the following observation. Let F0 = {0m−k〈i〉2 : i = 0, 1, . . . , 2k−1},
where 〈i〉2 denotes the k-bit binary representation of i. Also, define the functions
ψ1, ψ2, ψ3 : {0, 1}∗ → {0, 1}∗, where {0, 1}∗ denotes the set of all finite-length binary
sequences, as follows: for b1b2 . . . bn ∈ {0, 1}∗,

ψ1(b1b2 . . . bn) = b1b2 . . . bn−1,

ψ2(b1b2 . . . bn) = b2b3 . . . bn,

ψ3(b1b2 . . . bn) = c1c2 . . . cn−1,

where ci = bi ⊕ bi+1, ⊕ being modulo-2 addition. Note that each ψi is a two-to-
one function. Now, numerical evidence seems to suggest that when p = 2k for any
p-subset F ⊂ {0, 1}m, qF (n) ≤ qF0(n) for all n, with equality (for all n) iff F =
ψ−1
i1
◦ ψ−1

i2
◦ · · · ◦ ψ−1

ik
(0m−k) or ψ−1

i1
◦ ψ−1

i2
◦ · · · ◦ ψ−1

ik
(1m−k) for any i1, i2, . . . , ik ∈

{1, 2, 3}. It is a simple matter to verify that when F is of the above form, we have
qF (n) = 2kq0m−k(n − k), so that H(F) = H(0m−k) = log2 ρm−k, which leads us to
the statement of the conjecture.

Before stating our main result, we define some notation that is used throughout
this paper: 〈01〉m and 〈10〉m denote the two length-m sequences of alternating 0’s
and 1’s. The main contribution of this paper is a proof of the following result.
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Theorem 1. If A,B are distinct binary sequences of length m ≥ 5, then

H(A,B) ≤ log2 ρm−1

with equality iff {A,B} or {A,B} is one of the following: {0m, 1m}, {〈01〉m, 〈10〉m},
{0m, 10m−1}, {0m, 0m−11}, and {10m−1, 0m−11}. (A,B are the sequences obtained
by complementing each bit of A,B.)

In the terminology of symbolic dynamics, this theorem shows that the entropy
of a shift of finite type that forbids some 2-subset F ⊂ {0, 1}m is at most log2 ρm−1.
This maximum is achieved precisely when F is one of the sets listed in the statement
of the theorem.

The approach we use to prove the above theorem is based on a generating function
for the number, qAB(n), of length-n binary sequences that do not contain A or B as a
contiguous subsequence. This generating function can be expressed in a simple form,
based on the concept of correlation between two binary strings, which we now define.

The correlation between two binary sequences A and B (not necessarily distinct),
denoted by A◦B, is a binary sequence of the same length as A. The ith bit (from the
left) of A ◦ B is determined as follows: place B under A in such a way that the first
bit of B lies under the ith bit of A; if the segments that overlap are identical, then
the ith bit of A ◦B is 1, else it is 0. Note that if A and B have the same length, then
the first bit of A◦B is a 1 iff A = B. For example, if A = 110001 and B = 1000, then
A ◦ B = 010001, B ◦ A = 0000, A ◦ A = 100001, and B ◦ B = 1000. The correlation
of a sequence A with itself is also called the autocorrelation of A.

If A ◦B = (c0c1 . . . cn−1) is the correlation between two sequences A and B, then
we define the corresponding correlation polynomial

φAB(z) =

n−1∑
i=0

ciz
n−1−i.(1)

With A and B as in the previous example, we have φAB(z) = z4 + 1, φBA(z) =
0, φAA(z) = z5 + 1, and φBB(z) = z3. For the sake of notational simplicity, it
shall henceforth be tacitly understood that correlation polynomials are functions of
the complex variable z and so the argument z will be dropped from their notation
whenever deemed necessary.

Guibas and Odlyzko [5] showed that given two distinct sequences A,B ∈ {0, 1}m,
the generating function for qAB(n), defined by QAB(z) =

∑∞
n=0 qAB(n)z−n, can be

expressed using correlation polynomials as

QAB(z) =
z(φAAφBB − φABφBA)

(z − 2)(φAAφBB − φABφBA) + φAA + φBB − φAB − φBA
.(2)

Thus, the generating function QAB(z) is a rational function, and we show that it
always has a positive real pole, ρAB , that is larger in magnitude than any other pole.
It then follows from the theory of complex variables2 (see, e.g., [14, Chap. 5]) that
qAB(n) = c(n) (ρAB)

n
(1 + o(1)) for some c(n) depending polynomially on n. (c(n)

is a constant if ρAB is a simple pole.) This shows that H(A,B) = log2 ρAB , and a
careful analysis thereafter shows how ρAB varies with A and B and what choice of
A,B maximizes ρAB .

2We need the largest pole here because we define QAB(z) as a power series in z−1.
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To connect the above theorem with R(2,m, n), we use a rational generating func-
tion for the number, fAB(k), of length-k sequences that begin with A, end with B,
but do not contain A or B anywhere else. Using Guibas and Odlyzko’s methods, it is
shown in [9] that if A and B are distinct length-m binary sequences, then for k > m,
fAB(k) is the coefficient of z−k in the expansion of

FAB(z) =
1

z

(z − 2)φAB + 1

(z − 2)(φAAφBB − φABφBA) + φAA + φBB − φAB − φBA
(3)

as FAB(z) =
∑∞
k=0 vkz

−k. Note that we can use fAB(k) to define the rate of a
(2,m, n) PPS code with markers M1 = A and M2 = B as follows:

R̂(A,B, n) =
�log2 fAB(m+ n)	+ �log2 fBA(m+ n)	

2n
.(4)

Hence, R(2,m, n) = maxA,B R̂(A,B, n), the maximum being taken over all pairs of
distinct sequences A,B ∈ {0, 1}m. By showing that the largest-magnitude pole of
FAB(z) is the same, in most cases, as that for QAB(z), we are able to prove the
following result.

Theorem 2. If A,B are distinct binary sequences of length m ≥ 5, then

lim
n→∞ R̂(A,B, n) ≤ log2 ρm−1

with equality iff {A,B} = {0m, 1m} or {〈01〉m, 〈10〉m}. Thus, limn→∞R(2,m, n) =
log2 ρm−1.

This theorem shows that when m ≥ 5 for all sufficiently large n, R(2,m, n) is

either R̂(0m, 1m, n) or R̂(〈01〉m, 〈10〉m, n). In fact, we show further that for nearly all

(if not all) values of n, R̂(0m, 1m, n) = R̂(〈01〉m, 〈10〉m, n).
The remainder of this paper is devoted to the proofs of the above results. In

section 2, we show that QAB(z) has a real largest-magnitude pole, ρAB , by demon-
strating that the poles of QAB(z) are actually eigenvalues of a certain nonnegative
matrix, which allows us to utilize the powerful Perron–Frobenius theory. Theorem 1
is proved in section 3 by studying the behavior of ρAB as A and B vary. In section 4,
we explore the relationship between H(A,B) and R̂(A,B, n) and prove Theorem 2.

2. Walks on graphs. In this section, we show that QAB(z) has a positive real
pole that is largest in magnitude among all poles of QAB(z). It is well known that
qAB(n) is precisely the number of walks of length n − m + 1 on a certain directed
graph GAB obtained by removing a pair of edges from the de Bruijn graph G(m−1) of
order m− 1. G(m−1) is a directed graph with vertex set {vi : i = 0, 1, . . . , 2m−1 − 1}
(see Figure 2). If we label each vertex vi with the (m−1)-bit binary representation of
i, then G(m−1) has a directed edge from vi to vj iff there exists a binary m-sequence
(b1, b2, . . . , bm) whose first m− 1 bits form vi’s label and whose last m− 1 bits form
vj ’s label. Moreover, this directed edge is labeled with the bit bm. Thus, each walk of
length n−m+1 on G(m−1) has a unique binary n-sequence associated with it, namely
the sequence formed by concatenating the label of the initial vertex with the labels
of the n −m + 1 edges constituting the walk. In fact, this establishes a one-to-one
correspondence between walks of length n−m+1 on G(m−1) and binary n-sequences.
Since the edges of the graph are themselves walks of length 1, there is a one-to-one
correspondence between the edge set of G(m−1) and the set of binary m-sequences.
Defining GAB to be the graph obtained by removing the edges corresponding to the
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Fig. 2. The de Bruijn graph G3.

sequences A and B from G(m−1), it is not hard to see that for n ≥ m, qAB(n) is equal
to the number of walks of length n −m + 1 on GAB . Note that for 0 ≤ n ≤ m − 1,
qAB(n) = 2n, as all the binary sequences of length n do not contain A or B.

Let A be the adjacency matrix of GAB . It is easy to show that the number of
walks of length n − m + 1 on GAB is given by the sum of the entries of An−m+1.
Therefore, qAB(n) = 1TAn−m+11 for n ≥ m, where 1 is a column vector of ones.
Now if A = SJS−1, where J is the Jordan canonical form of A, then qAB(n) =
1TSJn−m+1S−11 = xTJn−m+1y for some column vectors x and y. Utilizing the
special structure of Jordan forms and working through the details, it can be shown
that for n ≥ m,

qAB(n) =

r∑
i=1

pi(n) (λi)
n
,(5)

where λ1, . . . , λr are the distinct nonzero eigenvalues of A, and each pi is a polynomial
(possibly zero) of degree strictly less than the algebraic multiplicity of λi. Since A is
a nonnegative matrix, the Perron–Frobenius theorem [7, Theorem 8.3.1] shows that it
has a real positive eigenvalue, say λ1, such that |λi| ≤ λ1 for i = 1, . . . , r. Note that
λ1 ≥ 1 because if 0 < λ1 < 1, then (5) shows that we would have 0 < qAB(n) < 1
for some sufficiently large n. The case λ1 = 1 is of little interest, as qAB(n) then
grows polynomially with n, which shows that H(A,B) = 0. Therefore, we shall
henceforth focus on the case when λ1 > 1. We next show that in this case, λ1 is the
unique largest-magnitude eigenvalue of A, i.e., |λi| < λ1 for i �= 1, and is algebraically
simple. This will then imply that p1(n) is a nonzero constant.

It is easy to see that since GAB is obtained by removing two edges from G(m−1),
it is either irreducible (i.e., it has a path connecting every ordered pair of vertices), or
it has one vertex with either no incoming edges or no outgoing edges while the rest
of the graph is irreducible. It is also a straightforward exercise to show that in the
former case, GAB is aperiodic as well (i.e., the greatest common divisor of the lengths
of all the cycles in the graph is 1), because it either contains a loop (an edge that
connects a vertex to itself), or it contains two cycles of lengths 2 and 3, respectively.
Therefore, by Theorem 4.5.11 in [10], A has a unique largest-magnitude eigenvalue
which is also algebraically simple. In the case when GAB has an isolated vertex, if
we let ĜAB be the subgraph of GAB obtained by removing that vertex and all the
edges attached to it, then ĜAB is also aperiodic as it always contains a loop. If Â is
the adjacency matrix of ĜAB , then Â has a unique largest eigenvalue which is also
algebraically simple. Now, the eigenvalues of A are precisely the eigenvalues of Â,
along with the eigenvalues of the adjacency matrix of the subgraph of GAB formed
by the isolated vertex and any edges connecting that vertex to itself [10, section 4.4].
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Since the latter adjacency matrix contains only one element, which is either 0 or 1,
the only eigenvalue it contributes to A is 0 or 1. Hence, as λ1 > 1, it must come
from Â and so it is the unique largest-magnitude eigenvalue of A and is algebraically
simple.

Since p1(n) has degree strictly less than the algebraic multiplicity of λ1, we see
that p1(n) is a constant c1. Now, it is known that the number of length-n walks on
any graph is at least as large as c (λmax)

n
, where λmax is the largest eigenvalue of the

adjacency matrix of the graph, and c is some positive constant. Therefore, we have
qAB(n) ≥ c(λ1)

n
. Since λ1 > 1 is the unique largest-magnitude eigenvalue of A, (5)

now shows that p1(n) = c1 > 0. (At this point, we would like to remark that even if
λ1 = 1, then it can be argued that p1(n) is nonzero but not necessarily a constant,
but we omit the argument as this fact is not essential for our results.)

Let us now define the function Q̂AB(z) =
∑∞
n=m qAB(n)z−n. Since qAB(n), n ≥

m, can be expressed in the form given in (5), using the formulae for summation of

infinite series, it is easy to see that Q̂AB(z) is a rational function whose nonzero poles
are eigenvalues of A, and the multiplicity of the pole at λi is precisely one larger
than the degree of pi. (If pi ≡ 0, then we take deg(pi) to be −1, which implies that
there is no pole at λi.) Since for λ1 > 1, deg(p1) = 0, there is always a simple

pole at λ1. Note that QAB(z) =
∑m−1
n=0 2nz−n + Q̂AB(z), but

∑m−1
n=0 2nz−n cannot

contribute any nonzero poles to QAB(z). Therefore, the nonzero poles of QAB(z) are

the same as those of Q̂AB(z). In particular, λ1 is a pole of QAB(z) and is in fact the
unique largest-magnitude pole. (We further remark that in the case when λ1 = 1,
this argument would show that λ1 is a largest-magnitude pole of QAB(z), but it may
not be a simple pole).

To summarize, we have shown that QAB(z) always has a real largest-magnitude
pole ρAB ≥ 1. If ρAB > 1, then it is the unique largest-magnitude pole and is also
simple, and hence as explained previously, H(A,B) = log2 ρAB . On the other hand,
if ρAB = 1, then H(A,B) = 0. Thus, in order to maximize H(A,B), we need to
maximize ρAB . In the next section, we study how ρAB behaves as A and B vary.

3. Maximizing H(A, B). Note that if we define DAB(z) = (z− 2)(φAAφBB −
φABφBA) + φAA + φBB − φAB − φBA, then by adding a zero at 2 to DAB , we obtain
a polynomial ∆AB that is easier to handle. More precisely,

∆AB(z) = (z − 2)DAB(z) = γAAγBB − γABγBA,(6)

where γ∗∗ is the polynomial defined by γ∗∗(z) = (z−2)φ∗∗(z)+1. Thus, the behavior
of DAB(z) is intimately connected with the behavior of the polynomials γ∗∗, making
it necessary to gain some understanding of the behavior of γ∗∗.

We shall also find it convenient to define the polynomials pk(z) = zk−zk−1−· · ·−1
for k = 1, 2, . . . . It is known [15] that for k ≥ 2, pk has exactly one root, which is a
simple root, in the region 1 < z < 2, and all its other roots lie within the unit circle
(for k = 1, the only root of pk is 1). We shall denote the largest root of pk by ρk. It
is also known that ρk increases with k, and 2(1 − 2−k) < ρk < 2 for k ≥ 2. We use
these facts about pk and ρk extensively in all that follows.

To any polynomial φ with coefficients 0 and 1, we can associate a γ-polynomial
defined by γ(z) = (z − 2)φ(z) + 1. Since γ(z) ≥ 1 for z ≥ 2, all the real zeros of γ
must be less than 2. Moreover, if φ is not identically zero, then γ has a real zero in
[1, 2) because γ(1) = −φ(1) + 1 ≤ 0. Thus, the largest positive zero of γ lies in [1, 2).
We now provide some more results concerning these γ-polynomials.
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Lemma 3. Let φ1, φ2 be polynomials in z with coefficients 0 and 1, with φ2(2) =
φ1(2) + 1. Let γ1, γ2 be the corresponding γ-polynomials. Let k be the largest integer
such that the coefficients of zk in φ1 and φ2 are different. If k = 0, then γ1(z) > γ2(z)
for all z < 2, and if k ≥ 1, then γ1(z) ≥ γ2(z) for ρk ≤ z < 2, with equality iff z = ρk.

Proof. Note that the sequence formed by the coefficients of each φi is the binary
representation of the integer φi(2). Therefore, it is convenient to identify each φi with
the binary sequence formed by its coefficients. Since φ1 and φ2 are identified with
sequences that are binary representations of successive integers, it can be seen that
the coefficient of zk in φ2 is 1, while that in φ1 is 0. Moreover, for each j < k, the
coefficient of zj in φ2 is 0, while that in φ1 is 1. Therefore, φ2(z)−φ1(z) = 1 if k = 0,
and if k ≥ 1, φ2(z)− φ1(z) = zk − zk−1 − · · · − 1.

If k = 0, we have γ2(z)−γ1(z) = (z−2)(φ2(z)−φ1(z)) = z−2, which is negative
for z < 2. If k ≥ 1, then γ2(z)− γ1(z) = (z− 2)(φ2(z)− φ1(z)) = (z− 2) pk. Since ρk
is the largest root of pk and pk(2) = 1, we must have pk(z) > 0 for ρk < z ≤ 2, from
which the result follows.

Lemma 4. Let φ1, φ2 be nonzero polynomials with coefficients 0 and 1, and let
γ1, γ2 be the corresponding γ-polynomials. Let r1 and r2 be the largest positive roots
of γ1 and γ2, respectively. Suppose that φ1(2) < φ2(2). Then, r1 ≤ r2 with equality
iff φ1(z) = zm−1 + zm−2 + · · · + 1 and φ2(z) = zm for some m ≥ 1. Moreover, for
r2 < z < 2, γ1(z) > γ2(z).

Proof. It suffices to consider the case when φ2(2) − φ1(2) = 1. The general case
then follows by induction on φ2(2)−φ1(2). Let k be the largest integer such that the
coefficients of zk in φ1(z) and φ2(z) differ. Note that γ1(2) = γ2(2) = 1 > 0. If k = 0,
then by the previous lemma, since r1 < 2, we have γ2(r1) < γ1(r1) = 0, which shows
that γ2 has a real root in (r1, 2). Therefore, r2 > r1.

If k ≥ 1, then define φ̂1(z) = zk−1 + · · · + 1, φ̂2(z) = zk. The corresponding
γ-polynomials are γ̂1(z) = zk−zk−1−· · ·−1, and γ̂2(z) = (z−1)(zk−zk−1−· · ·−1).

It is clear that if φi = φ̂i, i = 1, 2, then r1 = r2 = ρk.
Now, suppose that φ1 �= φ̂1, in which case since φ2(2) = φ1(2) + 1, we must have

φ2 �= φ̂2 as well. Note that for i = 1, 2, we have γi(z) = γ̂i(z) + (z − 2)(φ(z)− φ̂i(z)).

Since all the coefficients of zj , j ≤ k, in φi are the same as those in φ̂i, we see that
φi(z) − φ̂i(z) is itself a nonzero polynomial with coefficients 0 and 1. Therefore, at

z = ρk, γ̂i vanishes and φi − φ̂i is positive, which implies that γi(ρk) < 0. Hence, we
must have r1, r2 > ρk. Now, again by the previous lemma, we have g2(r1) < g1(r1) =
0, which shows that r2 > r1.

The fact that γ1(z) > γ2(z) for r2 < z < 2 also follows from the previous lemma,
since we have shown that r2 ≥ ρk.

Lemma 5. Let f(z) = (z − 2)p(z), where p(z) is a nonzero polynomial of degree
m with nonnegative coefficients. Then, f ′(z) > 0 for z > 2(1− 1

m+1 ).

Proof. Let p(z) =
∑m
i=0 aiz

i, with ai ≥ 0 for i = 0, 1, · · · ,m − 1 and am > 0.
Then, f(z) =

∑m
i=0 ai(z−2)zi. Therefore, f ′(z) =

∑m
i=0 ai((i+1)zi−2izi−1). Noting

that (i+ 1)zi − 2izi−1 > 0 for z > 2(1− 1
i+1 ), the lemma follows.

Lemma 6. Let φ be a polynomial of degree m ≥ 2 with coefficients 0 and 1, and
let γ be the corresponding γ-polynomial. Then, γ has exactly one real root r in the
interval (1, 2). Moreover, r is a simple root, γ(z) < 0 for 1 < z < r, and g(z) > 0 for
r < z ≤ 2.

Remark. It is easily verified that the conclusions of the lemma are also valid for
φ(z) = z + 1. However, if φ(z) = z, 1, or 0, then γ has no roots in (1,2).

Proof. Define φ̂(z) = zm and γ̂(z) = (z−2)zm+1 = (z−1)(zm−zm−1−· · ·−1).
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If φ = φ̂, then γ = γ̂ has exactly one root, ρm, in (1,2), and it is simple. Since
ρm is a simple root, γ̂(z) must undergo exactly one sign change in (1,2). Therefore,
noting that γ̂(2) = 1 > 0, we must have γ̂(z) > 0 for ρm < z ≤ 2, and γ̂(z) < 0 for
1 < z < ρm.

If φ �= φ̂, then φ(z)− φ̂(z) > 0 for z > 0. Therefore, γ(z)− γ̂(z) = (z − 2)(φ(z)−
φ̂(z)) < 0 for 0 < z < 2. Therefore, γ(z) < γ̂(z) < 0 for 1 < z < ρm, which shows
that γ has no roots in (1, ρm).

Now by the previous lemma, γ′(z) > 0 for z > 2(1 − 1
m+1 ). Hence, if γ has a

root in this range, it must be unique (since γ is strictly increasing), and it must have
multiplicity 1 (since γ′(z) �= 0). Now by Lemma 4, γ has a root r larger than the
largest root, ρm, of γ̂(z). But as mentioned earlier, ρm > 2(1− 2−m) > 2(1− 1

m+1 ).
The negative and positive regions for γ(z) are determined using arguments identical
to those used above for γ̂(z).

We next prove a theorem that locates the largest positive zero of DAB , which is
the denominator of QAB in (2).

Theorem 7. Let A and B be distinct binary sequences of length m ≥ 5. Then,
DAB(z) has its largest positive real root ρ in (1,2). Moreover, max{rAB , rBA} ≤
ρ ≤ min{rAA, rBB}, where r∗∗ denotes the largest real root of γ∗∗, and the following
statements are all equivalent:

(a) ρ = min{rAA, rBB};
(b) ρ = max{rAB , rBA};
(c) φAA(z) or φBB(z) = zm−1, and φAB(z) or φBA(z) = zm−2 + zm−3 + · · ·+ 1;
(d) {A,B} or {A,B} = {10m−1, 0m}, {10m−1, 0m−11}, or {0m, 0m−11}.

(A,B are the sequences obtained by complementing each bit of A,B.)
Remark. If φAB (or φBA) ≡ 0, then γAB (or γBA) ≡ 1, in which case we arbitrarily

define rAB (or rBA) to be 0.
Proof. Observe first that since the correlations A◦A and B◦B begin with 1, while

A◦B and B◦A begin with 0, we have φAA(2)−φAB(2) ≥ 1 and φBB(2)−φBA(2) ≥ 1.
Hence, for any z ≥ 2, we have DAB(z) ≥ 2 > 0, so that all the real roots of DAB

must be less than 2. Recall that ∆AB(z) = (z − 2)D(z) = γAAγBB − γABγBA.
Our first goal is to show ρ ≥ max{rAB , rBA}. Since deg(φAA),deg(φBB) ≥ 4,

Lemma 6 shows that rAA and rBB are the unique roots of gAA and gBB in (1, 2).
We first consider the case when max{rAB , rBA} ∈ (1, 2). By Lemma 6, this is the
case when max{deg(φAB),deg(φBA)} ≥ 2. It can also be verified that this is the
case when either φAB(z) or φBA(z) is z + 1. Without loss of generality, suppose
rAB ≥ rBA. Note that by Lemma 4, rAB ≤ rAA, rBB , and hence by Lemma 6, we
must have gAA(rAB) ≤ 0. A similar argument shows that gBB(rAB) ≤ 0. Therefore,
∆AB(rAB) ≥ 0, which implies that DAB(rAB) ≤ 0, and since DAB(2) ≥ 2 > 0, we
must have ρ ≥ rAB .

It remains to consider the case when the possible choices for φAB(z) and φBA(z)
are 0, 1, and z. In all these cases, we have 0 < gAB(1.5)gBA(1.5) ≤ 1. Now,

gAA(z) ≤ (z − 2)zm−1 + 1 = −0.5(1.5)
m−1

+ 1

for z = 1.5. Hence for m ≥ 5, gAA(1.5) < −1, and similarly, gBB(1.5) < −1, so that
gAA(1.5)gBB(1.5) > 1, Therefore, ∆AB(1.5) > 0, which shows that DAB(1.5) < 0,
and hence ρ > 1.5.

We now proceed to show that ρ ≤ min{rAA, rBB}. Without loss of generality,
assume rAA ≤ rBB . In the region 2 > z > rBB = max{rAA, rBB , rAB , rBA}, all the
γ’s are positive. Moreover, Lemma 4 shows that for any z in this region, γAA(z) <
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γAB(z) and γBB(z) < γBA(z). Therefore, ∆AB(z) < 0 for all z ∈ (rBB , 2), which
means that ρ /∈ (rBB , 2).

If rAA < rBB and rAA < z ≤ rBB , then we must have γAA(z), γAB(z), γBA(z) >
0, and γBB(z) ≤ 0. As a result, ∆AB(z) < 0 in this region, which means that
ρ /∈ (rAA, rBB ]. Hence, ρ ≤ rAA.

It remains to show only that the statements (a), (b), (c), and (d) are all equivalent
to one another. We first show that (a)⇒ (b). Let ρ = min{rAA, rBB}, which means
that either γAA(ρ) or γBB(ρ) is 0. Therefore, 0 = ∆AB(ρ) = −γAB(ρ)γBA(ρ). Thus,
we must have ρ = rAB or rBA. In either case, max{rAB , rBA} ≥ ρ. The reverse
inequality is trivial since max{rAB , rBA} ≤ min{rAA, rBB}.

(b)⇒ (a) is proved by a similar argument.

We next show that (a)⇔ (c). Note first that ρ = min{rAA, rBB} iff rAA or rBB is
a root of ∆AB . Since ∆AB(rAA) = −γAB(rAA)γBA(rAA), we see that rAA is a root of
∆AB iff rAB or rBA = rAA. But by Lemma 4, rAA = rAB or rBA iff φAA(z) = zm−1

and φAB(z) or φBA(z) = zm−2 + zm−3 + · · ·+1. A similar argument shows that rBB
is a root of ∆AB iff φBB(z) = zm−1 and φAB(z) or φBA(z) = zm−2 + zm−3 + · · ·+ 1.

Finally, we show that (c) ⇔ (d). Now, A ◦ B = 01m−1 (i.e., φAB(z) = zm−2 +
zm−3 + · · ·+ 1) can happen iff the longest proper suffix of A is either 0m−1 or 1m−1

and is the same as the longest proper prefix of B. Moreover, A ◦ A = 10m−1 (i.e.,
φAA(z) = zm−1) implies that the first and last bits of A are different. Therefore, it
easily follows that the correlations listed above can arise iff {A,B} or {A,B} is one
of the sequence pairs listed in the statement of the proposition.

Observe that in the above proof, the fact that the polynomials φAA, φBB , φAB ,
and φBA are correlation polynomials for certain sequences is only used in showing that
the statement (d) is equivalent to (c). The rest of the proof continues to work even
if we assume only that φAA, φBB , φAB , and φBA are polynomials with coefficients 0
and 1, with deg(φAA) = deg(φBB) = m − 1 ≥ 4 and deg(φAB),deg(φBA) < m − 1.
Therefore, the conclusions of the theorem, apart from statement (d), remain valid
for any set of four polynomials φAA, φBB , φAB , and φBA that satisfy the properties
listed above. We will, in fact, utilize this observation later.

The following corollary is the first important consequence of the previous theorem.

Corollary 8. For m ≥ 5, the largest pole (in terms of absolute value) of QAB
in (2) is precisely the largest positive real root of DAB.

Proof. We have already seen earlier that the largest-magnitude pole of QAB is real
and positive. Note that all the poles of QAB must be roots of DAB . Suppose that the
largest positive real root ρ of DAB is not a pole of QAB . Then, ρ must be a root of the
numerator polynomial of QAB , i.e., we must have φAA(ρ)φBB(ρ) = φAB(ρ)φBA(ρ).
But then, since DAB(ρ) = 0, we also have φAA(ρ) + φBB(ρ) = φAB(ρ) + φBA(ρ).

Now, if we have real numbers a, b, c, and d such that a+b = c+d and ab = cd, then
the polynomials (z− a)(z− b) and (z− c)(z− d) must be identical. This implies that
{a, b} = {c, d}. Thus, we have {φAA(ρ), φBB(ρ)} = {φAB(ρ), φBA(ρ)}, and hence,
{γAA(ρ), γBB(ρ)} = {γAB(ρ), γBA(ρ)}.

By the previous theorem, ρ ∈ (1, 2) and max{rAB , rBA} ≤ ρ ≤ min{rAA, rBB}.
Therefore, by Lemma 6, we must have γAA(ρ), γBB(ρ) ≤ 0 and γAB(ρ), γBA(ρ) ≥ 0.
Hence, {γAA(ρ), γBB(ρ)} = {γAB(ρ), γBA(ρ)} iff all of them are 0, i.e., ρ = rAA =
rBB = rAB = rBA. But by Lemma 4, this is possible iff the correlations A ◦ A and
B ◦B are 10m−1 and A ◦B and B ◦ A are 01m−1. However, it is easily seen that no
pair of sequences A and B can have this set of correlations, leading to a contradiction
that proves the result.
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From now on, we shall denote by ρAB the largest-magnitude pole of QAB , which
(at least for m ≥ 5) is also the largest positive root of DAB . Since ρAB > 1 for m ≥ 5,
ρAB must be a simple pole of QAB(z), and hence is a simple root of DAB(z). Using
the fact that H(A,B) = log2 ρAB , we now identify a pair of sequences that minimizes
H(A,B) among all pairs of binary m-sequences {A,B}.

Proposition 9. For m ≥ 5, min{H(A,B) : A,B ∈ {0, 1}m, A �= B} is achieved
by A = 110m−2, B = 110m−410.

Proof. We shall show that if Â, B̂ is any pair of binary m-sequences and A =
110m−2, B = 110m−410, then ρÂB̂ ≥ ρAB . Observe first that φAA(z) = φBB(z) =
zm−1, and φAB = φBA ≡ 0. Thus, ∆AB = γAA

2 − 1. Since ρAB ≤ rAA and rAA is
the unique root of γAA in (1,2), we must have γAA(ρAB) ≤ 0.

Now, for any pair of m-sequences Â, B̂, since the correlations Â ◦ Â and B̂ ◦
B̂ must always begin with 1, we have φÂÂ(z), φB̂B̂(z) ≥ zm−1 = φAA(z) for all
z ≥ 1. Therefore, γÂÂ(z), γB̂B̂(z) ≤ γAA(z) for all z ∈ [1, 2]. In particular, we
have γÂÂ(ρAB), γB̂B̂(ρAB) ≤ γAA(ρAB) ≤ 0. Therefore, γÂÂ(ρAB)γB̂B̂(ρAB) ≥
(γAA(ρAB))

2
.

On the other hand, since φÂB̂ , φB̂Â ≥ 0, we see that γÂB̂(z), γB̂Â(z) ≤ 1 for all
z ∈ [1, 2] and, in particular, at z = ρAB . Therefore,

∆ÂB̂(ρAB) ≥ (γAA(ρAB))
2 − 1 = ∆AB(ρAB) = 0,

which shows that DÂB̂(ρAB) ≤ 0. Since DÂB̂(2) ≥ 2 > 0, we have ρÂB̂ ≥ ρAB .
The next lemma, which yields a lower bound to the minimum value of H(A,B),

is crucial to the proof of the important theorem that follows it.
Lemma 10. For A = 110m−2, B = 110m−410, H(A,B) > log2 ρm−3, where ρm−3

is the largest zero of zm−3 − zm−4 − · · · − 1.
Proof. With A,B as above, we have

∆AB(z) = [(z − 2)zm−1 + 1]
2 − 1 = (z − 2)zm−1[(z − 2)zm−1 + 2]

using a2 − b2 = (a + b)(a − b). Therefore, the largest positive zero ρAB of DAB

is the largest positive zero of the polynomial p(z) = (z − 2)zm−1 + 2. Observe that
p(z) = (z−1)(zm−1−zm−2−· · ·−1)+1 = (z−1)[z2(zm−3−zm−4−· · ·−1)−z−1]+1.
Therefore,

p(ρm−3) = −(ρm−3 − 1)(ρm−3 + 1) + 1

= 2− (ρm−3)
2 ≤ 2− (ρ2)

2

= 2−
(

1 +
√

5

2

)2

< 0,

the first inequality arising from the fact that ρm−3 ≥ ρ2 for m ≥ 5. Since p(2) = 2 > 0,
we must have ρAB > ρm−3.

At this point, we introduce a means of comparing two correlation sequences, which
will make it easier to comprehend our next result which is a theorem of fundamental
importance. Given two correlation sequences A ◦ B = (c0c1 . . . cm−1) and Â ◦ B̂ =

(ĉ0ĉ1 . . . ĉm−1) of the same length, we say that Â◦B̂ is stronger than A◦B and denote

it by Â ◦ B̂ > A ◦ B if ĉi > ci for the smallest i such that ĉi �= ci. (This is simply

a lexicographic ordering of the correlation sequences.) Equivalently, Â ◦ B̂ > A ◦ B
iff φÂB̂(2) > φAB(2). We also define Â ◦ B̂ ≥ A ◦ B in the obvious way. We now
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show that if all the correlations between sequences Â and B̂ are stronger than the
corresponding correlations between sequences A and B, then H(Â, B̂) ≥ H(A,B).

Theorem 11. Let A,B, Â, B̂ be binary sequences of length m ≥ 5 such that
Â ◦ Â ≥ A ◦ A, B̂ ◦ B̂ ≥ B ◦ B, Â ◦ B̂ ≥ A ◦ B, and B̂ ◦ Â ≥ B ◦ A. Then
H(Â, B̂) ≥ H(A,B), with equality iff all the above correlation inequalities hold with
equality.

Instead of directly proving this theorem, we shall find it easier to prove a more
general result, which yields the above theorem as a special case. The more general
result is easier to state if we introduce the following definition.

Definition. A quadruple of polynomials (φ1, φ2, φ3, φ4), each φi having coeffi-
cients 0 and 1, is called an admissible m-quadruple if deg(φ1) = deg(φ2) = m and
deg(φ3),deg(φ4) < m.

Observe that if A,B are binary m-sequences, then (φAA, φBB , φAB , φBA) is an
admissible (m − 1)-quadruple. As observed previously, Theorem 7 is essentially a
result on the largest positive root ρ of the polynomial

D(z) = (z − 2)(φ1φ2 − φ3φ4) + φ1 + φ2 − φ3 − φ4,(7)

where (φ1, φ2, φ3, φ4) is an admissible m-quadruple. The proof of that theorem shows
that for m ≥ 4, ρ lies in (1,2) and max{r3, r4} ≤ ρ ≤ min{r1, r2}, where ri is
the largest positive root of γi, the γ-polynomial associated with φi. Moreover, the
equivalence of the corresponding statements (a), (b), and (c) is also established. Fur-
thermore, it clearly follows from the proofs of Proposition 9 and Lemma 10 that for
m ≥ 4, ρ > ρm−2 (ρm−2 being the largest zero of the polynomial zm−2 − · · · − 1).
These facts will be needed to prove our next result, which covers Theorem 11 as a
special case.

Theorem 12. Let (φ1, φ2, φ3, φ4) and (φ̂1, φ̂2, φ̂3, φ̂4) be admissiblem-quadruples,

m ≥ 4, such that φi(2) ≤ φ̂i(2) for i = 1, 2, 3, 4. Let D and D̂ be the corresponding
polynomials defined via (7), and let ρ and ρ̂ be their respective largest positive roots.

Then ρ ≤ ρ̂, with equality iff either φi(2) = φ̂i(2) for i = 1, 2, 3, 4, or φi(z) = φ̂i(z) =

zm for i = 1 or 2 and φi(z) = φ̂i(z) = zm−1 + zm−2 + · · ·+ 1 for i = 3 or 4.
Proof. It should be clear that the following four propositions, when patched

together, yield the theorem:
1. If φ1(2) < φ̂1(2) and φi(2) = φ̂i(2) for i = 2, 3, 4, then ρ ≤ ρ̂ with equality iff

φ2(z) = φ̂2(z) = zm and φi(z) = φ̂i(z) = zm−1 + · · ·+ 1 for i = 3 or 4.

2. If φ2(2) < φ̂2(2) and φi(2) = φ̂i(2) for i = 1, 3, 4, then ρ ≤ ρ̂ with equality iff

φ1(z) = φ̂1(z) = zm and φi(z) = φ̂i(z) = zm−1 + · · ·+ 1 for i = 3 or 4.

3. If φ3(2) < φ̂3(2) and φi(2) = φ̂i(2) for i = 1, 2, 4, then ρ ≤ ρ̂ with equality iff

φi(z) = φ̂i(z) = zm for i = 1 or 2 and φ4(z) = φ̂4(z) = zm−1 + · · ·+ 1.

4. If φ4(2) < φ̂4(2) and φi(2) = φ̂i(2) for i = 1, 2, 3, then ρ ≤ ρ̂ with equality iff

φi(z) = φ̂i(z) = zm for i = 1 or 2 and φ3(z) = φ̂3(z) = zm−1 + · · ·+ 1.
We shall prove the first proposition alone, as the other propositions can be proved

analogously. For the proof of the first proposition, we assume that φ̂1(2) = φ1(2) + 1

and φi(2) = φ̂i(2) for i = 2, 3, 4. The general case follows by induction on φ̂1(2)−φ1(2).

As usual, note that D(2), D̂(2) ≥ 2 > 0. Let γi, γ̂i be the γ-polynomials corresponding

to φi, φ̂i, i = 1, 2, 3, 4, and define the polynomials ∆ and ∆̂ analogous to (6).
We first prove the proposition based on the claim that γ̂1(ρ) < γ1(ρ), deferring

the proof of this claim until later. Note that since ρ cannot exceed the largest positive
root, r2, of γ2, Lemma 6 shows that γ2(ρ) ≤ 0 with equality iff ρ = r2. Therefore,
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γ̂1(ρ)γ2(ρ) ≥ γ1(ρ)γ2(ρ), and hence,

∆̂(ρ) = γ̂1(ρ)γ̂2(ρ)− γ̂3(ρ)γ̂4(ρ) = γ̂1(ρ)γ2(ρ)− γ3(ρ)γ4(ρ)

≥ γ1(ρ)γ2(ρ)− γ3(ρ)γ4(ρ) = ∆(ρ) = (ρ− 2)D(ρ) = 0

with equality holding iff ρ = r2. Hence, D̂(ρ) ≤ 0 which implies that ρ̂ ≥ ρ, with
equality iff ρ = r2. Now, as shown in the proof of Theorem 7, ρ = r2 iff φ2(z) = zm

and φ3(z) or φ4(z) = zm−1 + zm−2 + · · ·+ 1.
It remains only to prove the claim that γ̂1(ρ) < γ1(ρ). As observed prior to the

statement of the theorem, ρm−2 < ρ < 2 for m ≥ 4. Let k be the largest integer such
that the coefficients of zk in φ1 and φ̂1 are different. If k = 0, then Lemma 3 shows
that γ̂1(ρ) < γ1(ρ) as ρ < 2. If 1 ≤ k ≤ m − 2, then Lemma 3 again shows that
γ̂1(ρ) < γ1(ρ), since ρ > ρm−2 ≥ ρk.

The case k = m − 1 arises only when φ1(z) = zm + zm−2 + zm−3 + · · · + 1 and

φ̂1(z) = zm + zm−1. Therefore, it will suffice to show that for any admissible m-
quadruple (φ1, φ2, φ3, φ4) with φ1(z) = zm+zm−2 +zm−3 + · · ·+1, the corresponding
ρ exceeds ρm−1. Now, an argument similar to the proof of Proposition 9 can be used
to show that the ρ corresponding to such an admissible m-quadruple is at least as large
as the ρ corresponding to the quadruple (φ1(z), z

m, 0, 0), with φ1 as above. Therefore,
it is sufficient to show that when φ1 is as above, φ2(z) = zm, and φ3 = φ4 ≡ 0, then
the largest positive zero of D(z) exceeds ρm−1. In this case, we have

γ2(z) = (z − 2)zm + 1 = (z − 1) [z(zm−1 − zm−2 − · · · − 1)− 1],

which shows that γ2(ρm−1) = (ρm−1 − 1)(−1). We also have

γ1(z) = (z − 2)zm + (z − 2)(zm−2 + · · ·+ 1) + 1

= γ2(z)− 1 + (zm−1 − zm−2 − · · · − 1),

which means that γ1(ρm−1) = −ρm−1. Therefore,

∆(ρm−1) = ρm−1(ρm−1 − 1)− 1 = (ρm−1)
2 − ρm−1 − 1,

which is strictly positive for m ≥ 4, as z2 − z − 1 > 0 for z > ρ2. This means that
D(ρm−1) < 0, and so ρ > ρm−1, thus concluding the proof of the claim and hence the
theorem.

As mentioned previously, Theorem 11 is a special case of Theorem 12. Therefore,
the proof of Theorem 11 will be complete if we show that under its hypotheses, we
can have a situation where Â ◦ Â or B̂ ◦ B̂ = 10m−1 and A ◦B or B ◦A = 01m−1 only
if all the correlation inequalities are satisfied with equality.

Consider the case when Â ◦ Â = 10m−1 and A ◦ B = 01m−1. (We can dispose

of the other cases similarly.) For Â ◦ Â ≥ A ◦ A and Â ◦ B̂ ≥ A ◦ B to be true,

we must have A ◦ A = 10m−1 and Â ◦ B̂ = 01m−1 as well. But now, we must have
(up to complementation of A,B or Â, B̂) A = 10m−1, B = 0m−1b, Â = 10m−1, and

B̂ = 0m−1b̂ for some b, b̂ ∈ {0, 1}. It is easily verified that if b �= b̂, then either

B ◦ B > B̂ ◦ B̂ or B ◦ A > B̂ ◦ Â, both of which contradict the hypotheses of the
theorem. This completes the proof of Theorem 11.

Having Theorem 11 in hand, we are in a position to begin our search for the binary
m-sequences A and B that maximize H(A,B). At this point, it should be noted that
if there existed A and B such that A ◦A = B ◦B = 1m and A ◦B = B ◦A = 01m−1,
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then Theorem 11 would imply that A and B are the sequences for which H(A,B) is
a maximum. However, it is a simple exercise to show that no pair of sequences can
have these correlations.

In order to prove our next important result, which reduces the search space signif-
icantly, we need a couple of preliminary lemmas. Recall that 〈01〉m and 〈10〉m denote
the two length-m sequences of alternating 0’s and 1’s.

Lemma 13. The only length-m autocorrelation sequence A ◦ A stronger than
〈10〉m is 1m.

Proof. If (b0b1 . . . bm−1) is an autocorrelation sequence (so that b0 = 1), then
it is easily seen that whenever bj = 1 for some j ∈ [1,m − 1], then bk = 1 for any
k ∈ [1,m− 1] that is a multiple of j. Moreover, the greatest common divisor (GCD)
rule for autocorrelation sequences [6, Theorem 3.1] states that if bj = bk = 1 for some
j, k ∈ [1,m− 1] such that j + k ≤ m+ l, where l = gcd(j, k), then bl = 1 as well.

Note that any autocorrelation sequence (b0b1 . . . bm−1) stronger than 〈10〉m must
have either b1 = 1 or b2 = 1. In the first case, we must have bk = 1 for all k ≤ m− 1.
Thus, the only autocorrelation sequence with b1 = 1 is 1m. On the other hand, if
b2 = 1, then bi = 1 for all even i. In addition, if bk = 1 for some odd k, then by the
GCD rule applied to the pair of indices (2, k), we must have b1 = 1, and hence bk = 1
for all k ≤ m − 1. Thus, any autocorrelation sequence with b2 = 1 must either be
〈10〉m or 1m.

Lemma 14. The only correlation sequence A ◦ B, between distinct binary m-
sequences A and B, that is stronger than 〈01〉m is 01m−1.

Proof. Let A ◦ B = (c0c1 . . . cm−1), with c0 = 0. If A ◦ B > 〈01〉m, then c1 must
be 1. Therefore, it follows that (c1 · · · cm−1) must be the autocorrelation sequence for
B′, where B′ is the sequence obtained from B by deleting its last bit. As a result, for
A ◦ B > 〈01〉m to be true, we must have B′ ◦ B′ > 〈10〉m−1, which, by the previous
lemma, is possible only if B′ ◦B′ = 1m−1.

We now have the requisite tools to prove a result that considerably simplifies the
problem of finding the pair of m-sequences (A,B) that maximizes H(A,B). Recall
that H2,m = max{H(A,B) : A,B ∈ {0, 1}m, A �= B}.

Proposition 15. For m ≥ 5, if A,B /∈ {0m, 1m}, then H(A,B) ≤ log2 ρm−1

with equality iff {A,B} = {〈01〉m, 〈10〉m}, {01m−1, 1m−10}, or {10m−1, 0m−11}. Con-
sequently, H2,m = max{H(1m, B) : B ∈ {0, 1}m, B �= 1m}.

Proof. Fix Â = 〈01〉m, B̂ = 〈10〉m, so that Â ◦ Â = B̂ ◦ B̂ = 〈10〉m and Â ◦ B̂ =

B̂ ◦ Â = 〈01〉m. It is easily verified using (2) that

QÂB̂(z) =
zm−1 + zm−2 + · · ·+ 1

zm−1 − zm−2 − · · · − 1
,

and hence H(Â, B̂) = log2 ρm−1. Therefore, we have H2,m ≥ log2 ρm−1.
Let A,B /∈ {0m, 1m} be a pair of distinct binary m-sequences. Then, we either

have Â ◦ Â ≥ A ◦ A, B̂ ◦ B̂ ≥ B ◦ B, Â ◦ B̂ ≥ A ◦ B, and B̂ ◦ Â ≥ B ◦ A, or
at least one of these correlation inequalities is not satisfied. In the former case,
Theorem 11 shows that H(Â, B̂) ≥ H(A,B) with equality iff A ◦A = B ◦B = 〈10〉m
and A ◦B = B ◦A = 〈01〉m, which can happen iff {A,B} = {〈01〉m, 〈10〉m}.

We next deal with the case when A ◦ B > Â ◦ B̂ which, by Lemma 14, means
that A ◦ B = 01m−1. Therefore, up to complementation of A and B, we must
have {A,B} = {01m−1, 1m−10}, {01m−1, 1m}, or {1m, 1m−10}. Our assumption that
A,B /∈ {0m, 1m} eliminates the last two sequence pairs along with their comple-
ments. When {A,B} = {01m−1, 1m−10}, it can be verified that DAB(z) = (z −
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1)zm−1(zm−1− zm−2−· · ·−1), so that H(A,B) = log2 ρm−1 = H(Â, B̂). This shows

that when A ◦ B > Â ◦ B̂, we must have H(A,B) = H(Â, B̂) = log2 ρm−1. The case

when B ◦A > B̂ ◦ Â is similar and leads to the same conclusion.

We are left with the case when we have A ◦ A > Â ◦ Â or B ◦ B > B̂ ◦ B̂, so
that by Lemma 13, either A ◦A or B ◦B is 1m, i.e., A or B = 1m or 0m. But this is
not possible, as we assumed that A,B /∈ {0m, 1m}. Therefore, one of the previously
considered cases must hold, and hence H(A,B) ≤ log2 ρm−1 with equality iff {A,B}
is one of the pairs listed in the statement of the proposition.

Finally, it is easily verified that Q0m1m(z) = QÂB̂(z), and hence H(0m, 1m) =

H(Â, B̂) = log2 ρm−1. Therefore, if the inequality H2,m ≥ log2 ρm−1 is actually an
equality, then one of the maximizing pairs {A,B} contains 1m. On the other hand,
if this inequality is strict, then any of the sequence pairs that achieve the maximum
must include either 1m or 0m. But since H(A,B) = H(A,B), where A and B are
the sequences obtained by complementing each bit of A and B, at least one of the
maximizing pairs includes 1m, which concludes the proof of the proposition.

We have thus reduced the problem of maximizing H(A,B) to the problem of
finding the sequence B �= 1m that maximizes H(1m, B). We tackle this problem by
considering the following two cases separately: (i) B begins or ends with a 0, and (ii)
B begins and ends with a 1. In fact, as explained below, it is possible to reduce the
search space even further in each of these cases.

Given a sequence A = (a1a2 . . . an−1an), let AR denote the sequence obtained by
reversing A, i.e., AR = (anan−1 . . . a2a1). It is clear that if Z is a sequence counted
by qn(A,B) for some A,B, then ZR is a sequence counted by qn(A

R, BR). Therefore,
we must have H(A,B) = H(AR, BR). This conclusion can also be reached from the
observation that A ◦ B = BR ◦ AR. In particular, H(1m, B) = H(1m, BR). Thus, if
B has a longer run of ones at the end than at the beginning, then the situation is
reversed for BR, but the resulting Shannon capacity is the same in both cases. As a
result, for case (i), it suffices to consider only those sequences B that end with a 0,
and for case (ii), it is enough to consider sequences that begin with a run of ones that
is at least as long as the final run of ones. We deal with case (i) first.

Lemma 16. If B is a binary sequence of length m ≥ 5 that begins or ends with a
0, then H(1m, B) ≤ log2 ρm−1 with equality iff B = 1m−10, 01m−1, or 0m.

Proof. It suffices to show that if B ends with a 0, then H(1m, B) ≤ log2 ρm−1

with equality iff B = 1m10, or 0m. Suppose that B = 1m1b 0, where b is a binary
sequence of length m −m1 − 1 that begins with a 0, and 0 ≤ m1 ≤ m − 1. Setting
A = 1m, we see that A ◦ A = 1m, A ◦ B = 0m−m11m1 , and B ◦ A = 0m. Moreover,
B ◦B must end in a run of m1 zeros, because that is when, in the procedure used to
determine B ◦ B, one of the initial m1 1’s in B overlaps with the final 0. Thus, we
have φAA(z) = zm−1 + zm−2 + · · ·+ 1, φAB(z) = zm1−1 + zm1−2 + · · ·+ 1, φBA ≡ 0,
and φBB(z) = zm−1 + zk1 + zk2 + · · ·+ zkr for some k1, k2, . . . , kr ≥ m1.

Using the fact that γBA ≡ 1, we see that

∆AB(z) = γAAγBB − γAB = γAA [(z − 2)φBB + 1]− γAB

= (z − 2)γAA φBB + γAA − γAB

= (z − 2) [γAA φBB + (φAA − φAB)].

Therefore, DAB = γAA φBB+(φAA−φAB). Now, φAA(z)−φAB(z) = zm−1 +zm−2 +
· · ·+ zm1 = φBB(z) + φ(z) for some polynomial φ with coefficients 0 and 1, since the
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coefficient of zk, 0 ≤ k ≤ m1 − 1, in φBB(z) is zero. Hence, we can write

DAB = (γAA + 1)φBB + φ.

Now, γAA(z) = zm − zm−1 − · · · − 1 = z(zm−1 − zm−2 − · · · − 1)− 1. Therefore,
γAA(z) ≥ −1 for all z ≥ ρm−1, with equality iff z = ρm−1. Hence for any z ≥ ρm−1,
we have

DAB(z) ≥ φ(z) with equality iff z = ρm−1

≥ 0 with equality iff φ ≡ 0.

This shows that if z > ρm−1, then DAB(z) �= 0, since the first of the above inequalities
is strict. Therefore, ρAB ≤ ρm−1, which shows that H(A,B) = log2 ρAB ≤ log2 ρm−1.

The above inequalities also show that DAB(ρm−1) = 0 (i.e., ρAB = ρm−1) iff
φ ≡ 0. It is easily verified that with B = 1m−10 or 0m, we obtain φ ≡ 0. Conversely,
if φ ≡ 0, then we must have φBB(z) = zm−1 + zm−2 + · · · + zm1 or, equivalently,
B ◦B = 1m−m1 0m1 . Now, we can either have m1 = m− 1 or 0 ≤ m1 < m− 1. In the
former case, B must be 1m−10. In the latter case, since B ◦ B begins with two 1’s,
as shown in the proof of Lemma 13, we must have B ◦B = 1m, which means that B
must be 0m. Therefore, if φ ≡ 0, then B can only be 1m−10 or 0m. This shows that if
B ends in a zero, then H(1m, B) = log2 ρm−1 iff B = 1m−10 or 0m, which concludes
the proof of the lemma.

The only case remaining is when B begins and ends with a 1. We now show that
no such B distinct from 1m can maximize H(1m, B).

Lemma 17. If B �= 1m is a binary sequence of length m ≥ 5 that begins and ends
with a 1, then H(1m, B) < log2 ρm−1.

Proof. As observed prior to the statement of the previous lemma, it is sufficient
to consider the case when B is of the form 1m1b 1m2 with m1 ≥ m2 ≥ 1, where b is
a binary sequence of length m −m1 −m2 > 0 that begins and ends with a 0. With
A = 1m, we have A ◦ A = 1m, A ◦ B = 0m−m11m1 and B ◦ A = 0m−m21m2 . Thus,
φAA(z) = zm−1 + · · ·+ 1, φAB(z) = zm1−1 + · · ·+ 1, and φBA(z) = zm2−1 + · · ·+ 1.
Now, note that since B �= 1m, B ◦ B must begin with 10. Moreover, B ◦ B must
end with 0m1−m21m2 , as that is when, in the procedure for determining B ◦B, some
part of the prefix 1m10 of B overlaps with some part of the suffix 01m2 . Thus,
φBB(z) = φ(z)+φBA(z), where φ(z) =

∑m−1
k=0 ckz

k is some polynomial with cm−1 = 1,
cm−2 = 0, ck = 0 for 0 ≤ k ≤ m1 − 1, and the remaining ck’s are either 0 or 1.

With the correlation polynomials being as above, we see that γAA(z) = zm −
zm−1− · · ·− 1, γAB(z) = zm1 − zm1−1− · · ·− 1, γBA(z) = zm2 − zm2−1− · · ·− 1, and
γBB(z) = (z − 2)φ+ γBA(z). Also, note that

∆AB(z) = γAA[(z − 2)φ+ γBA]− γABγBA

= (z − 2)γAA φ+ (γAA − γAB)γBA

= (z − 2)[γAA φ+ (φAA − φAB)γBA],

which shows that DAB = γAA φ+ (φAA − φAB)γBA.
Our goal is to show that DAB(z) �= 0 for all z ≥ ρm−1. We claim that DAB is,

in fact, an increasing function of z in this region, and so it will suffice to show that
DAB(ρm−1) > 0. To justify this claim, we first note that γAA φ = (z − 2)φAA φ +
φ. Since φ is a polynomial with coefficients 0 and 1, and φAA φ is a polynomial of
degree 2m − 2 with nonnegative coefficients, it follows from Lemma 5 that γAA φ is
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an increasing function of z for z > 2(1 − 1
2m−1 ). Now, ρm−1 > 2(1 − 2−(m−1)) >

2(1− 1
2m−1 ) for m ≥ 5. Therefore, γAA φ is an increasing function of z for z ≥ ρm−1.

A similar argument shows that (φAA − φAB)γBA is also increasing in this region,
which proves that DAB is an increasing function in the region z ≥ ρm−1.

The remainder of the proof just involves finding a positive lower bound for
DAB(ρm−1). From now on, for notational simplicity, we shall drop the subscript from
ρm−1. Note first that (φAA−φAB)(ρ) = ρm−1+ρm−2+· · ·+ρm1 = (ρm−ρm1)/(ρ−1).
Next, we have

γBA(ρ) = ρm2 − ρm2−1 − · · · − 1

= ρm2−m+1(ρm−1 − ρm−2 − · · · − 1) + ρ−1 + ρ−2 + · · ·+ ρ−(m−m2−1)

=
ρ−1 − ρ−(m−m2)

1− ρ−1
=

1− ρ−(m−m2−1)

ρ− 1
.

Hence, we have

(φAA − φAB) γBA(ρ) =
1

(ρ− 1)
2 (ρm − ρm1 − ρm2+1 + ρm1+m2−(m−1))

=
1

(ρ− 1)
2 [ρm − ρm1 − ρm1+m2−(m−1)(ρm−m1 − 1)]

≥ 1

(ρ− 1)
2 [ρm − ρm1 − (ρm−m1 − 1)],

the last inequality being a consequence of the fact that m1 + m2 ≤ m − 1, which
implies that ρm1+m2−(m−1) ≤ 1. Noting that γAA(ρ) = ρ(ρm−1 − · · · − 1) − 1 = −1,
we obtain

DAB(ρ) ≥ −φ(ρ) +
1

(ρ− 1)
2 [ρm − ρm1 − (ρm−m1 − 1)].(8)

We shall first consider the case when 3 ≤ m1 ≤ m− 3. In this case, we see that

1

(ρ− 1)
2 [ρm − ρm1 − (ρm−m1 − 1)] ≥ 1

(ρ− 1)
2 [ρm − ρm−3 − (ρm−3 − 1)]

=
1

ρ− 1
[ρm−1 + ρm−2 + ρm−3 − (ρm−4 + · · ·+ 1)]

>
1

ρ− 1
(ρm−1 + ρm−2),(9)

the last inequality arising from the fact that zm−3− zm−4−· · ·− 1 > 0 for z > ρm−3.
Moreover,

φ(ρ) = ρm−1 +

m−3∑
k=0

ckρ
k ≤ ρm−1 +

m−3∑
k=0

ρk < ρm−1 + ρm−2(10)

since zm−2 − zm−3 − · · · − 1 > 0 for z > ρm−2. Putting (9) and (10) into (8), we get

DAB(ρ) > −(ρm−1 + ρm−2) +
1

ρ− 1
(ρm−1 + ρm−2)

=
2− ρ

ρ− 1
(ρm−1 + ρm−2) > 0.
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This shows that when 3 ≤ m1 ≤ m− 3, DAB(z) > 0 for z = ρ and hence for all z ≥ ρ
as well, which implies that ρAB < ρ (= ρm−1).

It remains only to deal with the cases when m1 = 1, 2 and m− 2. Suppose that
m1 = m− 2. We then have

1

(ρ− 1)
2 [ρm − ρm1 − (ρm−m1 − 1)] =

1

(ρ− 1)
2 [ρm − ρm−2 − (ρ2 − 1)]

=
1

ρ− 1
[ρm−1 + ρm−2 − (ρ+ 1)]

≥ ρm−1 + ρm−2 − ρ− 1.(11)

Now, with m1 = m − 2, the only possibility for B is 1m−201, so that φBB(z) =
zm−1 + 1, and hence φ(z) = zm−1. Putting this and (11) into (8), we see that
DAB(ρ) ≥ ρm−2 − ρ− 1 > ρ2 − ρ− 1 > 0.

Next, suppose m1 = 2, which implies that B begins with 110, which in turn
means that B ◦B begins with 100. As a result, we have

φ(ρ) ≤ ρm−1 + ρm−4 + ρm−5 + · · ·+ 1 < ρm−1 + ρm−3,(12)

since zm−3 − zm−4 − · · · − 1 > 0 for z > ρm−3. Note that ρm − ρm1 − (ρm−m1 − 1)
is the same for m1 = 2 and m1 = m − 2. Therefore, putting (12) and (11) into (8),
we get DAB(ρ) > ρm−2 − ρm−3 − ρ − 1 > 0, since zm−2 − zm−3 − · · · − 1 > 0 for
z > ρm−2.

Finally, consider m1 = 1, in which case we also have m2 = 1. Therefore, φAB =
φBA ≡ 1, and hence γAB(z) = γBA(z) = z − 1. Therefore,

(φAA − φAB)γBA(z) = (zm−1 + zm−2 + · · ·+ z)(z − 1) = zm − z.

Also, as in (10), we have φ(ρ) < ρm−1 + ρm−2. Therefore, since DAB = γAA φ +
(φAA − φAB)γBA and γAA(ρ) = −1, we see that

DAB(ρ) > −(ρm−1 + ρm−2) + ρm − ρ

= ρ(ρm−1 − ρm−2 − ρm−3 − 1),

which is strictly positive form ≥ 5, because zm−1−zm−2−· · ·−1 = 0 at z = ρ = ρm−1.

We have thus shown that when B begins and ends with a 1, we have DAB(z) > 0
for all z ≥ ρm−1, and hence ρAB < ρm−1, which proves the lemma.

Putting together the last three results, we obtain Theorem 1.

When 2 ≤ m ≤ 4, it can be verified by computing H(A,B) for all possible A,B
of length m that Theorem 1 remains valid when m = 2 or 4. When m = 3, all but
the “only if” part of the theorem remains true. It turns out that for m = 3, the
maximum Shannon capacity of log2 ρ2 is also achieved by two other pairs, namely
{000, 010} and its complementary pair {111, 101}.

Interestingly, the answer to the problem of maximizing H(A,B) also provides us
with a means of determining the maximum Shannon capacity H(A,B,C) of a con-
strained system that forbids three distinct binary m-sequences A, B, and C. Formally,
let qABC(n) denote the number of binary n-sequences that do not contain A, B, or C
as a contiguous subsequence, and define H(A,B,C) = limn→∞(log2 qABC(n))/n. We
now show that maxA,B,C H(A,B,C) = maxA,B H(A,B) = log2 ρm−1.
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Theorem 18. For m ≥ 2,

max{H(A,B,C) : A,B,C ∈ {0, 1}m, A �= B,B �= C,C �= A} = log2 ρm−1.

Proof. It is clear that for any three distinct sequences A, B, and C, we have
qABC(n) ≤ qAB(n) for all n. Therefore, H(A,B,C) ≤ H(A,B), from which it follows
that maxA,B,C H(A,B,C) ≤ maxA,B H(A,B), where the maximum on the left is
taken over all triples of distinct binary m-sequences, and the maximum on the right
is taken over all pairs of distinct binary m-sequences.

Now, from Theorem 1 (and, for 2 ≤ m ≤ 4, the remarks following the proof of
Lemma 17), we know that one of the sequence pairs that achieves maxA,B H(A,B) =

log2 ρm−1 is {10m−1, 0m−11}. Let Â = 10m−1, B̂ = 0m−11, and Ĉ = 0m. For
any F ⊂ {0, 1}m, we define Bn(F) to be the set of all binary n-sequences that do
not contain any element of F as a contiguous subsequence. It is easy to verify that
Bn(Â, B̂) = Bn(0m−1) ∪ {0n}. Since the only sequence in Bn(Â, B̂) that contains 0m

is the all-zeros sequence, it is clear that Bn(Â, B̂, Ĉ) = Bn(0m−1).

Thus, we see that qÂB̂Ĉ(n) = qÂB̂(n)−1 which shows thatH(Â, B̂, Ĉ) = H(Â, B̂).

Since H(Â, B̂) = log2 ρm−1, we obtain the chain of inequalities

log2 ρm−1 = H(Â, B̂, Ĉ) ≤ max
A,B,C

H(A,B,C) ≤ max
A,B

H(A,B) = log2 ρm−1,

which proves the theorem.

4. Connection between H(A, B) and R̂(A, B, n). We now explore the re-

lationship between the Shannon capacity H(A,B) and the PPS code rate R̂(A,B, n)
defined in (4). We shall show that for nearly all choices of A,B ∈ {0, 1}m, H(A,B) =

limn→∞ R̂(A,B, n), and as a result, maxA,B H(A,B) = limn→∞R(2,m, n), where
R(2,m, n) is the maximum possible rate of a (2,m, n) PPS code.

We know from (3) that FAB(z) = γAB(z)
z DAB(z) and FBA(z) = γBA(z)

z DAB(z) are generating

functions for fAB(k) and fBA(k), respectively. Now as noted previously, form ≥ 5, the
largest positive root, ρAB , of DAB(z) is simple. Hence, if we establish that ρAB is also
the largest-magnitude pole of FAB(z) and FBA(z), then it would follow that fAB(k) =
cAB (ρAB)k (1+o(1)) and fBA(k) = cBA (ρAB)k (1+o(1)) for some constants cAB and

cBA. This would clearly imply that limn→∞ R̂(A,B, n) = log2 ρAB = H(A,B). We
shall show that ρAB is almost always the largest-magnitude pole of both FAB(z) and
FBA(z), and we shall characterize the exceptional cases.

The first step in this process is to show that ρAB , which we know is the largest
positive root of DAB(z), is in fact the largest-magnitude root of DAB(z). Recall that
we have previously shown using Perron–Frobenius theory that whenever ρAB > 1,
ρAB is the unique largest-magnitude pole of QAB(z) (which is defined by (2)), i.e., if
ρ is any other pole of QAB(z), then |ρ| < ρAB .

Lemma 19. For m ≥ 5, if ρ �= ρAB is a root of DAB(z), then |ρ| < ρAB.
Proof. We shall first show that ρAB > 1.7, which, apart from implying that ρAB

is the unique largest pole of QAB(z), will be important later in the proof. When
m ≥ 5, Proposition 9 shows that H(A,B) is minimized by choosing A = 110m−2 and
B = 110m−410, and the proof of Lemma 10 shows that for this choice of A and B,
H(A,B) = log2 ζ, where ζ is the largest real zero of the polynomial (z − 2)zm−1 + 2.
Therefore, for any A,B ∈ {0, 1}m, ρAB ≥ ζ. For m ≥ 6, Lemma 10 shows that
ζ > ρ3 ≈ 1.84. For m = 5, it can be verified that ζ ≈ 1.816.
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Now, suppose that ρ is a root of DAB(z) such that |ρ| ≥ ρAB and ρ �= ρAB . We
shall first show that ρmust be real (and hence negative) and then reach a contradiction
by showing that ρ cannot be less than −ρAB . Since ρ cannot be a pole of QAB(z),
it must be a root of the numerator polynomial of QAB(z), i.e., φAA(ρ)φBB(ρ) =
φAB(ρ)φBA(ρ). An argument similar to that in the proof of Corollary 8 now shows
that {φAA(ρ), φBB(ρ)} = {φAB(ρ), φBA(ρ)}. Thus, ρ must be a root of one of the
polynomials φAA − φAB and φAA − φBA, both of which are polynomials of degree
m− 1 whose coefficients take values in the set {0, 1,−1}.

A result of Bloch and Pólya [2] states that if p(z) is any polynomial whose coeffi-
cients take values in {0, 1,−1}, then for any q ∈ (1, 2), the number N of roots of p(z)
in the region |z| > q can be bounded as follows:

N ≤ 1

2

(
log

4q2

(3q + 1)(q − 1)

)/
log

(
1 +

q − 1

2

)
.

Evaluating this expression with q = 1.7, we see that p(z) has at most one root in the
region |z| > 1.7.

Thus, since ρAB > 1.7, the polynomials φAA − φAB and φAA − φBA can have at
most one root in the region |z| ≥ ρAB . Since ρ is a root of one of these polynomials,
it is the unique root in |z| > ρAB and hence must be real. Since ρAB is the largest
positive root of DAB , ρ must be negative. Recall from Proposition 9 and Lemma 10
that ρAB > ρm−3. Thus, we shall reach a contradiction if we can show that no
negative root of φAA − φAB or φAA − φBA can be less than −ρm−3. We now provide
the sketch of an argument that shows this.

Let (φAA−φAB)(z) = zm−1+
∑m−2
k=0 ckz

k, with the ck’s taking values in {0, 1,−1}.
(The argument for φAA − φBA is identical.) Suppose first that m − 1 is even and,
further, that cm−2 is 0 or −1. In this case, for any z < −ρm−3, we have

(φAA − φAB)(z) ≥ |z|m−1 −
m−3∑
k=0

|z|k

= |z|2
(
|z|m−3 −

m−4∑
k=0

|z|k
)
− |z| − 1 + |z|m−2

> |z|m−2 − |z| − 1,

with the first inequality holding for any z < 0 and the last inequality holding for
|z| > ρm−3. But, |z|m−2 − |z| − 1 > 0 for m ≥ 5 and |z| > ρ2, which shows that
φAA − φAB has no zeros less than −ρm−3.

Next, suppose that m−1 is even and cm−2 = 1. Then, the correlation A◦A must
begin with 11 and hence must be 1m. Therefore, φAA(z) =

∑m−1
k=0 zk, which means

that ck ∈ {0, 1} for k = 0, 1, . . . ,m− 3. We then have for any z < 0,

(φAA − φAB)(z) ≥ |z|m−1 −
∑

1≤k≤m−2
k odd

|z|k

= |z|2
(
|z|m−3 −

m−4∑
k=0

|z|k
)
− |z|+

∑
2≤k≤m−3
k even

|z|k

> −|z|+
∑

2≤k≤m−3
k even

|z|k,
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with the last inequality holding for |z| > ρm−3. Since |z|m−3
+ |z|m−5

+ · · ·+ |z|2−|z|
is clearly positive for m ≥ 5 and |z| > 1, we see that φAA − φAB has no zeros less
than −ρm−3 whenever m− 1 is even.

A similar argument as above shows that when m−1 is odd, then (φAA−φAB)(z) <
0 for all z < −ρm−3, which completes the proof of the lemma.

We have thus shown that for m ≥ 5, ρAB is the unique largest-magnitude root
of DAB . We are now in a position to determine exactly when ρAB is the largest-
magnitude pole of FAB(z) and FBA(z). Note that ρAB cannot be a pole of both
FAB(z) and FBA(z) iff ρAB is a root of γAB as well as γBA. But by Theorem 7, this
can happen iff {A,B} or {A,B} = {10m−1, 0m}, {10m−1, 0m−11}, or {0m, 0m−11}.
This leads us to the following proposition.

Proposition 20. For all m ≥ 5, the following are true:
(a) If {A,B} or {A,B} = {0m, 0m−11} or {0m, 10m−1}, then limn→∞ R̂(A,B, n)

= 0.
(b) If {A,B} or {A,B} = {10m−1, 0m−11}, then limn→∞ R̂(A,B, n) = 1

2 H(A,B).

(c) For all other pairs of distinct binary m-sequences A,B, limn→∞ R̂(A,B, n) =
H(A,B).

Proof. The discussion preceding the statement of the proposition shows that if
{A,B} or {A,B} is not one of the pairs listed in (a) and (b), then ρAB is the unique
largest pole, in terms of absolute value, of both FAB(z) and FBA(z). Therefore,

as noted prior to the statement of Lemma 19, it follows that limn→∞ R̂(A,B, n) =
log2 ρAB = H(A,B), which proves (c).

To prove (a), note that if A = 0m and B = 0m−11, then we can have no binary
sequence of length k ≥ m + 2 that begins with A and ends with B, but does not
contain A or B elsewhere. In other words, fAB(k) = 0 for all k ≥ m + 2, and so by

definition, R̂(A,B, n) = 0 for all n ≥ m. The other cases can be similarly dismissed.
Finally, if A = 10m−1 and B = 0m−11, then it is clear that the only sequence

that can be counted by fAB(k), k ≥ m + 2, is 10k−21. Hence, fAB(k) = 1 for all

k ≥ m+ 2. However, fBA(k) = cBA (ρAB)
k
(1 + o(1)) for some positive constant cBA

because, as can easily be verified, ρAB is the unique largest-magnitude pole of FBA(z)

in this case. As a result, we have limn→∞ R̂(A,B, n) = 1
2 log2 ρAB , which completes

the proof of the proposition.
Theorem 2 is an immediate consequence of the above proposition and Theo-

rem 1. Theorem 2 shows that when m ≥ 5 for all sufficiently large n, R(2,m, n) is

either R̂(0m, 1m, n) or R̂(〈01〉m, 〈10〉m, n). In fact, as we show next, |f〈01〉m〈10〉m(k)−
f0m1m(k)| ≤ 1 for all k, and hence due to the floor function used in defining R̂(A,B, n),

for nearly all (if not all) values of n, R̂(0m, 1m, n) = R̂(〈01〉m, 〈10〉m, n). Thus, for
nearly all (if not all) sufficiently large integers n,

R(2,m, n) = R̂(0m, 1m, n) = R̂(〈01〉m, 〈10〉m, n).
Note that F〈01〉m〈10〉m(z)−F0m1m(z) is a generating function for f〈01〉m〈10〉m(k)−

f0m1m(k). Using (3) to get explicit expressions for F〈01〉m〈10〉m(z) and F0m1m(z), we
find after some algebraic manipulations that

F〈01〉m〈10〉m(z)− F0m1m(z) =

{
1

z(zm−1) if m is even,

zm−1−1
z2m−1 if m is odd.

It is easily verified that the coefficients in the power series expansions (in the
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variable z−1) of both 1
z(zm−1) and zm−1−1

z2m−1 belong to the set {−1, 0, 1}. Thus, for each

k, f〈01〉m〈10〉m(k)− f0m1m(k) is either −1, 0, or 1.
For the sake of completeness, we would like to mention that when m = 4, it can

be shown that Theorem 2 remains true in its entirety. When m = 3, the theorem
remains valid if its statement is modified as follows: limn→∞ R̂(A,B, n) ≤ log2 ρ2 with
equality iff {A,B} = {000, 111}, {010, 101}, {000, 010}, or {111, 101}. However, it can
be shown that if {A,B} is one of the last two sequence pairs, then f0313(k)−fAB(k) =

c (ρ2)
k
(1 + o(1)), where c is approximately 0.0034. Thus, for all sufficiently large n,

we have R̂(A,B, n) ≤ R̂(0m, 1m, n). Finally, when m = 2, limn→∞ R̂(A,B, n) = 0 for
all sequence pairs A,B.
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Abstract. For positive integers j ≥ k, the λj,k-number of graph G is the smallest span among
all integer labelings of V (G) such that vertices at distance two receive labels which differ by at least
k and adjacent vertices receive labels which differ by at least j. We prove that the λj,k-number of
any r-regular graph is no less than the λj,k-number of the infinite r-regular tree T∞(r). Defining
an r-regular graph G to be (j, k, r)-optimal if and only if λj,k(G) = λj,k(T∞(r)), we establish
the equivalence between (j, k, r)-optimal graphs and r-regular bipartite graphs with a certain edge

coloring property for the case j
k

> r. The structure of r-regular optimal graphs for j
k

≤ r is

investigated, with special attention to j
k
= 1, 2. For the latter, we establish that a (2, 1, r)-optimal

graph, through a series of edge transformations, has a canonical form. Finally, we apply our results
on optimality to the derivation of the λj,k-numbers of prisms.
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1. Introduction. For positive integers j and k with j ≥ k, an L(j, k)-labeling
of graph G is an assignment L of nonnegative integers to the vertices of G such that

(1) |L(v)− L(u)| ≥ j if v and u are adjacent, and
(2) |L(v)− L(u)| ≥ k if v and u are distance two apart.

Elements of the image of L are called labels, and the span of L, denoted s(L), is
the difference between the largest and smallest labels. The minimum span taken
over all L(j, k)-labelings of G, denoted λj,k(G), is called the λj,k-number of G, and
if L is a labeling with minimum span, then L is called a λj,k-labeling of G. Unless
otherwise stated, we shall assume with no loss of generality that the minimum label
of L(j, k)-labelings of G is 0.

A variation of Hale’s channel assignment problem [12], the problem of labeling a
graph with a condition at distance two, was first investigated in the case j = 2 and
k = 1 by Griggs and Yeh [11]. Other authors have since explored the λ2,1-numbers of
graphs in various classes, as well as relationships between λ2,1(G) and other invariants
of G (see [2, 6, 9, 10, 13, 14, 16, 17, 18, 19]). Additionally, properties of λj,k-numbers
have been investigated in [1, 4, 5] and [7].

In this paper, we develop the notion of optimality among r-regular graphs by
considering the λj,k-number of the infinite r-regular tree T∞(r), r ≥ 2 [4]. We show
in section 2 that λj,k(G) ≥ λj,k(T∞(r)) for any r-regular graph G, and we define G
to be (j, k, r)-optimal if and only if the equality holds. In section 3, we consider the
structure of (j, k, r)-optimal graphs for j

k > r and show that (j, k, r)-optimal graphs
are bipartite with block edge coloring number r. In section 4, we define the notion
of cyclic optimality in the exploration of the case j

k ≤ r, with special attention to
j = k = 1. We consider the structure of (2, 1, r)-optimal graphs in section 5 and
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establish a canonical form for such graphs. Finally, in section 6, we use the results in
the preceding sections to determine the λ2,1-numbers and λ1,1-numbers of prisms.

2. Definitions and preliminary results. Throughout the paper, x ≡ y (mod
n) shall mean that x− y is divisible by n, and x = y (mod n) shall mean that x is set
equal to the remainder that results when y is divided by n.

Let G be a graph and let L be an L(j, k)-labeling of G. Then Mi(G,L) =
{v ∈ V (G) | L(v) = i} and mi(G,L) = |Mi(G,L)|. When there is no possibility of
confusion, reference to G and L will be suppressed.

Georges and Mauro [4] derived λj,k(T∞(r)) for all j, k, and r, including the two
particular cases which will be of importance to this paper.

Theorem 2.1. For j
k ≥ r, λj,k(T∞(r)) = j + (2r − 2)k.

Theorem 2.2.

λj,1(T∞(r)) =

{
r + 2j − 2 if j ≤ r,

j + 2r − 2 if j ≥ r.

We next show that λj,k(T∞(r)) is a lower bound for the λj,k-numbers of all r-
regular graphs, which in turn will serve to motivate the notion of (j, k, r)-optimality.

Theorem 2.3. If G is a connected r-regular graph, then λj,k(G) ≥ λj,k(T∞(r)).
Proof. Suppose L is an L(j, k)-labeling of G with span s(L). It suffices to show

that L induces an L(j, k)-labeling of T∞(r) with span s(L).
Let vn0

be an arbitrarily selected vertex in V (G) and let the neighbors of vn0 be
vn1 , vn2 , . . . , vnr . We assign the label L(vn0) to the root w0 of T∞(r), and we assign
the labels L(vn1

), L(vn2
), . . . , L(vnr

) to the children w1, w2, . . . , wr of w0, respectively.
The r − 1 children of wi may then be assigned the labels of the neighbors of vni

which have not already been assigned to the parent of wi. The result follows by
induction.

For the case (j, k) = (2, 1) and r ≥ 2, the well-known inequality λ2,1(G) ≥ r + 2
was used by Jha [13] in his consideration of the λ-number of the Kronecker product of
cycles. There, he called those products with λ2,1-numbers equal to the lower bound
optimal. We extend his terminology to the consideration of optimal (j, k, r)-labelings
of r-regular graphs as follows.

Definition 2.4. For r ≥ 2, the graph G is said to be (j, k, r)-optimal if and
only if G is r-regular and λj,k(G) = λj,k(T∞(r)). If L is a λj,k-labeling of a (j, k, r)-
optimal graph G, then L is said to be a (j, k, r)-optimal labeling of G. We denote the
set of (j, k, r)-optimal graphs by Γ(j, k, r).

It follows from Theorems 2.1 and 2.2 that G is (j, 1, r)-optimal if and only if
λj,1(G) = λj,1(T∞(r)).

3. Optimality with j
k

> r. In this section we consider the structure of (j, k, r)-

optimal graphs for j
k > r. As noted in Theorem 2.1, such graphs have λj,k-number

j + (2r − 2)k.
Theorem 3.1. For j

k > r, if G is (j, k, r)-optimal, then G is bipartite with
|V (G)| ≡ 0 (mod 2r).

Proof. Let L be a (j, k, r)-optimal labeling ofG. Since the span of L is j+(2r−2)k,
each vertex in V (G) has a label in exactly one of the three intervals X1 = [0, (r−1)k],
X2 = [(r−1)k+1, j+(r−1)k−1], andX3 = [j+(r−1)k, j+(2r−2)k]. Suppose L(v) ∈
X2, and suppose that exactly m neighbors of v have labels less than L(v), 0 < m < r.
Then the smallest label among the neighbors of v is at most L(v)−j−(m−1)k, and the
largest label among the neighbors of v is at least L(v)+j+(r−m−1)k. The span of L is
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thus at least L(v)+j+(r−m−1)k−(L(v)−j−(m−1)k) = 2j+(r−2)k > j+(2r−2)k, a
contradiction. Arguing similarly, if m = 0, then the largest label among the neighbors
of v is at least j + (2r − 2)k + 1, a contradiction. And if m = r, then the smallest
label among the neighbors of v is at most −1, another contradiction. Hence each
label assigned by L is in X1 or X3. For i ∈ {1, 3}, no two distinct vertices in Xi are
adjacent since the length Xi is less than j. Hence, G is bipartite.

Now let v ∈ V (G) with L(v) ∈ X1. Then the r neighbors of v have labels in X3.
Since the neighbors of v are pairwise distance two apart, their labels pairwise differ
by at least k, and hence the labels of the neighbors of v must be j + (r − 1 + i)k,
0 ≤ i ≤ r − 1. A similar argument demonstrates that each vertex with label in X3

has neighbors with labels ik, 0 ≤ i ≤ r− 1. Thus, there are exactly 2r distinct labels
under L with non-zero multiplicity; in X1, these are 0, k, 2k, . . . , (r − 1)k, and in X3

these are j + (r − 1)k, j + rk, . . . , j + (2r − 2)k.
Let x1 and x3 be labels assigned by L in X1 and X3, respectively. Then we have

seen that each vertex in Mx1 is adjacent to some vertex in Mx3 . Moreover, due to the
distance two condition, no two vertices in Mx1 can be adjacent to the same vertex in
Mx3

. Thus mx1
≤ mx3 . Similarly, mx1 ≥ mx3 , implying mx1 = mx3 . Hence, since L

partitions V (G) into 2r nonempty labeling classes, |V (G)| = 2rmx1 , from which the
result follows.

We next characterize those graphs in Γ(j, k, r), jk > r. It can be easily seen that
Kr,r, the complete r-regular bipartite graph of smallest order, is the graph of smallest
order in Γ(j, k, r) (see [7]). We also point out that the converse of Theorem 3.1 is not
true. For example, the graph 3Q3, the sum of 3 copies of the 3-cube, is a 3-regular
bipartite graph with order 24; however, for j

k > 3, λj,k(3Q3) = λj,k(Q3) = j + 5k
(see [5]). Alternatively, we observe that a graph G is (j, k, r)-optimal if and only if
each component of G is (j, k, r)-optimal. So, since Theorem 3.1 implies that Q3 is not
(j, k, r)-optimal, neither is 3Q3.

Theorem 3.2. Let G be an r-regular graph with |V (G)| ≡ 0 (mod 2r). Then G ∈
Γ(j, k, r) if and only if there exists a partition of V (G) into sets A0, A1, A2, . . . , Ar−1,
B0, B1, B2, . . . , Br−1 such that for each i, 0 ≤ i ≤ r − 1, every vertex v in Ai (resp.,
Bi) has exactly one neighbor in Bj (resp., Aj), 0 ≤ j ≤ r − 1.

Proof. (⇒) Let L be a (j, k, r)-optimal labeling of G. Then the result follows
from the proof of Theorem 3.1 with Ai equal to the set of vertices with label ik under
L and Bi equal to the set of vertices with label j+(r−1+ i)k under L, 0 ≤ i ≤ r−1.

(⇐) The vertices in each set Ai (resp., Bi) are pairwise distance three or more
apart. Additionally, for i �= j, each vertex in Ai (resp., Bi) is distance two or more
from each vertex in Aj (resp., Bi). Thus, we form an L(j, k)-labeling L of G by
assigning ik to each vertex in Ai, 0 ≤ i ≤ r − 1, and j + (r − 1 + i)k to each vertex
in Bi, 0 ≤ i ≤ r − 1. Since the span of L is j + (2r − 2)k, we are done.

Definition 3.3. Let B = X
⋃

Y be an r-regular bipartite graph and let L be an
edge coloring of B such that

(i) for each x ∈ X, the edges incident to x are assigned the same color under L,
(ii) for each y ∈ Y , the edges incident to y are assigned distinct colors under L.

Then L is called an X-block coloring of B. We denote the minimum number of colors
assigned by X-block colorings of B by ζX(B), and if L is an X-block coloring of
B which assigns exactly ζX(B) distinct colors, then L is called a minimum X-block
coloring of B.

We observe that r ≤ ζX(B) ≤ |X|. To illustrate, we note that for either biparti-
tion X

⋃
Y of Kr,r, ζX(Kr,r) = r and for any bipartition X

⋃
Y of C6, ζX(C6) = 3.
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Theorem 3.4. Let G be an r-regular bipartite graph with bipartition W1 and W2.
Then for j

k > r, G ∈ Γ(j, k, r) if and only if ζW1(G) = ζW2(G) = r.

Proof. (⇒) By Theorem 3.2, we let W1 =
⋃r−1
i=1 Ai and W2 =

⋃r−1
i=1 Bi. We form

a W1 (resp., W2)-block coloring using r colors c0, c1, . . . , cr−1 by assigning color ci to
each edge which is adjacent to some vertex in Ai (resp., Bi), 0 ≤ i ≤ r − 1. But
ζW1

(G) ≥ r (resp., ζW2
(G) ≥ r) since the degree of each vertex in B0 (resp., A0) is r.

So ζW1(G) = r (resp., ζW2(G) = r).
(⇐) For i = 1, 2, let Ci be minimum Wi-block colorings of G. We produce a

vertex labeling L as follows: for each vertex v in W1 whose incident edges receive
color ci under C1, 0 ≤ i ≤ r − 1, let L(v) = ik, and for each vertex in W2 whose
incident edges receive color ci under C2, let L(v) = j+(r−1)k+ ik. To see that L is a
(j, k)-labeling, we note that the difference between the largest label among the vertices
in W1 and the smallest label among the vertices in W2 is j + (r− 1)k− (r− 1)k = j,
implying that the labels of adjacent vertices differ by at least j. To show that the
distance two condition is satisfied by L, it suffices to show that two vertices distance
two apart receive different labels under L. If x1 and x2 are distance two apart with
L(x1) = L(x2) and x1, x2 ∈ W1 (resp., W2), then there exists vertex y ∈ W2 (resp.,
W1) and edges {x1, y} and {x2, y} which receive the same color under C1 (resp., C2),
a contradiction.

We illustrate a 3-regular bipartite graph B = X
⋃

Y on 12 vertices with ζX(B) =
3 and ζY (B) = 5. For X = {x1, x2, x3, x4, x5, x6} and Y = {y1, y2, y3, y4, y5, y6}, let
the neighborhood set of xi, denoted N(xi), be as follows:

N(x1) = {y1, y2, y3},
N(x2) = {y4, y5, y6},
N(x3) = {y1, y3, y5},
N(x4) = {y2, y4, y6},
N(x5) = {y1, y3, y4},
N(x6) = {y2, y5, y6}.

Then for 1 ≤ i ≤ 3, assigning color i to the edges incident to x2i−1 and x2i shows
that ζX(B) = 3. On the other hand, examination of the neighborhood sets of each yi
gives ζY (B) = 5.

Theorem 3.5. For r ≥ 3, let j, k, j′, and k′ be integers such that j
k > r and

j′

k′ > r. Then Γ(j, k, r) = Γ(j′, k′, r).
Proof. Let G ∈ Γ(j, k, r). By Theorem 3.1, G is bipartite, so G can be expressed

X
⋃

Y . This implies ζX(G) = ζY (G) = r by Theorem 3.4, which in turn implies
(also by Theorem 3.4) that G ∈ Γ(j′, k′, r). Thus Γ(j, k, r) ⊆ Γ(j′, k′, r). A similar
argument shows Γ(j′, k′, r) ⊆ Γ(j, k, r).

Let x = j
k . In [4], it is shown that for any graph G, the function λx(G) =

1
kλj,k(G)

is continuous in x on the set of rationals greater than or equal to 1. (Here, continuity
at rational number x ≥ 1 means for any real ε > 0, there exists real δ > 0 such
that for rational q ≥ 1 within δ of x, λx(G) is within ε of λq(G).) Additionally,
we have seen that, if H ∈ Γ(j, k, r), j

k > r, then λx(H) = x + (2r − 2). Thus
λr(H) = r + (2r − 2), which establishes that H ∈ Γ(ar, a, r) for a ∈ Z+. It follows
that for jk > r, Γ(j, k, r) ⊆ Γ(ar, a, r). We point out, however, that for jk > r, Γ(j, k, r)
and Γ(ar, a, r) are not equal. As an example, K3, which is not bipartite and hence
not optimal for j

k > 2, is a member of Γ(2, 1, 2).
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4. Optimality with j
k
∈ Z+ and j

k
< r. In this section, we investigate the

structure of Γ(j, k, r) for j
k an integer. Since λj,k(G) = kλc,1(G) for

j
k = c ∈ Z+, it

will suffice to assume k = 1.
We begin with a consideration of Γ(r − 1, 1, r) for r ≥ 2.
Theorem 4.1. For r ≥ 2, Γ(r − 1, 1, r) ⊆ Γ(r, 1, r).
Proof. If G ∈ Γ(r − 1, 1, r), then λr−1,1(G) = 3r − 4 by Theorem 2.2. Let L be

a λr−1,1-labeling of G. Then L′(x) = L(x) + �L(x)
r−1 � is an L(r, 1)-labeling of G with

span 3r − 2.
It follows from the discussion at the end of section 3 that for all a ∈ Z+ and

j′

k′ > r, Γ(a(r − 1), a, r)⋃Γ(j′, k′, r) ⊆ Γ(ar, a, r). We next turn our attention to a
special class of optimal labelings.

Definition 4.2. Let 1 ≤ j ≤ r and let L be a (j, 1, r)-optimal labeling of r-regular
graph G. Then L is said to be a (j, 1, r)-cyclically optimal labeling of G if and only
if for any adjacent vertices vi and vi′ in V (G), L(vi) /∈ {L(vi′) ± j′ (mod λj,1(G) +
1) | 0 ≤ j′ ≤ j − 1}. If G has a (j, 1, r)-cyclically optimal labeling, then G is said to
be (j, 1, r)-cyclically optimal; otherwise, G is (j, 1, r)-acyclically optimal. We denote
the collection of (j, 1, r)-cyclically optimal graphs by Γc(j, 1, r).

To illustrate, we give a (3, 1, 4)-cyclically optimal labeling of a graph in Figure
4.1. We also point out that K3 is an element of Γ(2, 1, 2) but not of Γc(2, 1, 2).

We also note that Γc(1, 1, r) necessarily equals Γ(1, 1, r).
Theorem 4.3. Let G be a (j, 1, r)-cyclically optimal graph, where j ≤ r. Then

|V (G)| ≡ 0 (mod r + 2j − 1).
Proof. Let L be a (j, 1, r)-cyclically optimal labeling of graphG with span 2j+r−2

by Theorem 2.2. It suffices to show m0 = m1 = · · · = mr+2j−2.
By the definition of cyclic labeling, the r neighbors of any vertex v with label

L(v) = x must have labels which are precisely the elements of Sx = {(L(v) + j +
i) (mod r+2j−1) | 0 ≤ i ≤ r−1}. Thus, since v cannot be adjacent to two vertices
with the same label, we have mx ≤ my for every y in Sx. But if y ∈ Sx, then x ∈ Sy,
so my ≤ mx. Thus mi = mj+i = mj+i+1 = mi+1 for 0 ≤ i ≤ j + r − 3, giving the
result.

Fig. 4.1. A (3, 1, 4)-cyclically optimal labeling of graph G.
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Corollary 4.4. If G ∈ Γ(1, 1, r), then |V (G)| ≡ 0 (mod r + 1).
Proof. If G ∈ Γ(1, 1, r), then G is necessarily (1, 1, r)-cyclically optimal. The

result follows immediately from Theorem 3.1.
We note that the converse to Corollary 4.4 is not true since the λ1,1-number of

C4 + C5 (the sum of C4 and C5) is 4.
Theorem 4.5. Let r ≥ 2. If for fixed j, 1 ≤ j ≤ r, G is bipartite and (j, 1, r)-

cyclically optimal, then |V (G)| ≡ 0 (mod 2r + 4j − 2).
Proof. Let L be a (j, 1, r)-cyclically optimal labeling of the bipartite graph G =

X
⋃

Y . As in the proof of Theorem 3.1, it can be easily shown that each of the
r + 2j − 1 labels has the same multiplicity. Since L is cyclic, the subgraph of G
induced by Mi

⋃
Mi+j

⋃
Mi+2j , 0 ≤ i ≤ r − 2, is 2-regular and thus is a sum of even

cycles each of which has order divisible by 6. It follows that |Mi

⋂
X| = |Mi

⋂
Y |.

Hence, each mi is even, which establishes the theorem.
We now give a constructive characterization of Γc(j, 1, r). Let n and h be fixed,

n ≥ 3 and 1 ≤ h ≤ �n2 �. Then the generalized h-cycle on n vertices, denoted hCn, is
the graph with vertex set {v0, v1, v2, . . . , vn−1} and edge set {vivs | 0 ≤ i ≤ n− 1 and
s = (i+ l) (mod n), 1 ≤ l ≤ h}. We note that hCn is isomorphic to Cn and Kn when,
respectively, h = 1 and h = �n2 �.

Now fix r, j, andm, j ≤ r. For 1 ≤ i ≤ m, let Gi be the graph on r+2j−1 vertices
vi,0, vi,1, vi,2, . . . , vi,r+2j−2 such that for all l, vi,l is adjacent to precisely every vertex in
V (Gi) except vi,l±x(mod r+2j−1), 0 ≤ x ≤ j−1. (We note that Gi is isomorphic to hCn,
where h = j − 1 and n = r+2j − 1.) Then it is easily verified that Gi is in Γc(j, 1, r)
and that the labeling Li of Gi such that Li(vi,x) = x is a (j, 1, r)-cyclically optimal
labeling. Consequently, the graph G =

∑m
i=1 Gi is a (j, 1, r)-cyclically optimal graph

and the labeling of G given by L(vi,x) = x is a (j, 1, r)-cyclically optimal labeling.
LetM0 be the singleton set containing G, and letM1,M2,M3 . . . be defined re-

cursively as follows: for y ≥ 1, G′′ ∈My if and only if for some graph G
′ ∈My−1 with

edges vi1,x1
vi1,x2

and vi3,x1
vi2,x2

, G
′′
results from the following edge transpositions

on G
′
:
1. Delete vi1,x1

vi1,x2
.

2. Delete vi3,x1
vi2,x2

.
3. Add vi1,x1vi2,x2 .
4. Add vi1,x2

vi3,x1
.

Then by induction, each graph G in
⋃
y=0My is r-regular with cyclic labeling L, since

the effect of the edge transpositions is to redirect two edges from vertices labeled x1

and x2 to vertices with labels x1 and x2. Thus
⋃
y=0My ⊆ Γc(j, 1, r).

To show that Γc(j, 1, r) ⊆
⋃
y=0My, let G be a (j, 1, r)-cyclically optimal graph

and let L be a (j, 1, r)-cyclically optimal labeling of G. Then Theorem 4.3 implies
that |V (G)| = c(r+2j− 1) for some c and that we may thus denote the vertices of G
by vi,z, 1 ≤ i ≤ c and 0 ≤ z ≤ r+2j− 2, where L(vi,z) = z. Furthermore, since the r
neighbors of vi,x necessarily have labels (x+ y) (mod r + 2j − 1), j ≤ y ≤ r + j − 1,
it is the case that for every i1, i2, x1, x2 such that i1 �= i2 and vi1,x1

is adjacent to
vi2,x2 , there exists i3 �= i1 such that vi1,x2 is adjacent to vi3,x1 . Hence, for i1 �= i2, an
r-regular graph G′ may be formed by executing the following algorithm, which may
be thought of as a reversal of the edge manipulation algorithm given above:

a. Delete vi1,x1vi2,x2 .
b. Delete vi1,x2vi3,x1 .
c. Add vi1,x1vi1,x2 .
d. Add vi3,x1vi2,x2 .
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Moreover, the vertex labeling L′(vi,x) of G′ given by L′ = L is a (j, 1, r)-optimal
labeling, since the effect of these edge manipulations is to redirect two edges from
vertices labeled x1 and x2 to vertices labeled x1 and x2.

As compared to G, the graph G′ produced by this algorithm has 1 (or 2) fewer
edges of the form va,xi

vb,xh
where a �= b, and 1 (or 2) more edges of the form vc,xivc,xh

.
The algorithm may thus be iterated sufficiently many times to produce

∑m
i=1 Gi, each

of whose edges is of the form vc,xi
vc,xh

. Hence, Γc(j, 1, r) ⊆
⋃
y=0My, which in turn

implies the following.
Theorem 4.6. Every (j, 1, r)-cyclically optimal graph yields, through a sequence

of edge transpositions, a graph isomorphic to a sum of copies of j−1Cr+2j−1.
From this construction, we have the following.
Corollary 4.7. A connected graph G is (j, 1, r)-cyclically optimal if and only

if there exists a partition {V0, V1, V2, . . . , Vr+2j−2} of V (G) such that, for 0 ≤ i ≤
r + 2j − 2, each vertex in Vi is adjacent to exactly one vertex in V(i+i′)(mod r+2j−1),
j ≤ i′ ≤ j + r − 1. Necessarily, the sets in the partition are of equal size.

5. Optimality with j
k

= 2. In this section, we investigate the graphs in
Γ(2, 1, r), r ≥ 2, each of which has λ2,1-number equal to r + 2. Since, in general,
not all (2, 1, r)-optimal labelings of r-regular graphs are cyclic, then the r + 3 labels
given by an optimal labeling L need not have equal multiplicities. However, as we
shall see, the multiplicities of labels under a (2, 1, r)-optimal labeling L do possess
certain regularities.

We note that for r = 2, any graph in Γ(2, 1, r) is a cycle Cn. Moreover, since
λ2,1(Cn) = 4 = r + 2, it follows that Γ(2, 1, 2) = {Cn|n ≥ 3}. It thus suffices to
consider r ≥ 3.

Theorem 5.1. Let G be a (2, 1, r)-optimal graph, where r ≥ 3, and let L be a
λ2,1-labeling of G. Then mi = mh for 1 ≤ i, h ≤ r + 1.

Proof. Let T be the set of integers in the interval [0, r+2]. Then for every integer
x, 1 ≤ x ≤ r + 1, there are exactly r elements in T which differ from x by at least
2. Thus, the distance conditions require the labels of the neighbors of each vertex v
with label L(v) = x to be precisely the elements of Sx = {w ∈ T | |x− w| ≥ 2}. So,
for every y ∈ Sx, we have mx ≤ my. But if y ∈ Sx where 1 ≤ y ≤ r + 1, then x ∈ Sy,
implying my ≤ mx. Hence mh = m2+h = m3+h = mh+1 for 1 ≤ h ≤ r− 2, giving the
result.

Now let L be a (2, 1, r)-optimal labeling of r-regular graph G. We define M(α, β)
to be the set of vertices in V (G) which have label α and which are adjacent to some
vertex with label β, and we denote the cardinality of M(α, β) by m(α, β). Noting
that, for v such that L(v) = 0, exactly one element i of the set {2, 3, 4, . . . , r + 2}
is not represented among the labels of the neighbors of v, we define M(0, i∗) to be
the collection of vertices which are labeled 0 and which are adjacent to no vertices
labeled i. For i ∈ {0, 1, 2, 3, 4, . . . , r}, we define M(r + 2, i∗) analogously, and we
denote the cardinalities of M(0, i∗) and M(r + 2, i∗) by m(0, i∗) and m(r + 2, i∗),
respectively. For fixed h, 2 ≤ h ≤ r+1, there is a one-to-one correspondence between
Mh and M0 −M(0, h∗), implying that mh = m0 − m(0, h∗). So, by Theorem 5.1,
it follows that m(0, 2∗) = m(0, 3∗) = · · · = m(0, r + 1∗). Similarly, for 1 ≤ i ≤ r,
m(r + 2, 1∗) = m(r + 2, 2∗) = · · · = m(r + 2, r∗).

Since m(0, r + 2) = m(r + 2, 0), we have

(1)

r+1∑
i=2

m(0, i∗) = m(0, r + 2) = m(r + 2, 0) =

r∑
i=1

m(r + 2, i∗).
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But for every i, 2 ≤ i ≤ r + 1, each vertex in Mi is adjacent to some vertex in
M0, implying m(0, i) = mi. Thus, since m(i, 0) = m(0, i), we have m0 = m(0, i) +
m(0, i∗) = mi +m(0, i∗), giving m0 −mi = m(0, i∗). But m2 = m3 = · · · = mr+1 by
Theorem 5.1, so m(0, i∗) = m0 −m2 for every i, 2 ≤ i ≤ r + 1.

Similarly, m(r + 2, i∗) = mr+2 −m2, which, by (1), implies

r+1∑
i=2

(m0 −m2) =

r∑
i=1

(mr+2 −m2).

This gives the following theorem.
Theorem 5.2. Let G ∈ Γ(2, 1, r) and let L be a λ2,1-labeling of G. Then m0 =

mr+2.
For fixed h, 2 ≤ h ≤ r+1, there is a one-to-one correspondence between Mh and

M0−M(0, h∗), implying that mh = m0−m(0, h∗) (and likewise, mh = mr+2−m(r+
2, h∗) for 1 ≤ h ≤ r). So, by Theorems 5.1, 5.2, and (1), it follows that

m(0, 2∗) = m(0, 3∗) = · · · = m(0, r + 1∗)
= m(r + 2, 1∗) = m(r + 2, 2∗) = · · · = m(r + 2, r∗).

We use this result to establish the next theorem.
Theorem 5.3. Let G ∈ Γ(2, 1, r) and let L be a λ2,1-labeling of G. Then |V (G)| =

(r + 3)m(0, r + 2∗) + (r2 + 2r − 1)m(0, 2∗).
Proof. By Theorems 5.1 and 5.2, |V (G)| =∑r+2

i=0 mi = 2m0 + (r + 1)m2. Since

m0 =

r+2∑
i=2

m(0, i∗) = rm(0, 2∗) +m(0, r + 2∗)

and

m2 = m0 −m(0, 2∗) = −m(0, 2∗) +
r+2∑
i=2

m(0, i∗) =
r+2∑
i=3

m(0, i∗)

= m(0, r + 2∗) +
r+1∑
i=3

m(0, i∗) = m(0, r + 2)∗ + (r − 1)m(0, 2∗),

the result now follows via straightforward algebra.
Since m(0, 2∗) and m(0, r+2∗) must be nonnegative, we observe that the smallest

(2, 1, r)-optimal graph has order at least r + 3. As noted in the preceding section,
this bound is achieved by the unique r-regular graph on r + 3 vertices: Cr+3, which
is cyclically optimal. If G ∈ Γ(2, 1, r) is acyclically optimal, then every optimal
labeling of G has m(0, r+ 2) ≥ 1, which in turn implies that m(0, 2∗) ≥ 1. Thus, the
smallest (2, 1, r)-acyclically optimal graph has order at least r2+2r− 1. We produce
a (2, 1, r)-acyclically optimal graph Ga(r) on r2 + 2r − 1 vertices as follows: noting
that m0 = mr+2 = r and m1 = m2 = · · · = mr+1 = r−1 under an acyclically optimal
labeling of G, we define

Mi = {vhi , 1 ≤ h ≤ r − 1} for 1 ≤ i ≤ r + 1, and
Mi = {vpi , 1 ≤ p ≤ r} for i = 0, r + 2.

Let P0 = {S1, S2, S3, . . . , Sr}, where Si is lexicographically the ith subset size r − 1
of {2, 3, 4, . . . , r + 1}. Similarly, let Pr+2 = {T1, T2, T3, . . . , Tr}, where Ti is lexico-
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Fig. 5.1. A λ2,1-labeling of a (2, 1, 3)-acyclically optimal graph on 14 vertices.

graphically the ith subset size r − 1 of {1, 2, 3, . . . , r}. We define the edges of G as
follows:

1. For 1 ≤ p ≤ r, {vp0 , vpr+2} ∈ E(G).
2. For 1 ≤ h ≤ r− 1, {vhs , vht } ∈ E(G) if and only if |s− t| ≥ 2, 1 ≤ s, t ≤ r+1.
3. For 1 ≤ p ≤ r, 2 ≤ i ≤ r+1 and 1 ≤ h ≤ r−1, {vp0 , vhi } ∈ E(G) if and only if

Sp contains i and there are exactly h− 1 sets S1, S2, . . . , Sp−1 which contain
i.

4. For 1 ≤ p ≤ r, 1 ≤ i ≤ r and 1 ≤ h ≤ r − 1, {vpr+2, v
h
i } ∈ E(G) if and only if

Tp contains i and there are exactly h− 1 sets T1, T2, . . . , Tp−1 which contain
i.

Then the labeling L given by L(viz) = z is a (2, 1, r)-acyclically optimal labeling of G.
In Figure 5.1, we illustrate a λ2,1-labeling of a (2, 1, 3)-acyclically optimal graph on
14 vertices.

The existence of (2, 1, r)-optimal graphs on r + 3 vertices and on r2 + 2r − 1
vertices leads to the following theorem.
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Theorem 5.4. For x, y ∈ Z+, there exists a (2, 1, r)-optimal graph on x(r+3)+
y(r2 + 2r − 1) vertices.

Corollary 5.5. If r is even, then for all n ≥ (r+2)(r2+2r− 2), there exists a

(2, 1, r)-optimal graph on n vertices. If r is odd, then for all n ≥ (r−5)(r2+2r−3)
4 , there

exists a (2, 1, r)-optimal graph on 2n vertices.
Proof. If r is even, then gcd(r+3, r2+2r−1) = 1, implying every integer greater

than or equal to (r+2)(r2+2r−2) can be written as a linear combination of r+3 and
r2+2r− 1 with nonnegative coefficients. If r is odd, then gcd(r+3, r2+2r− 1) = 2,
giving the result by a similar argument.

Although the (2, 1, r)-cyclically optimal graph on r+3 vertices is unique, such is
not the case for (2, 1, r)-acyclically optimal graphs on r2 + 2r − 1 vertices. However,
each (2, 1, r)-acyclically optimal graph on r2 + 2r − 1 vertices, through a sequence of
edge transpositions similar to that described in the preceding section, yields a graph
isomorphic to Ga(r). Extending this argument gives the following theorem.

Theorem 5.6. Every (2, 1, r)-optimal graph yields, through a sequence of edge
transpositions, a graph isomorphic to a sum of copies of Cr+3 and Ga(r).

6. On prisms. In this section, we apply our results on optimality to a spe-
cial class of 3-regular graphs known as prisms. For n ≥ 3, the n-prism, denoted
Pr(n), is the graph consisting precisely of two disjoint n-cycles v0, v1, . . . , vn−1 and
w0, w1, . . . , wn−1 and edges {vi, wi} for 0 ≤ i ≤ n− 1. The two cycles shall be called
the inner and outer cycles, respectively. We point out that Pr(n) is isomorphic to
Cn × P2. We also note that it will be convenient to exhibit a labeling of Pr(n) in the
form of a 2× n array, where the entries in the top row of the array correspond to the
labels of the vertices of the outer cycle and the entries in the bottom row correspond
to the labels of the vertices of the inner cycle.

In [14], Jha et al. proved the following theorem.
Theorem 6.1. Let n ≥ 3. Then

λ2,1(Pr(n))

{
= 5 if n ≡ 0 (mod 3),
≤ 6 if n �≡ 0 (mod 3).

We refine this theorem as follows (and are informed that an alternative proof will
appear in [15]).

Theorem 6.2. Let n ≥ 3. Then

λ2,1(Pr(n)) =

{
5 if n ≡ 0 (mod 3),
6 if n �≡ 0 (mod 3).

Proof. By Theorem 6.1, it suffices to show that λ2,1(Pr(n)) > 5 for n �≡ 0 (mod
3). Suppose to the contrary that there exists an n, n ≡ 1, 2 (mod 3), such that
λ2,1(Pr(n)) = 5. Let L be a λ2,1-labeling of Pr(n). Since the order of Pr(n) is 2n,
we observe that |V (Pr(n))| ≡ 2, 4 (mod 6), which by Theorem 4.3 implies that L is
acyclic. Thus, by the discussion following Theorem 5.1, m(0, i∗) ≥ 1, 2 ≤ i ≤ 4,
implying m(0, 3∗) ≥ 1.

With no loss of generality, let a0, a1, a2, b0, b1, b2 be vertices in V (Pr(n)) such that
a1 ∈M(0, 3∗). Then the neighbors of a1, namely, a0, a2, and b1, receive the labels 2,
4, and 5 under L (not necessarily respectively). If a0 or b1 receives the label 2, then
by virtue of the 4-cycle 〈a0, a1, b1, b0〉, L(b0) ≥ 6, contradicting the optimality of L. If
a2 receives the label 2, then by virtue of the 4-cycle 〈a1, a2, b2, b1〉, L(b2) ≥ 6, another
contradiction.
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For jk > r, if Pr(n) ∈ Γ(j, k, 3), then by Theorem 3.1, Pr(n) is bipartite (implying
that n is even) and 2n ≡ 0 (mod 6). Hence n ≡ 0 (mod 6), a condition which is
easily seen to be sufficient for optimality by labeling the vertices of the inner cycle
0, 2, 4, 0, 2, 4, . . . , 0, 2, 4 and the vertices of the outer cycle 3, 5, 1, 3, 5, 1, . . . , 3, 5, 1.

If Pr(n) ∈ Γ(1, 1, 3), then by Theorem 4.3, |V (Pr(n)| ≡ 0 (mod 4). Hence, n
is even, so Pr(n) is bipartite. By Theorem 4.5, |V (Pr(n)| ≡ 0 (mod 8), implying
the necessary condition n ≡ 0 (mod 4). However, this condition is also sufficient for
the (1, 1, 3)-optimality of Pr(n), as shown in the definitive calculation of λ1,1(Pr(n)),
given below.

Theorem 6.3. Let n ≥ 3. Then

λ1,1(Pr(n)) =



3 if n ≡ 0 (mod 4),
5 if n = 3, 6,
4 otherwise.

Proof. For n ≡ 0 (mod 4), consider the array A1, which represents a λ1,1-labeling
of Pr(4):

0 1 2 3
2 3 0 1.

Then if n = 4m, an optimal (1, 1, 3)-labeling of Pr(n) is demonstrable by cate-
nating m copies of A1 like so:

0 1 2 3 0 1 2 3 . . . 0 1 2 3
2 3 0 1 2 3 0 1 . . . 2 3 0 1.

For n = 3, 6, consider n = 3. Then Pr(3) has diameter two, which implies (by the
distance conditions) that no two vertices may be assigned the same label. It is then
an easy matter to show the existence of an L(1, 1)-labeling of Pr(3) with span equal to
the lower bound 5. If n = 6, then the converse of part a implies that λ1,1(Pr(6)) ≥ 4.
But if λ1,1(Pr(6)) = 4, the pigeon-hole principle implies the existence of a label with
multiplicity 3. The distance constraints, however, imply that no label may have
multiplicity 3. Thus, λ1,1(Pr(6)) = 5, as demonstrated by the following labeling:

0 1 2 3 4 5
2 3 4 5 0 1.

In the final case, we note that n is not a multiple of 4, implying that λ1,1(Pr(n)) ≥
4. It thus suffices to show the existence of an L(1, 1)-labeling with span 4. To that
end, consider the array A2, which represents a λ1,1-labeling of Pr(5):

0 1 2 3 4
2 3 4 0 1.

Then, since any integer n, n > 11 and n not divisible by 4, can be written 4α+5β
for some α ≥ 0 and β ≥ 1, we can demonstrate an L(1, 1)-labeling with span 4 by the
catenating α copies of A1 and β copies of A2.

In the remaining cases n = 7 and n = 11, we demonstrate L(1, 1)-labelings with
span 4:

0 4 1 0 3 1 2
1 2 3 4 2 0 3
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and

0 2 3 1 0 2 4 1 0 3 4
3 1 0 4 3 1 0 2 4 1 2.

Let the Cartesian product of the infinite path P∞ and P2 be denoted by Pr(∞).
By an approach similar to the one used in the proof of Theorem 2.3, we may establish
that λj,k(Pr(∞)) ≤ λj,k(Pr(n)) for all n ≥ 3; furthermore, it can be shown that
λ1,1(Pr(∞)) = 3 and λ2,1(Pr(∞)) = 5 and that Pr(∞) is both (1, 1, 3)- and (2, 1, 3)-
cyclically optimal. (By Theorem 4.1, Pr(∞) is (3, 1, 3)-optimal.) Finally, analysis
analogous to that employed in the proof of Theorem 6.2 reveals that all optimal
(2, 1, 3)-labelings of Pr(∞) are cyclic with even labels appearing along one copy of
P∞ and odd labels along the other.
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1. Introduction. Spanning trees are often used in applications where we want
to save edges but maintain connectivity. Since in most of these applications distance
matters, not all spanning trees have the same quality. It is desirable that vertices of
small distance in the original graph should also have relatively small distance in the
spanning tree. If we require dT (x, y)/dG(x, y) � k for all pairs of vertices x, y, then
we arrive at the well-known concept of k-multiplicative tree spanners; compare [3].
The stronger property dT (x, y) − dG(x, y) � k for every pair of vertices x, y, defines
k-additive spanners; see [14]. In this paper we shall deal with spanning trees that are
k-additive spanners. We call them k-additive tree spanners.

Spanners have received a lot of attention in the last few years. They have been
introduced by Peleg and Ullman [18] for the purpose of synchronizing asynchronous
networks. Spanners have many applications, for instance, in communication networks
[18], broadcasting, routing, or robotics. We refer to the papers [17, 20, 21] for more
information.

As a kind of extreme case of spanners, tree spanners occur mostly in applications
where the cost is the main concern, or where the tree structure is exploited. The
question to decide whether a given graph has some k-multiplicative tree spanner is
NP-complete for each fixed k � 4, and it can be decided in polynomial-time for
k = 2 [3, 4]. Finding the smallest k for which a graph has some k-multiplicative tree
spanner is also NP-complete even for planar graphs [8]. See also [15, 2, 12] for further
information on (multiplicative) tree spanners in special families of graphs.

We will show that certain well-known graph classes Γ allow some constant kΓ

such that every graph in Γ has some kΓ-additive tree spanner. We present two simple
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approaches for finding such trees. The first one is to consider certain breadth-first
search trees. For interval graphs and distance-hereditary graphs, we get 2-additive tree
spanners in linear time. The second approach requires that we have some dominating
shortest path. We connect the vertices outside the path to the path in a consistent
way to obtain a tree spanner, which, as can be shown, is 4-additive.

Some other classes Γ of graphs do not have such a constant kΓ. This holds for
instance if all cycles belong to Γ, since cycles of length k+ 3 do not have a k-additive
tree spanner. But even the class of chordal graphs does not have such a constant, as
we shall see.

The fundamental notion in the paper is the distance dG(x, y) between two vertices
x and y in the connected graph G. It is defined to be the length (number of edges) of
a shortest x-y path. All graphs occurring in this paper are supposed to be connected.

Parts of the results of the paper appeared in [11] and [19].

2. Spanning trees growing from isometric subtrees. For a set W ⊆ V
of vertices in a graph G and any integer i � 0 let N i(W ) denote the ith neigh-
borhood of W , i.e., the set of all vertices y with dG(y,W ) = i, where dG(y,W ) =
minw∈W dG(y, w).

Definition 2.1. A subtree T of a graph G = (V,E) is an isometric subtree if
dG(u, v) = dT (u, v) for all u, v ∈ V (T ).

Isometric subtrees are necessarily induced subgraphs.
The most straightforward method of constructing a good additive tree spanner

in a connected graph G seems to be the following.
Basic construction:
begin

choose a set W ⊆ V , W �= ∅, such that G[W ] is an isometric subtree of G;
T ← G[W ]; i← 1;
while N i(W ) �= ∅ do begin

for y ∈ N i(W ) do begin
choose a vertex z = f(y) ∈ N(y) ∩N i−1(W );
V (T )← V (T ) ∪ {y};
E(T )← E(T ) ∪ {yz};

end;
i← i+ 1;

end;
end.

Since G is connected this construction leads to a spanning tree T = (V (T ), E(T ))
of G. Then every y ∈ N i(W ), i � 1, has exactly one neighbor f(y) in N i−1(W ) on the
tree constructed. So, what we do is construct a spanning tree T where all distances
from W toward the other vertices are identical in G and T .

Lemma 2.2. If G[W ] is an isometric subtree of G such that Nk+1(W ) = ∅, then
a spanning tree T of G constructed by our basic construction is 4k-additive.

Proof. We consider a shortest path (v0, v1, . . . , vt) in G. Let w0 and wt be
those vertices in W such that dT (vi, wi) = dG(vi,W ) for i = 0, t. Then dT (vi, wi) � k
since Nk+1(W ) = ∅ and dT (w0, wt) � dG(w0, v0) + dG(v0, vt) + dG(vt, wt) � 2k + t
since G[W ] is an isometric subtree of G. Consequently, dT (v0, vt) � 4k + t = 4k +
dG(v0, vt).

The algorithm still contains two ambiguities. How do we choose our starting
subtree G[W ], and which function f : V \ W → V (selecting the neighbors closer
to W ) do we use? As isometric subtree G[W ] we will use either a single vertex (in
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sections 3 and 4) or a dominating shortest path of G (in section 5). Later we will
describe how to define f (for arbitrary graph G) using some “rules.”

Let us now consider the special case W = {x0}. In order to find out whether such
a resulting tree is k-additive, we do not have to compute all T -distances, but only
T -distances between G-adjacent vertices.

Lemma 2.3. A spanning tree T of G constructed by our basic construction starting
from a singleton x0 is k-additive if and only if dT (y, z) � k + 1 for every edge yz of
G.

Proof. Necessity of this condition is obvious.
For sufficiency, assume that dT (y, z) � k+1 for every edge yz of G. By induction

over t we prove dT (v0, vt) � k + t for paths v0, v1, . . . , vt of length t in G. The case
t = 1 is just the assumption; now assume that dG(u, v) = t > 1, and assume that
dT (y, z) � dG(y, z) +k whenever dG(y, z) < t (the induction hypothesis). Choose any
vertex w on a shortest u-v path. Let T (u, v, w) be the smallest subtree of T containing
the vertices u, v, and w. Let p be the vertex of T (u, v, w) separating u, v, and w from
each other. Note that p would be one of the vertices u, v, and w if T (u, v, w) would
be a path. Let q be the vertex of T (u, v, w) having smallest distance to the root x0.
We distinguish two cases.

Case 1 (q lies on the u-v path in T ). By definition of p, p has to lie on this path
too. Since the situation is symmetric in u and v, we may assume that p lies on the
u-q path. We get

dT (u, v) = dT (u, p) + dT (p, q) + dT (q, v)

= (dT (u, p)− dT (w, p)) + (dT (w, p) + dT (p, q) + dT (q, v))

= (dT (u, p)− dT (w, p)) + dT (w, v).

By the construction of T ,

dT (u, p)− dT (w, p) = dT (u, x0)− dT (w, x0) = dG(u, x0)− dG(w, x0) � dG(u,w) .

For the second term we apply the induction hypothesis for the vertices w and v of
G-distance smaller than dG(u, v) to get

dT (u, v) � dG(u,w) + dT (w, v) � dG(u,w) + dG(w, v) + k = dG(u, v) + k .

Case 2 (q does not lie on the T -path between u and v). Applying the induction
hypothesis to the pairs u,w and w, v, both of G-distance smaller than dG(u, v), we
get

dT (u, p) + dT (p, q) + dT (q, w) = dT (u,w) � dG(u,w) + k,

dT (v, p) + dT (p, q) + dT (q, w) = dT (v, w) � dG(v, w) + k.

As in Case 1, we get

dT (u, p) + dT (p, q)− dT (q, w) � dG(u,w),

dT (v, p) + dT (p, q)− dT (q, w) � dG(v, w).

Adding the previous four inequalities yields

2dT (u, p) + 2dT (v, p) + 4dT (p, q) � 2(dG(u,w) + dG(v, w) + k)
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and therefore

dT (u, v) = dT (u, p) + dT (v, p) � dG(u,w) + dG(v, w) + k = dG(u, v) + k .

Although starting with singletons has this strong property and works for several
graph classes, as we shall see, it also has one disadvantage. It does not appear to
construct the optimum spanning tree—that is, one which is k-additive for the smallest
possible k.

As an example, the graph of Figure 1 has some 1-additive tree spanner, which,
however, will not be found by our approach under any rule and any start vertex x0.

On the other hand, if we start our construction with maximum isometric subtrees,
then the assertion of Lemma 2.3 does not hold. As an example, on the graph G
depicted in Figure 2 we obtain a spanning tree T with dT (y, z) � 4 for every edge
yz of G if we start with a maximum isometric subtree (all such subtrees are shortest
paths on five vertices). However, T is not 3-additive.
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Fig. 1. |W | = 1 is not optimal.
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Fig. 2. |W | = max is not optimal.

For the algorithms actually constructing these tree spanners, we assume that the
vertices of G are linearly ordered, and that the graph is given by means of its ordered
adjacency lists, i.e., for every vertex x there is some list Neigh(x) containing its
neighbors in increasing order.

The levels N i(W ) can be computed in linear time by breadth-first search. More-
over, it is also possible to compute the induced subgraphs G[N i(W )] in linear time—
we simply remove from the list Neigh(x) all neighbors of x contained in a level
different from the one containing x itself. Doing so for all vertices x, we obtain the
graph

⋃
iG[N i(W )].

How quickly T can be constructed surely depends on the rules, which themselves
depend on the graph classes considered.

3. Distance-hereditary graphs.
Definition 3.1. A connected graph G = (V,E) is distance-hereditary if every

induced x-y path, x, y ∈ V , has length dG(x, y).
Several characterizations of distance-hereditary graphs, which are sometimes called

“completely separable graphs,” are given in [1] and [9]. For a fixed vertex x0 in a
distance-hereditary graph, two vertices y and z are tied if there is some vertex w and
some shortest w-x0 path containing y and some shortest w-x0 path containing z.

Lemma 3.2 (see [9]). For every distance-hereditary graph G = (V,E), for every
x0 ∈ V , and for every nonnegative integer i, every two adjacent or tied vertices in
N i+1(x0) have the same neighbors in N i(x0).

Let x0 be any fixed vertex in a connected distance-hereditary graph G. Given an
arbitrary linear order of the vertices of G, we define the following rule.

Rule 1. Connect every y ∈ N i+1(x0) with the smallest (with respect to that
order) vertex f(y) ∈ N(y) ∩N i(x0).

Applying Rule 1, we construct a breadth-first search tree of G. Thereby we
start at x0 and scan the unvisited neighbors of the vertex under consideration in the
specified order.
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Theorem 3.3. Every connected distance-hereditary graph G has some 2-additive
tree spanner which can be found by our basic construction and Rule 1 in linear time.

Proof. Let T be the tree constructed by the rule above. By Lemma 2.3 we may
restrict our attention to a single edge yz of G.

(1) If dG(y, x0) = dG(z, x0) = i + 1, then N(y) ∩ N i(x0) = N(z) ∩ N i(x0) by
Lemma 3.2; thus f(y) = f(z), and dT (y, z) � 2.

(2) If w.l.o.g. i + 1 = dG(y, x0) = dG(z, x0) + 1, we may assume f(y) �= z—
otherwise we are already done.

Then there are shortest y-x0 paths in G, one going over f(y), and one over z.
Then f(y) and z are tied, therefore N(f(y))∩N i−1(x0) = N(z)∩N i−1(x0) by Lemma
3.2. Therefore f(f(y)) = f(z), and dT (y, z) = 3, as desired.

Finding the tree T is very easy: We simply compute the levels and then check
for every vertex y the adjacency list in increasing order until we find some vertex one
level beyond the level of y—the resulting vertex is f(y).

In Figure 3 at the end of section 4, we will give a distance-hereditary graph
without a 1-additive tree spanner showing that the bound given in Theorem 3.3 is
optimal.

For the subclass of block graphs, the above construction with any rule yields a
1-additive tree spanner [19].

4. Interval graphs.
Definition 4.1. A graph is an interval graph if one can associate with each

vertex an interval on the real line such that two vertices are adjacent if and only if
the corresponding intervals have a nonempty intersection.

In [13] the interval graphs are characterized as those chordal graphs (see Definition
6.1 on page 338) without asteroidal triples (see Definition 5.1 on page 337).

We rely on the following property of chordal graphs, which is not hard to prove.
Lemma 4.2. Let x0 be a vertex in the chordal graph G.
(a) For every x ∈ N i+1(x0), N(x) ∩N i(x0) induces a complete graph.
(b) For every edge yz ∈ N i+1(x0), the two sets N(y)∩N i(x0) and N(z)∩N i(x0)

must be comparable by set inclusion.
Proof. (a) Assume x ∈ N i+1(x0) had two nonadjacent neighbors y, z in N i(x0).

Then we choose some chordless y-z path that, except y and z, uses only vertices inside
the levels N0(x0) up to N i−1(x0). Together with the edges zx and xy it forms an
induced cycle of length 4 or more, a contradiction.

(b) Again, assume to the contrary that there are vertices y′, z′ ∈ N i(x0) such
that y′ is adjacent to y but not to z, and z′ is adjacent to z but not to y. If y′ and z′

are adjacent, then we have some induced 4-cycle in G. Otherwise, again we find some
induced y′-z′ path where all internal vertices have distance less than i to x0. Together
with the edges z′z, zy, yy′ this path yields an induced cycle of length at least 5 in G,
a contradiction again.

Lemma 4.3. For every interval graph and every connected component Q of
G[N i+1(x0)], there is some vertex f(Q) ∈ N i(x0) adjacent to all vertices of Q.

Proof. We assume that there are two vertices y and z in some common connected
component Q of G[N i+1(x0)], whose sets of neighbors inside N i(x0) are not compa-
rable. By Lemma 4.2(b), y and z are not adjacent. We find y′ and z′ in N i(x0) such
that y′ is adjacent to y but not to z, and z′ is adjacent to z but not to y.

Then the three vertices x0, y, and z form an asteroidal triple (see Definition 5.1):
The y-z path inside N i+1(x0) avoids x0 and its neighbors, every shortest y-x0 path
going through y′ avoids z and its neighbors, and every shortest z-x0 path going over
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z′ avoids y and its neighbors. Consequently the nonempty sets NG(y) ∩N i(x0), y ∈
V (Q), form a chain; thus some element is contained in all these sets. But an interval
graph cannot contain asteroidal triples [13].

Let all the vertices f(Q) for the components Q of the levels G[N i+1(x0)] be chosen
in advance; for instance, we could choose the smallest element (in the given ordering of
the vertices) in

⋂
y∈QN

i(y)∩N i(x0). The following rule fits into our general scheme.

Rule 2. Connect y ∈ N i+1(x0) with f(Q), where Q denotes the component of
G[N i+1(x0)] containing y.

Now we are able to present our approach for interval graphs. Note that 2-additive
tree spanners are also found by a different algorithm in [15].

Theorem 4.4. Every connected interval graph has some 2-additive tree spanner,
that can be found by our basic construction and Rule 2 in linear time.

Proof. By Lemma 2.3 it suffices to show that dT (y, z) � 3 for every edge yz of G
for the tree T constructed in this way. The case where both y and z have the same
distance dG(y, x0) = dG(z, x0) = i + 1 toward x0 is easy: Then both lie in the same
component Q of G[N i+1(x0)], whence they are connected over f(Q) in T . So assume
that i+1 = dG(y, x0) = dG(z, x0)+1, and let Q denote the component of G[N i+1(x0)]
containing y. Since we are done if f(Q) = z, assume f(Q) �= z. Then both f(Q) and
z are neighbors of y in N i(x0)—by Lemma 4.2(a) they must be adjacent. By the
construction z and f(Q) have distance 2 in T ; thus dT (y, z) � 3.

To find T , we first run a breadth-first search on G and obtain levels N i(x0). That
is, we mark every vertex x by the label dG(x, x0). Then we compute the components
of the graphs G[N i(x0)] for all levels i in linear time as mentioned in section 2. Then
the algorithm identifies f(Q) by counting for each vertex of level i − 1 and each
component Q the number of common edges. Since the collection of all components Q
of graphs G[N i(x0)] for all i forms a partition of the vertex set of G, every adjacency
list is traversed exactly once, showing that the overall running time of our algorithm
is linear.

Both Theorems 4.4 and 3.3 are best possible. The graph in Figure 3 has no
1-additive tree spanner, but it is both a distance-hereditary and an interval graph.
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Fig. 3. A graph without 1-additive tree spanner.

5. Asteroidal triple-free graphs.
Definition 5.1. An independent set of three vertices is called an asteroidal triple

if between each pair in the triple there exists a path that avoids the neighborhood of the
third. A graph is asteroidal triple-free (AT-free) if it contains no asteroidal triple.

In this section we use a dominating shortest path (DSP) as an isometric subtree.
More precisely, a shortest path (x0, x1, . . . , x
) in G = (V,E) is dominating if every
vertex in V \W , W = {x0, x1, . . . , x
}, is adjacent to at least one vertex in W . By
Lemma 2.2 we know that every graph with DSP has a 4-additive tree spanner. This
applies to all AT-free graphs as a consequence of the dominating pair theorem given in
[6]. It is worth mentioning that a DSP in an AT-free graph G can be found in linear
time by 2 × LexBFS [5]: First start a lexicographic breadth-first search (LexBFS)
from an arbitrary vertex x of G. Let x0 be the vertex numbered last by this search.
Start a second LexBFS in G from x0, and let x
 (� = dG(x0, x
)) be the last vertex
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in the second LexBFS. In [5] it is shown that every shortest path (x0, x1, . . . , x
) is a
DSP of G.

Next we demonstrate how to use such a DSP in an AT-free graph to show that ev-
ery connected AT-free graph admits a 3-additive tree spanner. We need the following
result from [10].

Lemma 5.2. The DSP (x0, x1, . . . , x
), constructed as in the proof of Theorem 7
in [10] for a given connected AT-free graph G=(V,E) in linear time, has the following
property: For every i = 1, 2, . . . , �, every vertex z ∈ N i(x0) is adjacent to xi or xi−1.

Rule 3. For i = 1, 2, . . . , � connect a vertex v ∈ N i(x0) to f(v) = xi if v is
adjacent to xi; otherwise connect v to f(v) = xi−1.

Theorem 5.3. Every connected AT-free graph has a 3-additive tree spanner that
can be found in linear time.

Proof. Let G = (V,E) be a connected AT-free graph, and let (x0, x1, . . . , x
) be a
DSP of G constructed by 2×LexBFS. To construct a 3-additive tree spanner of G, we
use our basic construction with G[W ] as an isometric subtree, W = {x0, x1, . . . , x
},
and apply Rule 3. This defines a spanning tree T of G, since by Lemma 5.2 for all
v ∈ V \W the vertex f(v) ∈W is adjacent to v.

We consider a shortest path (v0, v1, . . . , vt) in G with t � 1 (Lemma 2.3 does not
apply), and w.l.o.g. v0 ∈ N i(x0) and vt ∈ N j(x0), 0 � i � j � �. Then j− i � t since
dG(x0, vt) � dG(x0, v0) + dG(v0, vt). This implies dT (f(v0), f(vt)) � t+ 1 by Rule 3.
Finally, since (x0, x1, . . . , x
) is a DSP of G, we have dT (v0, vt) � t+3 = dG(v0, vt)+3.

Observe that the 3-spanner T constructed in the proof can be found in linear
time, since we can find a DSP in AT-free graphs by 2× LexBFS [5].

Moreover, Theorem 5.3 gives the best possible bound since the 5-cycle is an AT-
free graph which has no 2-additive tree spanner.

A graph G = (V,E) is a cocomparability graph if there is some poset (V,<) such
that distinct vertices are adjacent in G if and only if they are not comparable. It is well
known that the cocomparability graphs form a class between the interval graphs and
the AT-free graphs [13]. Hence we know by Theorem 5.3 that every cocomparability
graph has a 3-additive tree spanner. However, the chordless 4-cycle which has no
1-additive tree spanner gives the best-known lower bound for this class.

Conjecture. Every cocomparability graph admits a 2-additive tree spanner.

In the earlier mentioned algorithm for interval graphs by Madanlal et al. [15], the
above approach is used implicitly.

6. Chordal graphs.

Definition 6.1. A graph is called chordal if it does not contain a chordless cycle
of length greater than 3.

Since block graphs, as well as interval graphs, are chordal, considering this class
might seem promising. Also, n-vertex chordal graphs have 2-multiplicative span-
ners with O(n1.5) edges, 3-multiplicative spanners with O(n log n) edges, and 5-
multiplicative spanners with 2n − 2 edges [17]. However, the following example,
independently found by McKee [16] (see also [11]), shows that for every fixed integer
k there are chordal graphs without k-additive tree spanners.

Let the graph G1 be the triangle K3, and let G2 be the graph obtained from G1

by adding three vertices, each one adjacent to two distinct vertices of G2. Let, for
every integer s � 2, the graph Gs be obtained from Gs−1 and Gs−2 by adding for
every edge in E(Gs−1) \E(Gs−2) one new vertex, adjacent to the two vertices of the
edge. These graphs are planar (even outerplanar) and chordal (even 2-trees and path
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Fig. 4. A chordal graph with spanning tree indicated by bold lines.

graphs). The graph G7, together with some 7-additive tree spanner, is given in Figure
4. Look at vertices x and y to see that this particular tree is not 6-additive.

Proposition 6.2. No (k − 1)-additive tree spanner and no k-multiplicative tree
spanner is possible in Gk.

Proof. The eccentricity eccG(x) of x is the largest integer i for which N i(x) is
nonempty (i.e., eccG(x) = maxy∈V (G) dG(x, y)).

Look at the canonical embedding of Gk in the plane. The first observation is that
the outer face F0 of Gk has, as vertex in the dual G∗

k, eccentricity equal to k. In fact,
all faces have the same eccentricity k in the dual graph for this example.

Let T be a spanning tree of Gk. The dual tree T ∗ contains all edges of G∗
k which

cross edges of Gk that do not belong to T .

Let B be a largest connected component of the forest T ∗ − F0, and let F1 be
the neighbor of F0 in B. Note that B contains at least eccT∗(F0) � eccGk

∗(F0) = k
vertices.

The edge F0F1 in T ∗ crosses an edge xy on the outer cycle in Gk. Since F0F1
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is an edge in T ∗, x and y are not adjacent in T . Moreover, dT (x, y) + 1 equals the
number of edges in G∗

k that start in B and end outside B. Since Gk is outerplanar,
the only edges in G∗

k between vertices of B are the edges of T ∗. Therefore

dT (x, y) + 1 =
∑

F∈V (B)

(dG∗
k
− dT∗[B](F )) =

∑
F∈V (B)

(3− dT∗[B](F )) ,

since all vertices except F0 have degree 3 in G∗
k. But by the well-known degree sum

formula, and since T ∗[B] is a tree, this equals

3|V (B)| − 2|E(B)| = |V (B)|+ 2 ,

a number which is greater or equal to k+2. Therefore dT (x, y) � k+1, and T cannot
be (k − 1)-additive or k-multiplicative.

The class of strongly chordal graphs is between the chordal graphs and the interval
graphs; see [7] for a definition and characterizations. Strongly chordal graphs allow 3-
additive spanning trees, as has been shown recently by a completely different approach
[2].
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Abstract. Two graphs G and H with the same vertex set V are P4-isomorphic if every four
vertices {a, b, c, d} ⊆ V induce a chordless path (denoted by P4) in G if and only if they induce a
P4 in H. We call a graph split-perfect if it is P4-isomorphic to a split graph (i.e., a graph being
partitionable into a clique and a stable set). This paper characterizes the new class of split-perfect
graphs using the concepts of homogeneous sets and p-connected graphs and leads to a linear time
recognition algorithm for split-perfect graphs, as well as efficient algorithms for classical optimization
problems on split-perfect graphs based on the primeval decomposition of graphs. The optimization
results considerably extend previous ones on smaller classes such as P4-sparse graphs, P4-lite graphs,
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graphs containing the superbrittle graphs for which a new characterization is obtained leading to
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1. Introduction. Graph decomposition is a powerful tool in designing efficient
algorithms for basic algorithmic graph problems such as maximum independent set,
minimum coloring, and many others. Recently, the modular, the primeval, and the
homogeneous decomposition of graphs attracted much attention. The last two types
of decomposition were introduced by Jamison and Olariu [42] (see also [5]) and are
based on their structure theorem and the concept of P4-connectedness. A P4 is an
induced path on four vertices. A graph G = (V,E) is P4-connected (p-connected for
short) if, for every partition V1, V2 of V with nonempty V1, V2, there is a P4 of G with
vertices in V1 and in V2, called crossing P4. It is easy to see that every graph has
a unique partition into maximal induced p-connected subgraphs, called p-connected
components (p-components for short), and vertices belonging to no P4.

We follow this line of research by introducing and characterizing a new class
of graphs—the split-perfect graphs—for which the p-connected components have a
simple structure generalizing split graphs. As usual, a graph is called a split graph if
its vertex set can be partitioned into a clique and a stable set.

The p-connected components represent the nontrivial leaves in the primeval de-
composition tree, and thus some basic algorithmic problems can be solved in linear
time along the primeval decomposition tree.

The primeval tree is a generalization of the cotree representing the structure of
the well-known cographs, i.e., the graphs containing no induced P4. A cograph or its
complement is disconnected, and the cotree expresses this in terms of corresponding
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cojoin and join operations. The cotree representation of a cograph is essential in
solving various NP-hard problems efficiently for these graphs; see [19, 20] for more
information on P4-free graphs.

The study of P4-free graphs has motivated considering graphs with few P4’s, such
as P4-reducible graphs [37, 40] (no vertex belongs to more than one P4), P4-sparse
graphs [32, 33, 39, 41, 44] (no set of five vertices induces more than one P4), P4-lite
graphs [38] (every set of at most six vertices induces at most two P4’s or a “spider”),
and P4-laden graphs [28] (every set of at most six vertices induces at most two P4’s or
a split graph). Note that in this order, every graph class mentioned in this paragraph
is a subclass of the next one.

Recently, Babel and Olariu [4] considered graphs in which no set of at most
q vertices induces more than t P4’s, called (q, t)-graphs. The most interesting case is
t = q − 4: (4,0)-graphs are exactly the P4-free graphs, (5,1)-graphs are exactly the
P4-sparse graphs, and it turns out that P4-lite graphs form a subclass of (7,3)-graphs.
For all these graphs, nice structural results have been obtained that yield efficient
solutions for classical NP-hard problems. Our new class of split-perfect graphs extends
all of them.

Another motivation for studying graph classes with special P4-structure stems
from the greedy coloring heuristic: Define a linear order < on the vertex set, and then
always color the vertices along this order with the smallest available color. Chvátal [17]
called < a perfect order of G if, for each induced subgraph H of G, the greedy heuris-
tic colors H optimally. Graphs having a perfect order are called perfectly orderable
(see [34] for a comprehensive survey); they are NP-hard to recognize [46]. Because
of the importance of perfectly orderable graphs, however, it is natural to study sub-
classes of such graphs which can be recognized efficiently. Such a class was suggested
by Chvátal in [16]; he called a graph G brittle if each induced subgraph H of G con-
tains a vertex that is not an endpoint of any P4 in H or not a midpoint of any P4

in H. Brittle graphs are discussed in [35, 50, 51]. Babel and Olariu [4] proved that
(7,3)-graphs are brittle, and Giakoumakis [28] proved that P4-laden graphs are brittle.
A natural subclass of brittle graphs, called superbrittle, consists of those graphs G in
which every vertex is not an endpoint of any P4 in G or not a midpoint of any P4 in
G. Split graphs are superbrittle since in a split graph with clique C and stable set S,
every midpoint of a P4 is in C and every endpoint of a P4 is in S. Superbrittle graphs
are characterized in terms of forbidden induced subgraphs in [47]. We will show that
our new class of split-perfect graphs is a subclass of brittle graphs, containing all
superbrittle graphs. Moreover, we construct a perfect order of a split-perfect graph
efficiently, and we obtain a new characterization of superbrittle graphs leading to a
linear time recognition.

Yet another motivation for studying split-perfect graphs stems from the theory of
perfect graphs. A graph G is called perfect if, for each induced subgraph H of G, the
chromatic number of H equals the maximum number of pairwise adjacent vertices in
H. For example, all the above-mentioned graphs are perfect. For more information
on perfect graphs, see [7, 12, 29]. Recognizing perfect graphs in polynomial time is
a major open problem in algorithmic graph theory.1 Two graphs G and H with the
same vertex set V are P4-isomorphic if, for all subsets S ⊆ V , S induces a P4 in G
if and only if S induces a P4 in H. Chvátal [18] conjectured and Reed [48] proved
that two P4-isomorphic graphs are both perfect or both imperfect. Thus, to recognize

1Very recently, Chudnovsky et al. [14], Chudnovsky and Seymour [15], and Cornuéjols, Liu, and
Vušković [22] have announced that perfect graphs can be recognized in polynomial time.
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Fig. 1.1. Elementary graphs illustrated.

perfect graphs it is enough to recognize the P4-structure of perfect graphs: given a
4-uniform hypergraph H = (V, E). Is there a perfect graph G = (V,E) such that
S ∈ E if and only if S induces a P4 in G? This was done for the case when the perfect
graph G is a tree [25, 10, 11], a block graph [8], the line graph of a bipartite graph [52],
a claw-free graph [3], or a bipartite graph [2]. Note that the P4-structure of a (not
necessarily perfect) graph can be recognized in polynomial time [31].

Another question arising from Reed’s theorem is the following: Which (perfect)
graphs are P4-isomorphic to a member of a given class of perfect graphs? Let C be a
class of perfect graphs. Graphs P4-isomorphic to a member in C are called C-perfect
graphs. By Reed’s theorem, C-perfect graphs are perfect. Moreover, they form a class
of graphs which is closed under complementation and contains C as a subclass. Thus,
it is interesting to ask the following question: Assuming that there is a polynomial
time algorithm for testing membership in C, can C-perfect graphs be recognized in
polynomial time, too? First results in this direction are good characterizations of
tree-perfect graphs, forest-perfect graphs [9], and bipartite-perfect graphs [43]. This
paper will give a good characterization of split-perfect graphs.

Definition 1.1. A graph is called split-perfect if it is P4-isomorphic to a split
graph.

Trivial examples of split-perfect graphs are split graphs and P4-free graphs. Non-
trivial examples are induced paths Pn = v1v2 · · · vn for any integer n. To see this we
need some definitions, following [9]. Let (v1, . . . , vn) be a vertex order of a graph G.
Then N>i(vi) denotes the set of all neighbors vk of vi with k > i. A vertex order
(v1, . . . , vn) of G is said to be elementary if for all i

N>i(vi) =

{ {vi+2, vi+3, . . . , vn} for even i,
{vi+1} for odd i.

Graphs having elementary orders are split graphs in which the “odd vertices”
v2k+1 form a stable set and the “even vertices” v2k form a clique. A graph is said to
be elementary if it has an elementary order (see Figure 1.1). If the elementary graph
has at least 4 vertices, then its partition into a clique and a stable set is unique and
can be determined using its degree sequence. Thus, as split graphs in general [30],
elementary graphs can be recognized in linear time.

Obviously, Pn = v1v2 · · · vn is P4-isomorphic to the elementary graph consisting of
the elementary order (v1, . . . , vn). It can be seen that, for n ≥ 7, this elementary graph
is the only split graph (up to “complementation” and “bipartite complementation”)
that is P4-isomorphic to Pn. In section 4, we will extend this example to the so-called
double-split graphs. Double-split graphs play a key role for characterizing split-perfect
graphs.

In section 2, we will show that the class of split-perfect graphs contains all
P4-laden graphs and all (7,3)-graphs (hence all P4-reducible, P4-sparse, and P4-lite
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Fig. 1.2. Relationship between graph classes.

graphs). The relationship between the above-mentioned graph classes is shown in
Figure 1.2.

In section 3, we describe forbidden induced subgraphs of split-perfect graphs,
which are needed for characterizing split-perfect graphs.

In section 4, we introduce double-split graphs and show that they are split-perfect.
As already mentioned, double-split graphs are of crucial importance for a good char-
acterization of split-perfect graphs.

In section 5, we characterize split-perfect graphs in terms of forbidden subgraphs
and in terms of their p-connected components: It turns out that for split-perfect
graphs having no homogeneous sets, the p-connected components are double-split
graphs or their complements.

In the last section, section 6, we will point out how classical optimization problems
such as weighted clique number, weighted chromatic number, weighted independence
number, and weighted clique cover number can be solved efficiently, in a divide and
conquer manner, on split-perfect graphs using the primeval decomposition tree. These
results are based on our good characterization of p-connected split-perfect graphs.

2. Preliminaries. Our notation is quite standard. The neighborhood of the
vertex v in a graph G is denoted by NG(v); if the context is clear, we simply write
N(v). The path (respectively, cycle) on m vertices v1, v2, . . . , vm with edges vivi+1
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(respectively, vivi+1 and v1vm) (1 ≤ i < m) is denoted by Pm = v1v2 · · · vm (respec-
tively, Cm = v1v2 · · · vmv1). The vertices v1 and vm are the endpoints of the path Pm,
and for a P4 v1v2v3v4, v2 and v3 are the midpoints of the P4. Graphs containing no
induced subgraphs isomorphic to a graph of a given set H of graphs are called H-free
graphs. It is well-known that split graphs are exactly the (C4, C4, C5)-free graphs [26].

For convenience, we often identify sets of vertices of a graph G and the subgraphs
induced by these sets in G. Thus, for S ⊆ V (G), S also denotes the subgraph G[S]
induced by S.

A set S of at least two vertices of a graph G is called homogeneous if S �= V (G)
and every vertex outside S is adjacent to all vertices in S or to no vertex in S. A graph
is prime if it has at least three vertices and contains no homogeneous set. Obviously,
prime graphs and their complements are connected.

A homogeneous set M is maximal if no other homogeneous set properly contains
M . It is well known that in a connected graph G with connected complement G,
the maximal homogeneous sets are pairwise disjoint (see, e.g., [45]). In this case, the
graph G∗ obtained from G by contracting every maximal homogeneous set to a single
vertex is called the characteristic graph of G. Clearly, G∗ is prime. We shall use the
following useful fact for later discussions (see Figure 3.1 for the graphs Gi).

Lemma 2.1 (see [36]). Every prime graph containing an induced C4 contains an
induced P5 or G3 or G4.

Throughout this paper, we use the fact that, in a graph G = (V,E), every homo-
geneous set S contains exactly one vertex of every P4 crossing S and V \ S.

For the subsequent structure theorem of Jamison and Olariu we need the following
notion: A p-component H of G is called separable if it has a partition into nonempty
sets H1, H2 such that every P4 with vertices from both Hi’s has its midpoints in H1

and its endpoints in H2. Note that a p-connected graph is separable if and only if its
characteristic graph is a split graph [42].

Theorem 2.2 (structure theorem [42]). For an arbitrary graph G, precisely one
of the following conditions is satisfied:

(i) G is disconnected,
(ii) G is disconnected,
(iii) G is p-connected,
(iv) there is a unique proper separable p-component H of G with a partition

(H1, H2) such that every vertex outside H is adjacent to all vertices in H1

and nonadjacent to all vertices in H2.
Based on this theorem, Jamison and Olariu define the primeval decomposition,

which can be described by the primeval decomposition tree and leads to efficient
algorithms for a variety of problems if the p-connected components are sufficiently
simple. We will show that this is the case for split-perfect graphs.

Note that dividing a graph into p-connected components can be done in linear
time (see [6]). This fact together with Proposition 2.3 below allows us to restrict our
attention to p-connected split-perfect graphs only.

Proposition 2.3. A graph is split-perfect if and only if each of its p-connected
components is split-perfect.

Proof. The only if part is clear. To prove the if part, let G be a graph such
that each p-connected component Ai (1 ≤ i ≤ m) of G is P4-isomorphic to a split
graph Bi. Let W be the set of all vertices of G not belonging to any P4. We now
construct, inductively, a split graph Hm P4-isomorphic to G as follows.

First, set H1 := B1∪W . If the split graph Hi (1 ≤ i < m) is already constructed,
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then Hi+1 is obtained from Hi and Bi+1 by joining every vertex in the clique part of
Hi and every vertex of Bi+1 by an edge.

Clearly,Hm is a split graph. Moreover, Bi (1 ≤ i ≤ m) are exactly the p-connected
components of Hm. Thus, Hm is P4-isomorphic to G.

Observation 2.4. Let G be split-perfect and let H = (CH , SH , EH) be a split
graph P4-isomorphic to G. Assume that each of the sets {a, b, c, u} and {a, b, c, v}
induces a P4 in G. Then exactly one of the following conditions holds:

(i) a, b, c induce a path P3 in H, and u and v are both adjacent in H to an
endpoint of the path H[a, b, c]. In particular, u and v both belong to the
stable-part SH of H.

(ii) The statement (i) holds in H instead of H. In particular, u and v both belong
to the clique-part CH of H.

Proof. Since a, b, c, and u induce a P4 in H, H[a, b, c] must be a P3, or else a P3.
The rest follows from the fact that H is a split graph.

Proposition 2.5. Let G be a p-connected split-perfect graph. Then every homo-
geneous set of G induces a P4-free graph.

Proof. Assume to the contrary, that there is a homogeneous set S in G which
contains an induced P4 x1x2x3x4. As G is p-connected, there is a crossing P4 P to
the partition S and V (G) − S. As S is homogeneous, P has exactly one vertex in
S. Let a, b, c be the three vertices of P outside S. Since S is homogeneous, each of
the sets {a, b, c, xi}, 1 ≤ i ≤ 4, induces a P4 in G. Now, by Observation 2.4, if H
is an arbitrary split graph P4-isomorphic to G, then in H, x1, x2, x3, x4 are pairwise
nonadjacent, or else pairwise adjacent. In particular, H[x1, x2, x3, x4] cannot be a P4,
a contradiction.

Proposition 2.6. Let G be a p-connected graph. G is split-perfect if and only if
(i) every homogeneous set of G induces a P4-free graph, and
(ii) G∗ is split-perfect.
Proof. The necessity is clear, because of Proposition 2.5 and the fact that G∗

is (isomorphic to) an induced subgraph of G. We now prove the sufficiency. Let
G∗ be P4-isomorphic to a split graph H. For each vertex v of G∗ let Mv be the
corresponding maximal homogeneous set in G. Let H ′ be the graph obtained from H
by replacing each vertex v by the complete graph on vertex set Mv (if v belongs to
the clique part of H), respectively, be the stable set Mv (otherwise). Clearly, H ′ is a
split graph. Since the sets Mv contain no P4, G and H ′ are P4-isomorphic (extend a
P4-isomorphism between G∗ and H to one between G and H ′ in a natural way).

Propositions 2.3 and 2.6 allow us to consider only p-connected split-perfect graphs
without homogeneous sets.

Recall that P4-laden graphs are those graphs in which every set of at most six
vertices induces at most two P4’s or a split graph.

Corollary 2.7.
(i) P4-laden graphs are split-perfect.
(ii) (7,3)-graphs are split-perfect.
Proof. To prove (i), let G be a p-connected P4-laden graph. Then

every homogeneous set of G consisting of more than two vertices is a stable set,

otherwise, let M be a homogeneous set with at least three vertices a, b, c, where a and
b are adjacent. By the p-connectedness, there is a crossing P4 P for M and V (G)−M .
As M is homogeneous, |V (P )∩M | = 1. Now, (V (P )−M)∪{a, b, c} consists of exactly
six vertices, induces three P4’s, but does not induce a split graph, a contradiction.
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Now, it was proved in [28, Theorem 10] that

G∗ is a P5 or P5 or a split graph.

In particular, G∗ is split-perfect and (i) follows from Propositions 2.6 and 2.3.
To prove (ii), we first show the following claims; the first one is easy to see; the

second one follows from the known inclusions (6,2) ⊂ P4-lite ⊂ P4-laden and (i).
Claim 1. Every graph with at most five vertices, different from the C5, is split-

perfect.
Claim 2. (6,2)-graphs are split-perfect.
Now, consider a p-connected (7,3)-graph G. We have to show that G is split-

perfect. It was shown in [4, Theorem 4.5] that G has at most six vertices. By Claims
1 and 2, we may assume that G has exactly six vertices and exactly three P4’s.

If G has a homogeneous set, G∗ is split-perfect by Claim 1 and every homogeneous
set has at most three vertices (otherwise, the p-connectedness would imply that G
has four P4’s). Hence, by Proposition 2.6, G is split-perfect. So, let G have no
homogeneous set.

If G or G has a P5, say G, then (by considering the neighbors of the vertex
outside the P5) G is a P6 or the graph with vertices vi (1 ≤ i ≤ 6) and edges vivi+1

(1 ≤ i ≤ 5), v2v6, and v3v6 (otherwise G has a homogeneous set or four P4’s). In each
case, G is split-perfect.

If G is (P5, P5)-free, then G cannot contain an induced C4 or C4. Otherwise, by
Lemma 2.1, G would contain a G3, G3, G4, or G4, but each of these graphs has more
than three P4’s, a contradiction. Thus, G is (C4, C4, C5)-free; i.e., G is a split graph
and (ii) follows.

3. Forbidden induced subgraphs for split-perfect graphs. As a conse-
quence of Observation 2.4, we give a list of forbidden induced subgraphs of split-
perfect graphs: These are the induced cycles Ck of length k ≥ 5, the graphs Gi
(1 ≤ i ≤ 8) shown in Figure 3.1, and their complements. It turns out (Theorem 5.1)
that these forbidden induced graphs characterize prime split-perfect graphs.

We need some notions. Let G and G′ be two graphs with the same vertex set. An
induced P4 in G is bad if its vertices do not induce a P4 in G′ (thus, P4-isomorphic
graphs do not have bad P4’s).

Another useful notion is suggested by Observation 2.4: Let G be a split-perfect
graph and H a corresponding split graph having the same P4-structure. We call the
clique and the stable set of H the two classes of H. Two vertices x, y in G are called
equivalent (x ∼ y) if they are in the same class of H. Clearly, ∼ is an equivalence
relation on the vertex set of a split-perfect graph.

Now, Observation 2.4 means that in a split-perfect graph G, vertices x and y are
in the same class (i.e., x ∼ y) if there are vertices a, b, c ∈ V (G) − {u, v} such that
{a, b, c, x} and {a, b, c, y} both induce a P4.

Therefore, in a split-perfect graph, pairwise equivalent vertices induce a P4-free
subgraph.

Recall that a P4 in a split graph H has its two midpoints in one class and its two
endpoints in the other class. Thus, if G is P4-isomorphic to H, then every P4 P of G
must be balanced with respect to H; i.e., P has exactly two vertices in one class and
the other two vertices in the other class.

Lemma 3.1. None of the graphs Ck, Ck (k ≥ 5), and Gi, Gi (1 ≤ i ≤ 8) in
Figure 3.1 is split-perfect.

Proof. Throughout this proof, we will extensively use the facts discussed above.



348 ANDREAS BRANDSTÄDT AND VAN BANG LE

21 3 4 5

6

G1
G2 G3

G1
G2 G3

G4 G5 G6

G4
G5 G6

G7 G8

G8

4 2

6

1 5

3

2 3

1 5

6

41 5

6

2

3

4

61 5

3 42

1 4

3 6

5 2

1 2

45

6 3
6

54

3

2 1

1 4

5 2

63

3

1 5

2

6

4

4

5

3 6

2 1

6

3

1 5

4 2

1

2

3

4

5 6 7

576

1

4

3

2

1 2 3 4 65

7

G7

4

1 5

2

6 7

3

Ck (k ≥ 5)

Ck (k ≥ 5)

Fig. 3.1. Forbidden induced subgraphs.



SPLIT-PERFECT GRAPHS 349

Note that G is not split-perfect if and only if G is not split-perfect. Thus we only
show that none of Ck, k ≥ 5, and Gi, 1 ≤ i ≤ 8, is split-perfect.

Consider Ck for odd k ≥ 5. In this case, all vertices of the Ck are pairwise
equivalent, which means that Ck is not split-perfect. (Note that for odd cycles Ck,
k ≥ 5, it also follows from Reed’s theorem that they are not split-perfect because they
are not perfect.)

Let k = 2n ≥ 6 and write Ck = v1v2 . . . v2n. In this case, all odd vertices v2i−1

are pairwise equivalent and all even vertices v2i are pairwise equivalent. Thus, if C2n

is split-perfect and H is a corresponding split graph, then, by balance, one class of
H consists of exactly the vertices v2i−1 and the other class consists of exactly the
vertices v2i. Now it is a matter of routine to check that in any realization of the split
graph H some P4 in C2n must be bad.

Assume that G ∈ {G1, G3, G4} is split-perfect and let H be a corresponding split
graph. Then 2 ∼ 4 ∼ 6. Since the P4’s in G are balanced, the classes of H are {2, 4, 6}
and {1, 3, 5}. Again, it is a matter of routine to check that in any realization of the
split graph H some P4 in G must be bad.

Similary, assume that G ∈ {G2, G6} is split-perfect and let H be a corresponding
split graph. Then 1 ∼ 2 ∼ 5. By balance, the classes of H are {1, 2, 5} and {3, 4, 6}.
Again, it is a matter of routine to check that in any realization of the split graph H
some P4 in G must be bad.

If G5 is split-perfect, then 1, 3, 4, 5, and 6 are pairwise equivalent. But then no
P4 in G5 is balanced.

If G7 is split-perfect, then 3 ∼ 4 ∼ 7. Since every P4 of G7 has two vertices
in {3, 4, 7}, it follows by balance that every corresponding split graph H has classes
{3, 4, 7} and {1, 2, 5, 6}. Again, it is a matter of routine to check that in any realization
of the split graph H some P4 in G7 must be bad.

Finally, if G8 is split-perfect, then 1, 2, 3, and 4 are pairwise equivalent, but
induce a P4.

4. Double-split graphs. We define now the class of double-split graphs gen-
eralizing the split graphs and playing a key role in the subsequent characterization
of split-perfect graphs. As an important step towards this characterization, we will
show that double-split graphs are split-perfect.

Definition 4.1. A graph is called double-split if it can be obtained from two
disjoint (possibly empty) split graphs GL = (QL, SL, EL), GR = (QR, SR, ER) and
an induced path P = P [xL, xR], possibly empty, by adding all edges between xL and
vertices in QL and all edges between xR and vertices in QR (see Figure 4.1).

Remark. Every split graph is double-split as the case of an empty path P and an
empty split graph GR shows.

Lemma 4.2. Double-split graphs are split-perfect.
Proof. Let G be a double-split graph consisting of two split graphs GL =

(QL, SL, EL), GR = (QR, SR, ER) with cliques QL, QR and stable sets SL, SR. If
the path P connecting GL and GR is empty, then G is P4-isomorphic to the following
split graph H = (QL ∪QR, SL ∪ SR, EH) obtained from GL and GR by adding a join
between QL and QR and between SL and QR.

Now assume that P = v3v4 . . . vi, i ≥ 3, such that xL = v3 is adjacent to all
vertices of QL and xR = vi is adjacent to all vertices of QR. We construct a split
graph H = (QH , SH , EH) with the same P4-structure as G. Hereby we use the fact
that induced paths P ′ = v1v2v3v4 . . . vivi+1vi+2 are split-perfect and can be realized
by the elementary split graph GP ′ = ({v2, v4, v6, . . .}, {v1, v3, v5, . . .}, EP ′). We will
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xL xR

QRQL
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GL GR
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Fig. 4.1. Double-split graphs illustrated.

see that this split graph GP ′ can be extended to H by replacing v1 by SL, v2 by QL,
vi+1 by QR, and vi+2 by SR in a suitable way. Moreover, we use the following simple
property of split graphs.

Claim. Let G = (Q,S,E) be a split graph and let G′ = (Q,S,E′) be the following
bipartite complement of G: For all x ∈ Q and all y ∈ S, xy ∈ E′ ⇐⇒ xy /∈ E. Then
G and G′ are P4-isomorphic.

We construct the split graph H = (QH , SH , EH) depending on the parity of |P |;
see Figure 4.2.

QH :=

{
QL ∪ {v4, v6, . . . , vi−1} ∪QR if i is odd,
QL ∪ {v4, v6, . . . , vi} ∪ SR otherwise,

SH :=

{
SL ∪ {v3, v5, . . . , vi} ∪ SR if i is odd,
SL ∪ {v3, v5, . . . , vi−1} ∪QR otherwise.

Now EH consists of the following edges based on the edge set of GP ′ and on
EL, ER and depending on the parity of |P |:

(1) vertices in QH are pairwise adjacent;
(2) the EH -edge set between SL and QL is EL;
(3) the EH -edge set between QR and SR is the bipartite complement of ER if i

is odd and is ER otherwise;
(4) there is a join between QL and SR (due to the fact that there is an edge

between v2 and vi+2 in GP ′) if i is odd and there is a join between QL and
QR otherwise;

(5) vertices from {v3, v4, . . . , vi} have a join to a set from SL, QL, QR, SR if and
only if there is an edge in GP ′ to the corresponding vertex from {v1, v2,
vi+1, vi+2}. Thus, for odd i, QL has a join to v5, v7, . . . , vi, all vertices x ∈
{v4, v6, . . . , vi−1} have a join to SR, and QR has a join to vi; if i is even, then
QL has a join to v5, v7, . . . , vi−1, and all vertices x ∈ {v4, v6, . . . , vi−2} have
a join to QR;

(6) the edges between vertices from v3, v4, . . . , vi are the same as in GP ′ .
We claim that G and H are P4-isomorphic. First we show that every P4 of G is

a P4 in H. There are the following types of P4’s in G:
(a) P4’s in GL and P4’s in GR;
(b) xyv3v4 with x ∈ SL, y ∈ QL, xy ∈ EL (for i = 3 replace v4 by a vertex

z ∈ QR);
(c) xv3v4v5 for x ∈ QL (for i = 3 replace v4 by a vertex y ∈ QR and v5 by a

vertex z ∈ SR);
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Fig. 4.2. Construction for i = 3 (left) and i = 4 (right); bc(E) means the bipartite complement
of E.

(d) P4’s in v3, v4, . . . , vi (for i ∈ {3, 4, 5} there are no such P4’s);
(e) vi−2vi−1vix with x ∈ QR (for i = 3 this corresponds to case (b), for i = 4

replace vi−2 by z ∈ QL);
(f) vi−1vixy with x ∈ QR, y ∈ SR, xy ∈ ER (for i = 3 replace vi−1 by z ∈ QL).
Type (a) for GL is obviously fulfilled by construction of H, and for GR, the

bipartite complement of GR in H ensures the property if i is odd, and is obvious in
the other case.

Types (b), (c), (d), (e) are obviously fulfilled.
Type (f): For the P4 vi−1vixy with x ∈ QR, y ∈ SR, xy ∈ ER, if i is odd, then

xy is not an edge in the bipartite complement of GR, and thus vixvi−1y is a P4 in H.
If i is even, xy is an edge in EH and vi−1viyx is a P4 in H.

Now consider a P4 in H. According to the definition of H this is either a P4

between QL and SL which is the same as in GL, or a P4 between QR and SR which,
for odd i, is the same as in GR due to the bipartite complement and, for even i, is
obviously the same as in GR, or a P4 which goes back to GP ′ but GP ′ realizes exactly
the P4’s of the induced path P ′ which are P4’s in G as well.

Double-split graphs and their complements can be recognized in linear time due
to their simple structure as we will show in the appendix.

5. The structure of split-perfect graphs. Now we are able to describe prime
split-perfect graphs as follows.

Theorem 5.1. Let G be a prime graph. Then the following statements are
equivalent:

(i) G is split-perfect;
(ii) G has no induced subgraphs Ck, Ck (k ≥ 5), Gi, Gi (1 ≤ i ≤ 8);
(iii) G or G is a double-split graph.
Theorem 5.1 and Propositions 2.3 and 2.6 immediately yield the following

theorem.
Theorem 5.2. A graph G is split-perfect if and only if each of its p-connected

components H has the following properties: Every homogeneous set in H induces a
P4-free graph, and H∗ is a double-split graph or the complement of a double-split
graph.

Proof of Theorem 5.1. The implication (i) ⇒ (ii) follows from Lemma 3.1, and
the implication (iii)⇒ (i) follows from Lemma 4.2. Note that these two implications
hold in general, not only for p-connected graphs or prime graphs.

We now complete the proof by showing (ii)⇒ (iii), where we will make use of the
primality as follows.



352 ANDREAS BRANDSTÄDT AND VAN BANG LE

Observation 5.3. Let G be prime and let H be a P4-free induced subgraph of G.
If H is not a stable set (a clique, respectively), then there exist adjacent (nonadjacent,
respectively) vertices x, y in H and a vertex z outside H such that z is adjacent to x
and nonadjacent to y.

Proof. Assume that H is not a stable set (the case that H is not a clique can be
seen similarly). Let S ⊆ H be maximal such that H[S] has no isolated vertices. As
H is not a stable set, |S| ≥ 2. It is well known that P4-free graphs with at least two
vertices contain two vertices u and v with N(u) = N(v) or N(u) ∪ {u} = N(v) ∪ {v}
(so-called twins). Let {u, v} be twins in S. As G is prime, there is a vertex z /∈ S
adjacent to u and nonadjacent to v. By definition of S, z /∈ H. If u and v are adjacent,
then we are done by setting x = u and y = v. Thus, let u and v be nonadjacent.
By definition of S, u is adjacent to another vertex w in S which is also adjacent to v
because {u, v} is homogeneous in S. Now, we are done by setting x = u, y = w (if z
is nonadjacent to w), or x = w, y = v (otherwise).

Let G be a prime graph satisfying the statement (ii). If G is (P5, P5)-free, then
by Lemma 2.1 G cannot contain a C4 or a C4 (otherwise G would contain a G3, G3,
G4, or G4). Hence G is (C4, C4, C5)-free, i.e., G is a split graph and we get (iii).

Therefore, we may assume that G contains a P5 or a P5. By considering comple-
mentation if necessary, assume that G has an induced P5. Consider a longest induced
path P = v1v2 . . . vk in G. By assumption, k ≥ 5. Now we are going to show, by a
number of claims, that G is a double-split graph.

Claim No-Middle. For every 2 < i < k − 1,

(N(vi−1) ∩N(vi+1))− (N(vi−2) ∪N(vi+2)) = {vi}.

Proof. Let H = (N(vi−1) ∩N(vi+1)) − (N(vi−2) ∪N(vi+2)). Then H induces a
P4-free graph, otherwise G would have a G8. Thus, assuming H �= {vi}, H has twins
{x, y}. As G has no homogeneous set, there is a vertex z /∈ H such that zx ∈ E(G)
but zy /∈ E(G). We distinguish between three cases.

Case 1. z is adjacent to both vi−1 and vi+1.
By definition of H and z /∈ H, z must be adjacent to vi−2 or vi+2. By symmetry,

let zvi−2 ∈ E(G). Now, if z is also adjacent to vi+2, then vi−2, vi−1, vi+1, vi+2, y, z
induce a G6. If z is nonadjacent to vi+2, then the same vertices induce a G5. Case 1
is settled.

Case 2. z is adjacent to vi−1 and nonadjacent to vi+1 (or vice versa).
Then z cannot be adjacent to vi+2 (otherwise there is a C5). Now, if x and y are

adjacent, then there is a G2, and if x, y are nonadjacent, then there is a G5. Case 2
is settled.

Case 3. z is nonadjacent to both vi−1 and vi+1.
First, assume xy ∈ E(G). Then z cannot be adjacent to vi−2 or to vi+2 (otherwise

there is a G5). But then vi−2, vi−1, x, vi+1, vi+2, z induce a G1. Second, assume
xy /∈ E(G). Then there is a G3 (if z is adjacent to vi−2) or a G4 (otherwise). Case 3
is settled.

Let M be the set of all vertices outside P adjacent to a vertex in P but not to all
vertices in P .

Claim N. For every v ∈ M , N(v) ∩ P = {v2} or {v2, v3} or {v1, v2, v3} or
{vk−1} or {vk−2, vk−1} or {vk−2, vk−1, vk}.

Proof. Since G does not have a C� (# ≥ 5), G2, G2, G3, G5, or G6, every vertex
in M has at most three neighbors in P . We distinguish between three cases.

Case 1. |N(v) ∩ P | = 3.
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Then N(v) ∩ P is a subpath of P , otherwise G would have a C� for some # ≥ 5,
or a G3 or G5 or a G6. Thus N(v) ∩ P = {vi−1, vi, vi+1} for some suitable i. Now,
by Claim No-Middle, i = 2 or i = k − 1, and Case 1 is settled.

Case 2. |N(v) ∩ P | = 2.
We first claim that N(v) ∩ P is a subpath of P . Assume to the contrary that

the two neighbors of v in P are nonadjacent. Then there is a suitable i such that
N(v) ∩ P = {vi−1, vi+1}, otherwise G would have a C� for some # ≥ 5. Now, by
Claim No-Middle, i = 2 or i = k − 1. By symmetry we only consider the case
N(v) ∩ P = {v1, v3}.

Let H = (N(v1) ∩ N(v3) ∩M) ∪ {v2}. Note that no vertex in H is adjacent to
a vj , j ≥ 4 (as we have seen in Case 1). Thus H is P4-free (otherwise G would have
a G8). Since H is not a clique (it contains v and v2), there exist, by Observation 5.3,
nonadjacent vertices x, y ∈ H and a vertex z /∈ H adjacent to x but nonadjacent to
y. Note that z ∈M : If z is nonadjacent to P , then v1, v3, x, y, z, v4 induce a G4. If z
is adjacent to all vi’s, then v1, v3, v4, v5, y, z induce a G5. Now, if zv3 ∈ E(G), then
zv1 /∈ E(G) (otherwise z ∈ H). But then v1, v3, v4, x, y, z induce a G2 or a G5. Thus,
zv3 /∈ E(G). But then v1, v3, v4, x, y, z induce a G3 or contain a C5 depending on
zv1 ∈ E (if zv4 ∈ E(G)) or a G4 or a G5 (if zv4 /∈ E(G)).

We have shown that the two neighbors of v on P are vi and vi+1 for some suitable
i. Since G has no G7, i ∈ {1, 2, k− 1, k− 2}. We are going to show that i ∈ {2, k− 2}
holds. By symmetry, we only show i �= 1.

Assume to the contrary that i = 1. Let H = N(v2) − N(v3). Then no vertex
in H is adjacent to vj , j ≥ 4 (as we have seen in Case 1). Thus, H is P4-free
(otherwise G would have a G8). Since H is not a stable set (it contains v and v1),
there exist, by Observation 5.3, adjacent vertices x, y ∈ H and vertex z /∈ H adjacent
to x but nonadjacent to y. If zv2 ∈ E(G), then zv3 ∈ E(G) (otherwise z ∈ H)
and v2, v3, v4, x, y, z induce a G2 or a G4. Thus zv2 /∈ E(G), hence also zv3 /∈ E(G)
(otherwise v2, v3, v4, x, y, z induce a G5 or a G3). But then zxv2v3 · · · vk is an induced
path longer than P , or else z is adjacent to some vj , j ≥ 4, yielding a Cj+1.

This shows that i �= 1 and, by symmetry, i �= k − 1. We have proved Claim N in
Case 2.

Case 3. |N(v) ∩ P | = 1.
Then N(v) ∩ P = {v2} or N(v) ∩ P = {vk−1}. Otherwise G would have a G1, or

there is an induced path longer than P . Claim N is proved in Case 3.
Let QL = N(v3)− (N(v4) ∪N(v5)).
Claim QL. QL is a clique.
Proof. First note that QL induces a P4-free graph (otherwise G would have a G8).

Now, assume to the contrary that QL is not a clique. By Observation 5.3, there exist
nonadjacent vertices x, y ∈ QL and vertex z /∈ QL adjacent to x but nonadjacent to
y. We distinguish between two cases.

Case 1. z and v3 are nonadjacent.
If zv4 /∈ E(G), then x, y, z, v3, v4, v5 induce a G1 if zv5 /∈ E, else z, x, v3, v4, v5 is

a C5. If zv4 ∈ E(G), then, by Claim N, zv5 /∈ E(G) and G has a G4. Case 1 is settled.
Case 2. z and v3 are adjacent.
Then z ∈ M . Because, if z is adjacent to all vi’s, then y cannot be adjacent to

v2 (otherwise G would have a G4 induced by y, v2, v3, v4, v5, and z). By Claim N,
y is also nonadjacent to v1. But then G has a G1.

Now, by definition of QL, z must be adjacent to v4 or v5, and by Claim N, z is
adjacent to v4 and nonadjacent to v2. Thus x cannot be adjacent to v2, otherwise
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v2, v3, v4, v5, x, z induce a G2 (if zv5 /∈ E(G)) or a G4 (if zv5 ∈ E(G)). Therefore, by
Claim N, x cannot be adjacent to v1. But then v1, v2, v3, v4, v5, x induce a G1. Case 2
is settled.

Let T be the set of all vertices that are adjacent to all vertices in P , and let
SL = N(QL)− ({v3} ∪ T ).

Claim SL. SL is a stable set.
Proof. We first show that

v ∈ SL =⇒ vvi /∈ E(G), i ≥ 3.(5.1)

Proof of (5.1). Assume first that v is adjacent to v3. By definition of QL, v must
be adjacent to v4 or to v5 (otherwise v would belong to QL, contradicting v ∈ SL).
Thus, by Claim N, v is adjacent to v4 and is nonadjacent to v1, v2. Now, a neighbor
x in QL of v together with v1, v2, v3, v4, and v induce a G2 (if xv1 /∈ E(G)) or a G4

(otherwise). We have shown that v is nonadjacent to v3. Next, if vv4 is an edge, then,
by Claim N, v is nonadjacent to v1 and v2, and so a neighbor x in QL together with
v1, v2, v3, v4, v induce a G6 or a G5. Thus v is nonadjacent to v4. Finally, v cannot
be adjacent to vi for any i ≥ 5 because G does not have a C�, # ≥ 5. Thus, (5.1) is
proved.

Next, we show that

for every two adjacent vertices u, v ∈ SL, N(u) ∩QL = N(v) ∩QL.(5.2)

Proof of (5.2). Assume that there is a vertex x ∈ QL adjacent to u but nonadja-
cent to v, say. Let y ∈ QL be a neighbor of v. Then by (5.1), u, v, x, y, v3, v4 induce
a G2 (if yu ∈ E(G)) or a G6 (otherwise). This contradiction proves (5.2).

We furthermore show that

SL induces a P4-free graph.(5.3)

Proof of (5.3). If not, then by (5.2), there is a vertex in QL adjacent to all vertices
of a P4 in SL. By (5.2), G would have a G8. This proves (5.3).

Now, to finish the proof of Claim SL, assume that SL is not a stable set. By
Observation 5.3, there exist adjacent vertices u, v ∈ SL and vertex w /∈ SL adjacent
to u but nonadjacent to v. By (5.2), w /∈ QL.

Since w /∈ SL, w cannot have a neighbor in QL, and it can be seen, as in the
proof of (5.1), that w cannot be adjacent to vi, i ≥ 3. But then wuxv3v4 · · · vk, where
x ∈ QL is a neighbor of u, is an induced path longer than P . The proof of Claim SL
is complete.

Let QR = N(vk−2)− (N(vk−3)∪N(vk−4)) and SR = N(QR)− ({vk−2} ∪ T ). By
symmetry, we have the following claims.

Claim QR. QR is a clique.
Claim SR. SR is a stable set.
Note that from the definition it follows that QL∩QR = ∅, and from Claim N and

the forbidden G6 it follows that SL ∩ SR = ∅.
Claim NOE (no other edge). There is no edge between QL ∪ SL and QR ∪ SR.
Proof. Let x ∈ QL ∪ SL and y ∈ QR ∪ SR be two adjacent vertices. Since P is

an induced path and by Claim N, x, y /∈ {v1, v2, vk−1, vk}. Then x /∈ QL (otherwise
y would belong to SL) and y /∈ QR (otherwise x would belong to SR). Thus, x ∈ SL
and y ∈ SR, yielding a Ck, k ≥ 5. This contradiction proves Claim NOE.

Claim NOV (no other vertex). V (G) = P ∪M ∪ SL ∪ SR ∪ T .
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Proof. If there is a vertex v /∈ P ∪M ∪ SL ∪ SR ∪ T , then, as G is connected (it
has no homogeneous set), v must be adjacent to some vertex in SL ∪ SR. But then
there is an induced path longer than P .

Claim T. T = ∅, i.e., there is no vertex adjacent to all vertices of P .
Proof. Assume there is a vertex v adjacent to all vi’s. Then v is adjacent to all

vertices in QL (and in QR), otherwise G would have a G4. Also, v is adjacent to all
vertices in SL (and in SR), otherwise G would have a G2.

Thus, every vertex from T is adjacent to all vertices in G−T , implying, by Claim
NOV, that G−T is a homogeneous set in G. This contradiction proves Claim T.

It follows from the claims that G is a double-split graph (with the two split
graphs formed by QL, SL and QR, SR, respectively). The proof of Theorem 5.1 is
complete.

Corollary 5.4. Split-perfect graphs can be recognized in linear time.
Proof. This follows from Theorem 5.2 and the facts that
• the p-connected components of a graph can be found in linear time [6];
• all maximal homogeneous sets of a (p-connected) graph G can be found in
linear time [23, 24, 45];
• P4-free graphs can be recognized in linear time [21] (for a new and sim-

pler 3-sweep lexicographic breadth-first search algorithm recognizing P4-free
graphs in linear time, see [13]); and
• double-split graphs and their complements can be recognized in linear time
(see the appendix).

In the remainder of this section we will show that the class of split-perfect graphs
lies between the classes of superbrittle graphs and of brittle graphs. We first give a
new characterization of superbrittle graphs in the following theorem.

Theorem 5.5. A graph G is superbrittle if and only if for each of its p-connected
components H of G,

(i) the homogeneous sets of H are cographs, and
(ii) the characteristic graph H∗ is a split graph.
Proof. Assume first that G is superbrittle. Then, since the graphs G8 and

G8 (see Figure 3.1) are not superbrittle, homogeneous sets in p-connected compo-
nents are P4-free; otherwise a crossing P4 leads to an induced subgraph G8 or G8.
Now we show condition (ii). Note first that obviously superbrittle graphs are also
(P5, P5, C5, G4, G4)-free (for G4 and G4, see Figure 3.1). Then, due to Lemma 2.1,
H∗ is C4-free since a C4 in a characteristic graph extends into a P5 or G3 or G4 but
the G3 contains a P5. The same holds for the complements which means that H∗ and
its complement are chordal, i.e., H∗ is a split graph.

Now let G be a graph fulfilling the conditions (i) and (ii) for all its p-connected
components. We are going to show that G is superbrittle. Since the property to be
superbrittle is a P4 condition, it is sufficient to show that the p-connected components
H ofG are superbrittle. Note that split graphs are superbrittle, i.e.,H∗ is superbrittle.
Furthermore, by substituting cographs as homogeneous sets into vertices of a split
graph, no midpoint of a P4 in H∗ can become an endpoint in H and no endpoint of
a P4 in H∗ can become a midpoint in H since homogeneous sets contain at most one
vertex of a P4. This shows that H is superbrittle, and thus G is superbrittle.

Theorem 5.5 immediately implies the following.
Corollary 5.6. Superbrittle graphs are split-perfect and can be recognized in

linear time.
Corollary 5.7. Split-perfect graphs are brittle. Moreover, a perfect order of a

split-perfect graph can be constructed efficiently.
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Proof. Since there is no crossing P4 for two p-connected components, a graph is
brittle if and only if each of its p-connected components is brittle. Now, if G is a
p-connected split-perfect graph, then G∗ is chordal or the complement of a chordal
graph (Theorem 5.2); hence G∗ is brittle. Let v be a vertex in G∗ that is not an
endpoint (a midpoint) of any P4 in G∗. Then, by Proposition 2.5, every vertex in the
homogeneous set in G corresponding to v is not an endpoint (a midpoint, respectively)
of any P4 in G. Since every induced subgraph of a split-perfect graph is again split-
perfect, it follows that split-perfect graphs are brittle.

Moreover, a perfect order of a split-perfect graph can be constructed as follows:
Note that a perfect order of a chordal graph (the complement of a chordal graph) can
be found by constructing a perfect elimination order and reversing its order. Now, a
perfect order of G∗ yields, in a natural way, a perfect order of G. Combining these
perfect orders on the p-connected components in an arbitrary sequence, we obtain a
perfect order of a split-perfect graph.

6. Optimization in split-perfect graphs. As already mentioned, Theorem
2.2 implies a decomposition scheme, called primeval decomposition, for arbitrary
graphs. The corresponding tree representation, called primeval tree, has the
p-connected components and vertices not belonging to any P4 of the considered graph
as its leaves.

The important features of the primeval tree of a given graph G are the following:
• If an optimization problem such as weighted clique number, weighted chro-
matic number, weighted independence number, and weighted clique cover
number can be solved efficiently on the p-connected components of G, then
one can also efficiently solve the problem on the whole graph G; see, for
example, [1].
• The primeval tree can be constructed in linear time; see [6].

Based on these facts, linear time or at least polynomial time algorithms have been
found for classical NP-hard problems on many graph classes such as (q, q− 4)-graphs
and various subclasses. We now point out how to compute the weighted clique size
ωw(G) and the weighted independence number αw(G) for p-connected split-perfect
graphs G efficiently.

First, we shall use the following facts:
• The weighted clique number of a chordal graph can be computed in linear
time (well known).
• The weighted independence number of a chordal graph can be computed in
linear time as pointed out by Frank [27].

Second, let H be a homogeneous set in G and let G/H be the graph obtained
from G by contracting H to a single vertex vH . Then it is well known (and easy to
see) that

ωw′(G/H) = ωw(G), respectively, αw′(G/H) = αw(G),

where the weighting w′ is obtained from w by defining w′(vH) = ωw(G[H]), respec-
tively, w′(vH) = αw(G[H]).

Thus, if ωw(G
∗) and ωw(H) (respectively, αw(G

∗) and αw(H)), H a homogeneous
set in G, can be computed in linear time, then ωw(G) (respectively, αw(G)) can be
computed in linear time, too.

Now, if G is a p-connected split-perfect graph, then by Theorem 5.1, G∗ is a
double-split graph or the complement of a double-split graph. In any case, G∗ is a
chordal graph or the complement of a chordal graph. If G is chordal, then ωw(G

∗)
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and αw(G
∗) can be computed in linear time. If G∗ is the complement of a chordal

graph, then, by considering G∗, ωw(G
∗) and αw(G

∗) can be computed in O(n2) time
(n is the vertex number of G). Furthermore, by Proposition 2.5, every homogeneous
set H of G induces a P4-free graph; hence ωw(H) and αw(H) can be computed in
linear time. This and the facts that the primeval tree of G as well as all maximal
homogeneous sets of G can be found in linear time show that ωw(G) and αw(G) can
be computed in O(n2) time.

The problems of weighted chromatic number and weighted clique cover number
can be solved similarly; we omit the details. Note that for perfect graphs in general
and in particular for split-perfect graphs, the weighted chromatic number equals the
weighted clique number, and the weighted independence number equals the weighted
clique cover number. Thus, we can state the following result.

Theorem 6.1. The weighted clique number, the weighted chromatic number, the
weighted independence number, and the weighted clique cover number of a split-perfect
graph can be computed in O(n2) time.

Appendix. Linear-time recognition of double-split graphs and their
complements. Let DS(k) denote the class of double-split graphs (H1, P,H2) with
split graphs H1 and H2 and k vertices in the induced path P connecting H1 with H2,
and let DS =

⋃
k≥1 DS(k).

Theorem A.1. Double-split graphs and their complements can be recognized in
linear time.

Proof. For a given graph G = (V,E) we have to check whether there is a k ≥ 1
such that G ∈ DS(k). Observe that for G = (H1, P,H2) ∈ DS(k) with k ≥ 3, the
path P = x1 . . . xk contains at least one inner vertex of degree 2.

Thus, in order to check whether G ∈ DS(k) for k ≥ 3, determine the set D2 of
vertices of degree 2 in G (in the nondegenerate case, D2 contains no clique vertices
from H1, H2 and thus D2 is stable) and check whether G \ D2 is the disjoint union
of two split graphs H ′

1, H
′
2. Moreover, check whether D2 is the disjoint union of an

induced path P ′ (the inner vertices of P ) and a stable set S′. S′
i consists of the

vertices in S′ adjacent to some vertex in H ′
i for i ∈ {1, 2} (i.e., H ′

i ∪S′
i is a split graph

Hi with the property that the left (right) endvertex of P ′ is adjacent to exactly one
clique vertex of H1 (H2, respectively)).

Now consider the case G ∈ DS(1) or G ∈ DS(2). We give an argument using P4

properties that is similar for the complement graphs.
Case (G ∈ DS(1)). For a given G we have to identify the vertex x1 of P . If

G ∈ DS(1), G has the following two types of P4’s:
(1) P4’s abcd contained in H1 (H2, respectively);
(2) P4’s abx1d containing x1 as a midpoint.
Thus for a given G, find a P4 in linear time if there is any (the case that G contains

no P4 reduces to threshold graphs or two cliques intersecting in exactly one vertex),
and check whether one of the midpoints of the P4 (of type (2)) is a cutpoint of G
such that the connected components are split graphs and the midpoint is completely
adjacent to both of the cliques. If none of the midpoints is a cutpoint, then check the
P4 abcd (of type (1)) for the following property: Let N := N(b)∩N(c)∩N(a)∩N(d),
where N(v) is the set of all nonneighbors of v. Check whether the two nontrivial
connected components of G′ := G \N are split graphs. If yes, then one of these split
graphs (namely the one not containing the P4) must have exactly one neighbor x1

in N . Now check whether the neighborhoods of x1 in the two components H1, H2 of
G \ {x1} are cliques C1, C2 such that Hi \ Ci are stable.



358 ANDREAS BRANDSTÄDT AND VAN BANG LE

Case (G ∈ DS(2)). For a given G we have to identify the vertices x1, x2 of P . If
G ∈ DS(2), G has the following three types of P4’s:

(1) P4’s abcd contained in H1 (H2, respectively);
(2) P4’s abx1x2 containing x1 as a midpoint and x2 as an endpoint;
(3) P4’s ax1x2b containing x1, x2 as midpoints.
Again we start with determining any P4 in G. For types (2) and (3), try deter-

mining whether the midpoints of the P4 are cutpoints and the connected components
fulfill the required properties. For type (1), similar arguments as in case G ∈ DS(1)
will work.

Let co-DS(k) denote the complement graphs of DS(k) graphs. We first describe
linear time recognition of co-DS(k) graphs for k ≥ 3. As for DS(k) graphs, the inner
vertices of the path P have to fulfill a degree condition which is now degree n − 3.
Thus, in order to check whether G ∈ co-DS(k) for k ≥ 3, determine the set Dn−3

of vertices of degree n − 3 in G and check whether G \Dn−3 is the join of two split
graphs H ′

1, H
′
2. In order to check this in linear time, use the techniques of [24] in order

to determine the (two nontrivial) connected components H ′
1, H

′
2 in the complement

graph G for a given G and check whether they are split graphs. Moreover, check
whether the connected components of Dn−3 in the complement graph are an induced
path P ′ (the inner vertices of P ) and two sets S′

1, S
′
2 such that H ′

i ∪S′
i is a split graph

for i ∈ {1, 2} with the property that the left (right) endvertex of P ′ is nonadjacent to
exactly one clique vertex of H1 (H2, respectively).

Now consider the case G ∈ co-DS(1) or G ∈ co-DS(2). In these cases, using P4

properties, we find the special vertex x1 (special vertices x1, x2, respectively) as for
G ∈ DS(1) or G ∈ DS(2), and using the techniques of [24], we find the connected
components of G in linear time on input G.

Acknowledgment. We are grateful to two anonymous referees for their careful
reading and helpful comments.
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[16] V. Chvátal, Perfect Graphs Seminar, McGill University, Montreal, 1983.
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[35] C. T. Hoàng and N. Khouzam, On brittle graphs, J. Graph Theory, 12 (1988), pp. 391–404.
[36] C. T. Hoàng and B. Reed, Some classes of perfectly orderable graphs, J. Graph Theory, 13

(1989), pp. 445–463.
[37] B. Jamison and S. Olariu, P4-reducible graphs – a class of uniquely tree representable graphs,

Stud. Appl. Math., 81 (1989), pp. 79–87.
[38] B. Jamison and S. Olariu, A new class of brittle graphs, Stud. Appl. Math., 81 (1989),

pp. 89–92.
[39] B. Jamison and S. Olariu, A unique tree representation for P4-sparse graphs, Discrete Appl.

Math., 35 (1992), pp. 115–129.
[40] B. Jamison and S. Olariu, A linear-time algorithm to recognize P4-reducible graphs, Theoret.

Comput. Sci., 145 (1995), pp. 329–344.
[41] B. Jamison and S. Olariu, Linear time optimization algorithms for P4-sparse graphs, Discrete

Appl. Math., 61 (1995), pp. 155–175.
[42] B. Jamison and S. Olariu, p-components and the homogeneous decomposition of graphs, SIAM

J. Discrete Math., 8 (1995), pp. 448–463.
[43] V. B. Le, Bipartite-perfect graphs, Discrete Appl. Math., 127 (2003), pp. 581–599.
[44] R. Lin and S. Olariu, A fast parallel algorithm to recognize P4-sparse graphs, Discrete Appl.

Math., 81 (1998), pp. 191–215.
[45] R. M. McConnell and J. Spinrad, Modular decomposition and transitive orientation, Dis-

crete Math., 201 (1999), pp. 189–241.



360 ANDREAS BRANDSTÄDT AND VAN BANG LE
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Abstract. In this paper we are concerned with the so-called clique-colorations of a graph, that
is, colorations of the vertices so that no maximal clique is monochromatic. On one hand, it is known
to be NP-complete to decide whether a perfect graph is 2-clique-colorable, or whether a triangle-free
graph is 3-clique-colorable; on the other hand, there is no example of a perfect graph where more
than three colors would be necessary. We first exhibit some simple recursive methods to clique-color
graphs and then relate the chromatic number, the domination number, and the maximum cardinality
of a stable set to the clique-chromatic number. We show exact bounds and polynomial algorithms
that find the clique-chromatic number for some classes of graphs and prove NP-completeness results
for some others, trying to find the boundary between the two. For instance, while it is NP-complete
to decide whether a graph of maximum degree 3 is 2-clique-colorable, K1,3-free graphs without an
odd hole turn out to be always 2-clique-colorable by a polynomial algorithm. Finally, we show that
“almost” all perfect graphs are 3-clique-colorable.
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1. Introduction. A hypergraph H is a pair (V, E), where V is the set of vertices
of H, and E is a family of nonempty subsets of V called edges of H. In this paper
graphs are always undirected, that is, they are hypergraphs where every edge has
two elements. A k-coloration of H = (V, E) is a mapping c : V → {1, 2, . . . , k} such
that for all e ∈ E , |e| ≥ 2, there exist u, v ∈ e with c(u) 	= c(v). The chromatic
number χ(H) of H is the smallest k for which H has a k-coloration. In other words,
a k-coloration of H is a partition P of V into at most k parts such that no edge of
cardinality at least 2 is contained in some P ∈ P.

As usual, Ki,j (i, j ∈ N) denotes the complete bipartite graph with classes of
cardinality i and j; Kn is the complete graph on n vertices, and Cn is a graph on
n vertices and n edges forming a circuit. The graph K1,3 is also called a claw, and
K3 = C3 a triangle. A hole is an induced chordless cycle with at least five vertices.
A cobipartite graph is the complement of a bipartite graph.

A graph is called H-free, where H is an arbitrary fixed graph, if it does not
contain H as an induced subgraph.

In this paper we consider hypergraphs arising from graphs: for a given graph
G = (V,E), the clique-hypergraph of G is defined as H(G) = (V, E), where E = {K ⊆
V : K is a maximal clique of G}. (A set K ⊆ V of vertices is a clique if ab ∈ E holds
for all distinct a, b ∈ K, and K is a maximal clique if it is not properly contained in
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362 BACSÓ, GRAVIER, GYÁRFÁS, PREISSMANN, AND SEBŐ

any other clique.) A hypergraph H will be called a clique-hypergraph if H = H(G) for
some graph G defined on the vertices of H.

A k-coloration of H(G) will also be called a k-clique-coloration of G, and the
chromatic number of H(G) the clique-chromatic number of G. We hope it will not be
confusing to use in parallel the usual terms k-coloration and chromatic number χ(G)
of G where c(u) 	= c(v) is required for every edge uv ∈ E. As usual, the maximum
size of a clique in G is denoted by ω = ω(G) and the maximum size of a stable set (a
set of vertices not containing any induced edge) by α = α(G)(= ω(Ḡ)). We will also
use the shorthand notations κ := κ(G) := χ(H(G)), κ̄ := κ(Ḡ), χ̄ := χ(Ḡ).

Note that what we call k-clique-coloration here is called strong k-division by
Hoàng and McDiarmid in [7]. The main objective of [7] is to find a k-coloration of the
hypergraph of maximum cliques, which leads for most part to problems of a different
nature from those studied here. However, the theorems of [7] on strong k-divisions
are related to some of our results, and we will point out the connections that we have
understood.

Before explaining some connections between colorations and clique-colorations of
graphs, let us show some essential differences concerning combinatorial properties as
well as problem complexity.

1. A basic property of graph colorations is that they also provide proper col-
orations of all the subgraphs of the colored graph. This allows us to define various
notions of “critical graphs” and is extensively used in coloring algorithms and proofs.
On the contrary, a clique-coloration of G does not necessarily induce clique-colorations
of the subgraphs of G; accordingly, the clique-chromatic number is not necessarily
smaller for induced subgraphs.

For example, if G is a (nonempty) graph and G′ is obtained from G by adding a
vertex of full degree, then χ(G′) = χ(G) + 1 while κ(G′) = 2.

However, a k-clique-coloration of a graph can be defined with the k-coloration
of a subgraph. This subgraph is not induced by a set of vertices, but arises by
deleting edges and vertices of the graph (see after 3 below). Unfortunately a proper
way of doing this depends on the clique-coloration itself: deleting or contracting
monochromatic edges in a clique coloration does lead to properly colored graphs.

2. The hereditary property of colorations involves advantageous algorithmic be-
havior as well: one can color the vertices successively by giving to each new vertex
a color different from those already assigned to its neighbors (rules can be defined
for the order in which the vertices are colored and for the choice of the color). All
vertex-colorations, including the optimal ones, can arise in this way.

A simple but very useful modification of this sequential coloring procedure is
to combine it with “bichromatic exchanges” (see, for example, [13]). Such natural
procedures do not show up for the clique-coloring number even if some sequential
procedures will produce some results in what follows.

3. Some of the most basic problems that are completely trivial for coloring become
intractable for clique-coloring: the problem of deciding whether a hypergraph given
explicitly admits a 2-coloration is known to be NP-complete [11], even for clique-
hypergraphs [10]. Furthermore, just to check whether a given set is a color class in
some clique-coloration is NP-hard; see section 2.

Clearly, any k-coloration of G is a k-clique-coloration, whence κ ≤ χ. Typically
κ is much smaller than χ. However, a graph G has a k-clique-coloration if and only
if it has a subgraph H such that



COLORING THE MAXIMAL CLIQUES OF GRAPHS 363

• for every maximal clique K of G, |E(H) ∩ E(K)| ≥ 1;

• H has a k-coloration.

Indeed, a k-coloration of H can be arbitrarily extended to a k-clique-coloration
of G. Conversely, the edges whose two endpoints have different colors in a k-clique-
coloration of G define H with the claimed properties.

If G is triangle-free, then of course κ(G) = χ(G). Since the chromatic number
of triangle-free graphs is known to be unbounded [17], we get that the same is true
for the clique-chromatic number. Let us recall for further use Mycielski’s triangle-free
graphs with unbounded chromatic number:

– G2 consists of two adjacent vertices.
– For any k > 2, the graph Gk = (Vk, Ek) is defined by the following:

– Vk = Vk−1 ∪Sk ∪{xk}, where Vk−1 = {v1, . . . , vnk−1
} and Sk = {s1, . . . ,

snk−1
};

– the subgraph induced by Vk−1 is isomorphic to Gk−1, and the subgraph
induced by Sk is a stable set;

– there exists an edge sivj if and only if there exists an edge vivj ;
– xk is adjacent to all vertices in Sk and to no other vertex.

It is easy to show by induction that Gk is triangle-free and χ(Gk) = k for all
k ≥ 2. It is also easy to check that χ(Gk \ {e}) = k − 1 for every edge e of Gk.

The clique-chromatic number is unbounded already for the line-graphs of very
particular graphs. Indeed, from the existence of Ramsey numbers we get that for
any fixed k there exists Nk ∈ N so that for all n ≥ Nk, every k-edge-coloration of
Kn contains a monocolored triangle. A triangle of Kn is a maximal clique in the
line-graph Ln of Kn. Therefore κ(Ln) ≥ k + 1 if n ≥ Nk.

However, in [4] (reported also in [8]), the following question is asked.

Question 1. Does there exist some constant C so that it is always possible to C-
color the clique-hypergraph H(G) of a perfect graph G?

Recall that a graph is perfect if, for every induced subgraph G′, χ(G′) = ω(G′);
that is, the chromatic number of G′ is equal to its maximum clique size.

Duffus et al. [4] observe that the answer to Question 1 is positive for two subclasses
of perfect graphs: the clique-chromatic number of comparability graphs is at most 2,
and that of cocomparability graphs is at most 3 by a result of Duffus, Kierstead, and
Trotter [3]. In this paper we show that the answer to Question 1 is yes in some other
cases, and again with C = 2 or C = 3. We do not have any example of a perfect
graph, and not even of an odd-hole-free graph, with clique-chromatic number greater
than 3.

Let us finally introduce some more notation and terminology. For U ⊆ V we will
use the notation N(U) := {v ∈ V : v /∈ U , and there exists u ∈ U such that uv ∈
E}, N [U ] := N(U) ∪ U . Instead of {x} we will often write x. The border B(U)
of U is N(U) ∪ N(V \ U); that is, B(U) is the set of vertices of U or V \ U that
has a neighbor in V \ U or U , respectively. (B(U) = B(V \ U)). We will say that
u ∈ U is a border-guard of U if N [u] ⊇ B(U). Borders and border-guards will be
useful for clique-colorations because of the simple fact that any Q ∈ E(H(G)) is either
entirely contained in U , in V \ U , or in B(U); in the latter case Q contains all the
border-guards of U .

Given U ⊆ V and u ∈ U it is easy to test whether u is a border-guard of U . This is
to be appreciated, because it is not as easy to exhibit a “reasonable” clique-coloration
as it is a coloration; the main difficulty is that it is NP-hard already to check whether
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a given mapping is a clique-coloration! The mentioned properties of border-guards
are helpful for achieving these tasks whenever border-guards exist.

In section 2, we analyze various aspects of the complexity of clique-coloring. In
section 3, we show some simple but general (greedy) methods to clique-color graphs.
In section 4, we exhibit connections between κ(G) and other parameters of the graph
G. In section 5, we prove that some classes of clique-hypergraphs are 2- or 3-colorable.
Finally, in section 6, we show that almost all perfect graphs are 3-clique-colorable.

2. The complexity of clique-coloring. In this section, we study several as-
pects of the complexity of clique-coloring.

It is already coNP-complete to check whether a given function c defined on the
vertices of a graph is a clique-coloration. More precisely, the following problem is
shown to be NP-complete.

Maximal clique containment.

INPUT: Graph G = (V,E) and T ⊆ V .
QUESTION: Is there a maximal clique K of G such that K ⊆ T?
Therefore deciding whether a k-clique-coloration exists is not clearly in NP nor

clearly in coNP.

Theorem 1. Maximal clique containment is NP-complete and remains
NP-complete if the complement of the input graph G is restricted to be K1,4-free.

Proof. The 3-DM (that is, three-dimensional matching; see [5]) can be very
simply reduced to this problem (a similar proof of [1] can be shortcut for this simpler
situation): let (X,Y, Z, T ) be an instance of 3-DM; that is, X, Y , Z are finite sets,
|X| = |Y | = |Z|, and T ⊆ X ∪ Y ∪ Z so that for all T ∈ T , |T ∩ X| = |T ∩ Y | =
|T ∩ Z| = 1. Let E := T ∪ {{y} : y ∈ Y }.

We let G be the intersection graph of the hypergraph (X ∪ Y ∪ Z, E), that is,
the vertex-set of G is E , and we join two vertices if they intersect. The following
statements can be easily checked: T contains a maximal stable set of G if and only
if the 3-DM problem has a solution, that is, if the family T contains a partition of
X ∪ Y ∪ Z; since the cardinality of every set in E is at most three, G is K1,4-free.

Thus the 3-DM problem for (X,Y, Z, T ) is reduced to the existence of a maximal
clique of Ḡ contained in T , where Ḡ is K1,4-free.

If the maximal cliques of a graph are given, it can of course be checked in poly-
nomial time if a coloration is a clique-coloration. So, for general algorithmic consid-
erations it is reasonable to consider the problem in a setting where H(G) is given as
part of the input.

We will in fact consider the following seemingly more general problem.

k-clique-coloring.

INPUT: A family H of maximal cliques of G, and k ∈ N.

QUESTION: Can H be k-colored?

The problem of coloring H is not really more general than that of coloring H(G).
Indeed, adding to G a vertex vK for every cliqueK ∈ H(G)\H, and joining vK exactly
to the vertices of K, we obtain a graph G′ with the property that H is k-colorable if
and only if H(G′) is k-colorable (k ≥ 2).

This does not mean that H arises as the hypergraph of all the maximal cliques
of some graph: let G be the graph consisting of a circuit on 6 vertices and 3 chords
forming a triangle T ; then H(G) \ {T} does not arise as the set of all maximal cliques
of a graph.
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Notice also that the problem of coloring clique-hypergraphs is more restrictive
than that of general hypergraph coloring: the hypergraph {1, 2}, {2, 3}, {3, 1} does
not arise as a clique-hypergraph.

Since the computation of the chromatic number is NP-hard for triangle-free graphs
[12], it is also NP-hard to compute the clique-chromatic number of triangle-free graphs,
even if all the cliques are given explicitly as part of the input.

Quite general classes of hypergraphs can be 2-colored. Using the Lovász local
lemma, McDiarmid [15] proves that all hypergraphs whose hyperedges are “large”
(in a well-defined sense), as compared to the degrees, are 2-colorable. Almost all
perfect graphs are 3-clique-colorable (see section 6), but deciding if a perfect graph of
maximum clique-size four is 2-clique-colorable is already NP-complete, by Kratochv́ıl
and Tuza [10]. On the other hand, Mohar and Škrekovski [16] have shown that
every planar graph is 3-clique-colorable, and Kratochv́ıl and Tuza [10] proposed a
polynomial algorithm to decide if a planar graph is 2-clique-colorable (the set of
cliques is given in the input).

The following result is inspired by the methods of [10].

Theorem 2. 2-clique coloring is NP-complete even if the input graph G is re-
stricted to be of maximum degree 3.

Proof. We use the not-all-equal satisfiability problem (NAE-SAT), which is known
to be NP-complete [21].

NAE-SAT.

INPUT: A set X of Boolean variables and a collection C of clauses (set of literals
over U), each clause containing three different literals.

QUESTION: Is there a truth assignment for X such that every clause contains
at least one true and at least one false literal?

Given an instance F of NAE-SAT, we build a graph G(F) as follows.
To the clauses we associate vertex disjoint triangles; each vertex corresponds to

one of the literals of the clause. For each variable x, vertex disjoint paths Px are added
to the graph as follows. Let C1, . . . , Ck be the clauses in which x or its negation occur,
the path Px is defined with vertices vx1 . . . vx2k

(in this order). The path Px and the
triangles are joined with the following rule: if Ci contains x (resp., x), we add the
edge from the vertex of the triangle representing x to vx2i−1

(resp., to vx2i
). This

construction is clearly polynomial in the size of F , and it is easy to verify that G(F)
is 2-clique-colorable if and only if F is not-all-equal satisfiable. Furthermore, G(F) is
of maximum degree 3.

Because of the nature of the clique-coloring problem, the NP-completeness of the
2-clique-coloring problem does not immediately imply the NP-completeness of the k-
clique-coloring problem (for any fixed k ≥ 2). Nevertheless it is true; here is a simple
reduction.

Corollary 1. For any fixed k ≥ 2, the k-clique-coloring problem is NP-
complete.

Proof. Let G be an instance of the k-clique-coloring problem. Add a copy of
the (k + 2)-chromatic Mycielski graph Gk+2. Remove an edge incident to xk+2 (we
use the notation given in the introduction), and replace xk+2 by |V (G)| copies of
xk+2. Pairing these copies of xk+2 with the vertices of G, we obtain a new graph G′.
Observe now that in any (k + 1)-coloration of G′, all copies of xk+2 have the same
color. Hence a (k+ 1)-clique-coloration of G′ yields a k-clique-coloration of G, which
completes the reduction.
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3. How to clique-color a graph? It is not difficult to provide clique-coloration
of a graph: just color every vertex with a different color; a coloration of the graph is
also a proper clique-coloration, etc. However, the clique-chromatic number is typically
much smaller than the chromatic number. For instance, for perfect graphs the chro-
matic number is ω and the clique-chromatic number is conjectured to be a constant,
maybe 3!

We need heuristics that may provide better estimates than the chromatic number.
Besides the difficulty of coloring with a small number of colors, it is also difficult to
realize that a procedure is good, since by Theorem 1 we cannot even check whether a
partition of the vertices is a clique-coloration.

However, certain constructions inherently guarantee that the result is a proper
coloration, and at the same time the number of occurring colors can be bounded in a
helpful way. We present in this section three such frameworks. These are meant to be
used more as frameworks than algorithms: in the realizations queues can be broken in
various ways, and this arising freedom will be exploited in the particular procedures
we will present later.

A neighborhood-coloration is any clique-coloration obtained by the following
greedy framework.

Neighborhood coloring.

INPUT: Graph G = (V,E) and H ⊆ H(G).
0. In each iteration, the algorithm updates the set D of “considered” vertices and

the set L of “colored” vertices, D ⊆ L. Initially set D := ∅, L := ∅.
While not all the vertices are colored do the following:

1. Choose v ∈ V \D, and consider v.

2. If v 	∈ L, then assign to v a color which does not occur in N(v); L := L ∪ {v}.
3. Let c be a color different from all colors occurring among the neighbors of

vertices in N(v) \ L. Assign to all vertices in N(v) \ L the color c.

4. Update: D := D ∪ {v}, L := L ∪N(v).

Lemma 1. The coloration found by the algorithm is a clique-coloration of G.

Remark. At each iteration the set of considered vertices dominates the set of
colored vertices, so that the set D obtained at the end of the algorithm is a dominating
set of G; that is, N [D] = V .

The order in which the vertices are considered, or the free choices for the colors,
for instance, for color c, will be replaced by particular rules in more specific coloring
procedures.

The next lemma shows that if a graph admits a certain partition of the vertices,
then it is k-clique-colorable. A clique-coloration obtained by the way described in the
proof of Lemma 2 will be called a partition coloration.

Lemma 2. Let G = (V,E) be a graph and k ∈ N, k ≥ 2.

If G admits a partition {V1, . . . , Vp} of V such that

– G(Vi) is k-clique-colorable, and Vi has a border-guard in G (i = 1, . . . , r ≤ p);
– G(Vi) (i = r + 1, . . . , p) does not contain a maximal clique of G;
– the graph H obtained by identifying the vertices of each Vi (denote the new
vertices by xi, i = 1, . . . , p) has χ(H) ≤ k;

then G is k-clique-colorable.

Proof of Lemma 2. Consider a k-coloration cH : V (H) = {x1, . . . , xp} −→
{1, . . . , k} of H and also a k-clique-coloration ci : Vi −→ {1, . . . , k} of G(Vi) (i =
1, . . . , r).
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By assumption Vi has a border-guard vi in G (i = 1, . . . , r). We can suppose
that ci(vi) = cH(xi) (otherwise we interchange two colors in the coloration of G(Vi)).
Furthermore, for i = r + 1, . . . , p we define ci(v) = cH(xi) for all v ∈ Vi. Define for
v ∈ V (G) c(v) := ci(v) if v ∈ Vi.

Now let Q be a maximal clique of G. If Q is contained in some Vi, then by the
assumption i ≤ r and c(q) = ci(q) for all q ∈ Q. Therefore, at least two colors occur
in Q. If Q is not contained in some Vi, then say Q∩ Vi 	= ∅ 	= Q∩ Vj . Let vi ∈ Q∩ Vi
(resp., vj ∈ Q ∩ Vj) be an arbitrary vertex in Q ∩ Vi (resp., Q ∩ Vj) for i ≥ r (resp.,
j ≥ r).

Clearly, vi, vj ∈ Q. Since c(vi) = cH(xi) 	= cH(xj) = c(vj) because of xixj ∈
E(H), two different colors do occur in Q.

A third simple but useful method is presented in the following lemma. A pair
(d,D) is called a dominating pair if d ∈ V , D ⊆ N(d), and any maximal clique K of
G containing d satisfies K ∩D 	= ∅. The following lemma shows that such a pair can
be useful for our coloring problem.

Lemma 3 (dominating pair lemma). Let (d,D) be a dominating pair, and let k
be a nonnegative integer with |D| < k. If H(G− d) is k-colorable, then so is H(G).

Proof. Let c be a k-coloration ofH(G−d). Since k > |D|, there exists a color i that
does not occur in D. Let c′ : V → {1, 2, . . . , k}, with c′(v) = c(v) for all v ∈ G − d
and c′(d) = i. Since c is a k-coloration of H(G − d), it is sufficient to check that
any maximal clique K which contains d is not monocolored by c′. By definition of
a dominating pair, there exists a vertex v ∈ K ∩ D. By the choice of i, we have
c′(d) = i 	= c(v) = c′(v). Thus c′ is a k-coloration of H(G).

Let G be a graph with the property that every induced subgraph contains a vertex
u whose neighborhood has at most k connected components, each of which is a clique.
A direct consequence of the dominating pair lemma is that G is k+1-clique-colorable.

4. Rough general bounds. In this section we estimate the clique-chromatic
number with some other graph parameters.

Recall that a dominating set D is a subset of V such that N [D] = V . The
domination number γ(G) of a graph G is the smallest cardinality of such a set. Note
that γ(G) is always smaller than or equal to the stability number α(G).

We assume G to be connected, leaving to the reader the trivial extension of the
following theorem to graphs with several connected components.

Theorem 3. If G = (V,E) is a connected graph, then κ(G) ≤ γ(G) + 1, and if
κ(G) = γ(G) + 1, then every dominating set D of minimum size is a stable set, and
one of the following holds:

– |D| < α(G),
– D is a set of two nonadjacent vertices of G = C5,
– |D| = 1 and G = Kn, n ≥ 2.

Proof of Theorem 3. Let D = {x1, . . . , xk} be a dominating set of G, and n :=
|V (G)|. If there exists a, b ∈ D, ab ∈ E(G), suppose xk = b. Apply a neighborhood
coloring with the following specifications: the order of considering the vertices is
x1, . . . , xk; in the ith iteration (i = 1, . . . , k), if xi is not yet colored, color it with
color 1; moreover, for i = 1, . . . , k−1, color the not yet colored vertices of N(xi) with
color i + 1; if c(xk) 	= 1, then color N(xk) \ ∪k−1

j=1N [xj ] with color 1, otherwise with
color k + 1. It can be checked immediately that the defined colors are allowed, and
the number of colors is k + 1 only if D is a stable set. More exactly, we have the
following claims.

Claim 1. If κ(G) = k + 1, then D is a maximal stable set of minimum size.
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Indeed, if there exists a maximal stable set D′ of smaller size k′ := |D′| < k, then
it is also a dominating set. Hence κ(G) ≤ k′ + 1 ≤ k, as required.

Assume now that k = α(G).

Claim 2. If κ(G) = k + 1, k = α(G) ≤ 2, then either G = C5, or G = Kn, n ≥ 2.

Indeed, if k = α = 1, then G = Kn. Let now k = α = 2. We prove by induction
on the number of vertices that κ(G) = 2, unless G = C5.

Let a and b be two nonadjacent vertices; then because of α < 3, N [a] ∪ N [b] =
V (G).

If we can 2-clique-color the subgraph Nab induced by N(a)∩N(b), then we extend
this coloration to all G: define c(v) := 1 if v ∈ {a} ∪ N(b) \ N(a), and c(v) := 2 if
v ∈ {b} ∪N(a) \N(b). If Q is a maximal clique of G and, say, c(q) = 1 for all q ∈ Q,
then all vertices of Q \ a are adjacent to b. Since c(b) = 2 it follows that a ∈ Q . But
then Q \ a is a maximal clique of Nab, and, since c is a 2-clique-coloration of Nab,
Q \ a is a single vertex, v. If {b, v} is not a maximal clique, then by giving color 2 to
v we get a 2-clique-coloration of G. Else v is adjacent only to a and b, and so, since
α = 2, V (G) \ {a, b, v} is a clique. We may assume that Nab \ {v} is empty and that
N(a)\N(b) and N(b)\N(a) are nonempty, since, else, there exists a dominating edge
in G and hence, by Claim 1, a 2-clique-coloration of G. In case a or b has at least
two neighbors distinct from v, then let w be one of those, give color 1 to a, b, and w,
and give color 2 to all the other vertices: this a 2-clique-coloration of G. The only
remaining case is when |N(a) \N(b)| = |N(b) \N(a)| = 1; then G = C5.

We now assume that Nab has no 2-clique-coloration. Thus by induction hypothe-
sis, at least one connected component ofNab induces a C5. Since α = 2, we haveNab =
C5. Label v1, . . . , v5 its vertices in the cyclic order. If N(a)\N(b) = N(b)\N(a) = ∅,
then G is 2-clique-colorable; else fix a vertex v in, say, N(a) \N(b). Since α(G) = 2,
v is adjacent either to v1 or to v3, say v1, and v is adjacent either to v2 or to v5, say
v2. Now give color 1 to a, v1, v2, v4, and all the vertices in N(b) \ N(a), and give
color 2 to all the other vertices: this a 2-clique-coloration of G.

The claim is now proved.

To finish the proof of Theorem 3, suppose that k ≥ 3 and that D is a stable set
of cardinality k = α(G). In the above constructed neighborhood coloring, let xk−2,
xk−1, xk be the three pairwise nonadjacent vertices colored last. The neighborhood
coloring assigns colors c(xk−2) = c(xk−1) = c(xk) = 1 and new colors k − 1, k, k + 1
to the set of their not-yet-colored neighbors.

Claim 3. The graph induced by vertices of color k − 1, k, k + 1 and xk−2, xk−1,
xk can be 3-clique-colored.

The claim finishes the proof of the theorem. Indeed, choose the three colors to
be 1, k − 1, and k to get a k-clique-coloration of G. (The colors k − 1 and k do not
occur previously, and all previously colored vertices of color 1 are nonadjacent to the
vertices that are present in the claim.)

To prove Claim 3, we can suppose k = 3; then the notation is simplified, and we
only have to prove κ(G) ≤ 3.

If G−N [v] is not a C5 for some v ∈ V (G), then by Claim 2 it can be colored with
colors 1 and 2; completing this coloration with c(v) := 1 and c(x) := 3 if x ∈ N(v),
the statement is proved.

Suppose now that G − N [v] is a C5 for all v ∈ V (G). Then G is n − 6-regular.
If there is no triangle in G, then N(v) is a stable set for all v ∈ V (G), and therefore
n − 6 ≤ 3. The equality holds here, because if G is 2-regular, then G −N [v] cannot
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be a C5 for all v ∈ V (G). But if the equality holds, then the number of edges with
exactly one endpoint in N [v] is, on one hand, 2|N(v)| = 6 and, on the other hand, 5
(because there is exactly one such edge for every vertex of G−N [v]).

So G has a triangle. Let ab ∈ E(G) be one of its edges. If {a, b} is a dominating
set, then we can 2-clique-color G by Claim 1. Let us suppose that v is adjacent neither
to a nor to b. Since G−N [v] is a C5 containing the edge ab, where ab is contained in
a triangle of G, the following coloration is correct: c(v) := c(a) := c(b) := 1, c(x) := 2
if x ∈ N(v), and the remaining three vertices forming a path in the C5 can be colored
3, 1, 3.

Remark that for any integer k, a path P3k on 3k vertices has a dominating number
equal to k and κ(P3k) = 2.

On the other hand, Mycielski’s graphs provide an infinite class of triangle-free
graphs Gk for which κ(Gk) = χ(Gk) = γ(Gk) + 1 = k (for k ≥ 4 the first case of the
theorem holds, for k = 3 the second, and for k = 2 the third). Let D2 = {v}, where
v is either vertex of G2, and define Dk := Dk−1 ∪ {xk} (we use the notation given in
the introduction). By construction, Dk is a dominating set of Gk and |Dk| = k − 1.
By the theorem, and since κ(Gk) = χ(Gk) = k, we have that γ(Gk) = k − 1, and it
follows that Dk is a maximal stable set of minimum size (and not maximum as soon
as k ≥ 4).

Corollary 2. For any graph G 	= C5 with α(G) ≥ 2, we have κ(G) ≤
α(G).

This first corollary sharpens Theorem 2 in [7]. Indeed, it is stated there that
κ(G) ≤ α(G) + 1 and the strict inequality holds for C5-free noncomplete graphs.

Corollary 3. For any graph G of order n, we have κ(G) ≤ 2�√n �.
Proof. LetD = {v1, . . . , vk} be a subset of k vertices with the following properties:

– |N(v1)| ≥
√
n,

– |N(vi)− (∪j<iN [vj ])| ≥
√
n for i = 2, . . . , k,

– any vertex v ∈ V (G) satisfies |N(v)−N [D]| < √n.
Note that D can be empty. Since D is a dominating set of N [D], and |D| < √n,

by Theorem 3, we can clique-color the subgraph induced by N [D] with �√n � colors,
say {1, . . . , �√n �}.

On the other hand, in the subgraph induced by V \ N [D] the degree of every
vertex is strictly smaller than

√
n, so we can color this subgraph with �√n � colors,

say {�√n � + 1, . . . , 2�√n �}, by a sequential algorithm. This coloration is a clique-
coloration too.

This bound is not best possible: Kotlov [9] proved that κ(n) ≤ �√2n�. We do
not even know whether the maximum of the clique-chromatic number for graphs on
n vertices divided by

√
2n is a constant or tends to 0.

Theorem 4. Let G = (V,E) be a graph and q be an integer, q > 1. Then the

hypergraph Hq := {K ∈ H(G) : |K| ≥ q} is �χ(G)
q−1 �-colorable.

Proof. Let k := �χ(G)/(q − 1)�. Let S1, . . . , Sχ(G) be the color classes of a χ(G)-
coloration of G. For i = 1, . . . , k, we consider the union of q − 1 color-classes: Ci =⋃i(q−1)
j=(i−1)(q−1)+1 Sj if i = 1, . . . , k − 1, and Ck =

⋃χ(G)
j=(k−1)(q−1)+1 Sj .

Observe that ω(Ci) < q for every i = 1, . . . , k. Thus, the coloration c, defined by
c(x) = i if x ∈ Ci, is a k-coloration of Hq.

Corollary 4. If G is an arbitrary graph, then (κ−1)(κ̄−1) ≤ 2min{χ, χ̄}−2.
Proof. Let k be the size of a smallest maximal stable set of G. Since a maximal

stable set of G is a dominating set of G, by Theorem 3, we have that κ(G)−2 ≤ k−1.
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By the choice of k, we have that any maximal clique of G has size at least k. If

k > 1, by Theorem 4, we obtain κ(G)− 1 ≤ χ(G)−1
k−1 . Multiplying the two inequalities,

we obtain (κ− 2)(κ̄− 1) ≤ χ̄− 1.
If k = 1, then κ = 2 and trivially (κ− 2)(κ̄− 1) ≤ χ̄− 1.
In both cases we get (κ− 1)(κ̄− 1) ≤ χ̄+ κ̄− 2 ≤ 2(χ̄− 1).
Applying this again after interchanging the role of G and Ḡ, we get the

claim.
This bound can be sharpened under various assumptions. For instance, if κ or κ̄

are close to χ or χ̄, like for Mycielski graphs (see section 1), if κ = χ, then κ̄ ≤ 3.
(In fact, for Mycielski graphs the statement “κ̄ = 2 except for G3 = C5” is easy to
prove directly.) The bound can also be refined using other parameters: as Kotlov [9]
noticed, (κ− 1)(κ̄− 1) ≤ k

k−1 (χ̄− 1) if k > 1.

5. Claw-free and perfect graphs. In this section we study κ(G) and κ(Ḡ)
when G is a claw-free or a perfect graph or both.

If G is a perfect graph, then we have κ(G) ≤ χ(G) = ω(G). Applying also
Corollary 2, if G is not a complete graph, then we have κ(G) ≤ min{α(G), ω(G)}.
(This is better than the bound of Corollary 4 only if κ̄ = 2.) Moreover, when G is
perfect, α(G) and ω(G) can be computed in polynomial time [6].

Furthermore, it seems that in perfect graphs not only the maximum cliques but
also the maximal cliques behave well from the viewpoint of clique-colorations. A
consequence could be that there exists a constant C such that H(G) is C-colorable
for a perfect graph G; that is, Question 1 has a positive answer. We prove that such
a C exists for some classes of perfect graphs.

For example, the hypergraph of maximal cliques of a strongly perfect graph G
(defined by the property that every induced subgraph of G contains a stable set
intersecting all maximal cliques) is obviously 2-colorable: indeed, color a stable set
intersecting all maximal cliques of G with one color and the rest of the vertices with
another color.

Note that κ(G) can be greater than 2, even for a perfect graph G (see Figure 5.1).

Fig. 5.1. The clique-hypergraph of this perfect graph is clearly not 2-colorable since it contains
edges of C9 as hyperedges.

We saw in the introduction that the clique-chromatic number of claw-free graphs
or even of line-graphs is not bounded. The following theorem shows that triangles are
the only source of difficulty.
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We do not know the complexity of clique-coloring line-graphs of graphs optimally.
Observe that in the case of line-graphs, it is easy to check whether a given coloration
is correct since all maximal cliques of a line-graph L(G) are either stars or triangles
of G, and therefore the number of maximal cliques is small (bounded by a polynomial
of the number of vertices).

A multigraph is a graph that may contain an arbitrary number of parallel edges.

Theorem 5. Let G be a multigraph, H = (V, E) where V := E(G), and E is the
collection of stars of G. Then χ(H) ≤ 3. Moreover, χ(H) = 3 if and only if G has a
component which is an odd circuit.

Proof. Without loss of generality, assume that G is connected. Let G′ be obtained
from G by adding to it a perfect matching M of its odd-degree vertices, if any. Let T
be an Eulerian tour of G′. Color the edges of T alternatively black and white, starting
at a vertex of degree at least four (if any) or with an edge of M (if any). If there is
such a vertex or such an edge, then this coloring induces a proper 2-coloration of H.
Else, G is a cycle, and this 2-coloration of H is not proper if and only if G is an odd
cycle.

We are highly indebted to Kotlov [9] for short-cutting most of our original proof.

For complements of claw-free graphs, the following simple bound holds.

Theorem 6. Let 2 ≤ k ≤ α(G). If G is K1,k-free, then κ(Ḡ) ≤ k.
Proof. Since k ≤ α(G), there exists a stable set S ⊆ V (G), |S| = k. Since G is

K1,k-free, S induces a dominating clique (not necessarily maximal) of G. We achieve
the proof of Theorem 6 by applying Theorem 3.

Notice that the complements of Mycielski’s graphs are K1,3-free, showing that
the condition k ≤ α(G) in the preceding theorem is necessary.

We have now arrived at the most difficult result of this paper: we determine the
clique-chromatic number of claw-free perfect graphs.

Theorem 7. If G is a claw-free perfect graph, then H(G) is 2-colorable.
By Theorem 6 any graph which is the complement of a claw-free graph of stability

number at least 3 is 3-clique-colorable even if it is not perfect. On the other hand,
we saw that line-graphs (which are, of course, claw-free) may have arbitrary large
clique-chromatic number, unless they arise from triangle-free graphs.

In [7] it is proved that the hypergraph of maximum cliques of a claw-free graph
is 2-colorable if and only if it does not contain an odd hole. A common feature of the
proof of [7] and our proof below is the use of Ben Rebea’s lemma (as cited in [2]);
however, an essential difference is that the main part of our proof is the perfect case.

Corollary 5. If G is a claw-free graph without an odd hole, then κ(G) ≤ 2.

Proof of Corollary 5. Let G be claw-free without an odd hole. If α(G) ≤ 2, then
by Corollary 2, κ(G) ≤ 2.

If α(G) ≥ 3, then G is perfect because of the following: by Ben Rebea in [2] a
connected claw-free graph G with α(G) ≥ 3 containing an odd antihole also contains
an odd hole; Parthasaraty and Ravindra [18] proved that a claw-free graph with
neither an odd hole nor an odd antihole is perfect.

Since G is perfect, Theorem 7 can now be applied.

In order to prove Theorem 7, we use the structural property of claw-free graphs
explored by Chvátal and Sbihi [2] and Maffray and Reed [14].

Chvátal and Sbihi [2] defined two special classes of claw-free perfect graphs: the
elementary graphs and peculiar graphs. A graph is called elementary if its edges can be
colored with two colors such that every induced P3 (chordless path on three vertices)
has its two edges colored differently. Clearly elementary graphs are claw-free, but not
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vice versa, as C5 shows. A graph is called peculiar if it can be obtained as follows: take
three pairwise vertex-disjoint cobipartite graphs; call them (A1, B2), (A2, B3), (A3, B1),
such that each of them has at least one pair of non-adjacent vertices; add all edges
between every two of these cobipartite graphs; then add three cliques Q1, Q2, Q3 that
are pairwise disjoint and disjoint from the Ai’s and Bi’s; add all the edges between
Qi and Aj ∪ Bj for j 	= i; there is no other edge in the graph. Chvátal and Sbihi [2]
proved that every claw-free perfect graph can be decomposed via clique-cutsets into
indecomposable graphs that are either peculiar or elementary.

Theorem 8 (see [2]). If G is a claw-free perfect graph without a clique cutset,
then G is either elementary or peculiar.

The structure of elementary graphs was determined by Maffray and Reed in [14]
as follows. An edge is called flat if it does not lie in a triangle. Let xy be a flat edge
of a graph G and (X,Y ;F ) be a cobipartite graph disjoint from G and containing
at least one edge with one extremity in X and the other in Y . We obtain a new
graph from G−{x, y} and (X,Y ;F ) by making the union of their sets of vertices and
edges and adding all possible edges between X and NG(x) \ {y} and between Y and
NG(y) \ {x}. This is called augmenting the flat edge xy with the cobipartite graph
(X,Y ;F ). The result of augmenting a set of pairwise independent (nonincident) flat
edges e1, . . . , eh successively is called an augmentation of G.

Theorem 9 (see [14]). A graph G is elementary if and only if it is an augmen-
tation of the line-graph of a bipartite multigraph.

Proof of Theorem 7. We now prove Theorem 7 through several lemmas.

Lemma 4. If G is an elementary graph, then H(G) is 2-colorable.
Proof of Lemma 4. For line-graphs of bipartite multigraphs the statement follows

from Theorem 5. Furthermore, if G has a 2-clique coloration, the graph obtained by
augmenting a flat edge xy with B = (X,Y ;F ) still has a 2-clique-coloration: keep
the same color for all vertices of G− {x, y}; choose an edge ab of B with a ∈ X and
b ∈ Y ; and give color 1 to a and to all vertices in Y \ {b} and color 2 to b and to all
vertices in X \ {a}.

Using previous results, it is also not difficult to check the following.

Lemma 5. If G is a peculiar graph, then H(G) is 2-colorable.
Proof of Lemma 5. Let G = (V,E) be a peculiar graph composed of (A1, B2),

(A2, B3), (A3, B1), Q1, Q2, Q3 as in the definition of a peculiar graph. Let a ∈ A1

and let b ∈ B3 (by definition all the Ai’s, Bi’s are nonempty). It is easy to verify
that the edge ab is dominant, and hence by Theorem 3 we obtain that H(G) is
2-colorable.

Lemma 6. If G is a claw-free graph and Q is a clique which is a minimal cutset,
then G −Q has two components; denote their set of vertices V1 and V2, and at least
one of the following holds:

(a) Either for i = 1 or for i = 2 both Vi and V \ Vi have a border-guard.

(b) Both V1 and V2 have a border-guard.

(c) Both V1 ∪Q and V2 ∪Q have two border-guards.

Proof of Lemma 6. Since Q is a minimal cutset, every q ∈ Q has a neighbor in all
the components. Since G is claw-free, G−Q has two components, and N(q)∩ Vi is a
clique for all i = 1, 2 and all q ∈ Q.

Claim 1. For all a, b ∈ Q, either N(a)∩V1 ⊆ N(b)∩V1 or N(a)∩V2 ⊆ N(b)∩V2.

Indeed, if not, let ai ∈ N(a)∩Vi \ (N(b)∩Vi) (i = 1, 2). Clearly, a, b, a1, a2 induce
a claw, a contradiction.
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Claim 2. Either there exists a border-guard in V1, or there exist two distinct
border-guards in V1 ∪Q.

Indeed, suppose the first possibility does not hold. Then there are a 	= b ∈ Q so
that N [a] ∩ V1 and N [b] ∩ V1 are not equal, and they are both inclusionwise minimal
among N [q] ∩ V1 (q ∈ Q). (If there were a unique inclusionwise minimal N [q] ∩ V1

(q ∈ Q), then any v1 ∈ N [q] ∩ V1 would be a border-guard of V1.)

Since neither N [a]∩ V1 nor N [b]∩ V1 contains the other, by Claim 1 both N [a]∩
V2 ⊆ N [b] ∩ V2 and N [b] ∩ V2 ⊆ N [a] ∩ V2 hold; that is, N [a] ∩ V2 = N [b] ∩ V2 =: N2.

Now by the minimal choice of N [a]∩V1 and of N [b]∩V1, N [q]∩V1 for any q ∈ Q
cannot be a subset of both. So by Claim 1, N [q] ∩ V2 ⊆ N2 for all q ∈ Q. Since
B(V1 ∪ Q) = Q ∪N2, we proved that both a and b are border-guards of V1 ∪ Q and
the claim is proved.

To finish the proof of Lemma 6, note that by symmetry, Claim 2 also holds if we
replace 1 by 2. From these two variants of Claim 2 we get that one of the following
cases holds:

– Both V1 and V2 have a border-guard, and then each of these is adjacent with
every vertex in Q. So Q is not a maximal clique, and “b” of the lemma holds.

– Both V1 ∪Q and V2 ∪Q have two border-guards, and then we have “c.”

– V1 and V2 ∪Q have border-guards or V2 and V1 ∪Q have border-guards. This
is just “a.”

The proof of Theorem 7 works by induction on |V |. Let G = (V,E) be a claw-free
perfect graph. If G has one, two, or three vertices, then clearly H(G) is 2-colorable.
Suppose now that G has n vertices and that the theorem has been proved for any
claw-free perfect graph with less than n vertices. If G is either elementary or peculiar,
then, by Lemmas 4 and 5, H(G) is 2-colorable. So by Theorem 8, we may assume
that G has a clique cutset.

We can now finish the proof of Theorem 7 by applying the idea of Lemma 2 in a
very simple special case.

If Lemma 6(a) holds for say i = 1, by the induction hypothesis, we can 2-clique-
color G(V1) and G(V \ V1). Without loss of generality, we may assume that the
border-guard of V1 has a different color from that of V \ V1. Every maximal clique of
G is contained either in V1 or in V \ V1, or contains both border-guards. In any case,
both colors occur in it.

If Lemma 6(b) holds, then by the induction hypothesis, we can 2-clique-color
G(V1) and G(V2). Without loss of generality, we may assume that both their border-
guards have color 1. Color all vertices of Q with color 2. Since every maximal clique
of G is contained in V1 or V2 or contains a border-guard and a vertex of Q, we defined
a 2-clique-coloration.

Finally, if Lemma 6(c) holds, then color Q so that the two border-guards of V1∪Q,
and also those of V2∪Q, have different colors, and otherwise arbitrarily. We complete
this coloration by a 2-clique-coloration of G(V1) and G(V2). Now every maximal clique
of G is contained in V1 or in V2, or for some i ∈ {1, 2} it contains both border-guards
of Vi ∪Q. .

Note that the proof of Theorem 5 is algorithmic; moreover, either it reduces the
clique-coloration of G into the clique-coloration of two smaller graphs or the graph
itself is easy to color.

Using the following ingredients, the proof provides a way of 2-clique-coloring an
arbitrary claw-free perfect graph G in polynomial time:

– Whitesides’s algorithm [23] that finds a clique cutset;
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– Chvátal and Sbihi’s Theorem 8 [2];
– Maffray and Reed’s canonical decomposition algorithm of an elementary graph
into a line-graph of a bipartite graph and some augmentations [14];

– checking for border-guards is polynomial (obvious);
– the number of graphs occurring through the decomposition can be bounded
by a polynomial of the number of vertices of the input graph. (These graphs
are not the same as in Chvátal and Sbihi’s algorithm for recognizing claw-
free perfect graphs, since the clique-cutset is not left in both two decomposing
graphs.)

Furthermore, this algorithm uses only the graph G and not a list of its maximal
cliques.

Diamond-free perfect graphs constitute another interesting class of perfect graphs
(a diamond is a K4 minus an edge). It is known [22, 19] that a diamond-free graph is
perfect if and only if it does not contain an odd hole. Unfortunately we cannot prove
κ ≤ 3 for this class. This is somewhat frustrating, because Tucker [22] proved that a
diamond-free perfect graph has a vertex which is contained in at most two maximal
cliques of size at least 3, which implies the following.

Proposition 1. The hypergraph of maximal cliques of size at least 3 of a
diamond-free perfect graph is 3-colorable. In particular, if G is a diamond-free perfect
graph without flat edges, then κ(G) ≤ 3.

The conjecture κ ≤ 3 for diamond-free perfect graphs (equivalently diamond- and
odd-hole-free graphs) could contain many of the difficulties of coping with odd-hole-
free graphs in general. We wonder whether the clique-chromatic number of odd-hole-
free graphs could be bounded as well: we also do not know of any odd-hole-free graph
with clique-chromatic number greater than three.

6. Generalized split graphs. A graph G is a generalized split graph if either
G or the complement of G has a vertex partitioned into sets A, Bi (1 ≤ i ≤ k) so that
A and all Bi’s span complete graphs and there are no edges between Bi and Bj if
i 	= j. Generalized split graphs are perfect and have been introduced in the paper of
Prömel and Steger [20]; this class plays a crucial role in their proof of the asymptotic
version of the strong perfect graph conjecture: almost all Berge graphs are perfect.
In fact, they proved in [20] that almost all C5-free graphs are generalized split graphs.
(“Almost all” means here that the ratio of the number of labelled n-vertex C5-free
graphs to the number of n-vertex generalized split graphs tends to one if n tends
to infinity.) Therefore any property of generalized split graphs holds for almost all
perfect graphs. In our case the property in question is the chromatic number of the
clique hypergraph.

Theorem 10. The clique-hypergraph of a generalized split graph is 3-colorable.
Proof. Assume that G is a generalized split graph. If the complement of G has

the required partition into A, Bi’s, then a proper coloration for the maximal cliques
of G is trivial: the vertices of A are colored with color 1, the vertices of B1 are colored
with color 2, and the vertices in all other Bi’s (if there are any) are colored with
color 3.

If G has the required partition, then two cases are considered. If |A| ≤ 1, then we
color the Bi’s with colors 1 and 2 so that each of them with at least two vertices gets
both color 1 and color 2, and if A is nonempty, we color it with color 3. Finally, if
|A| > 1, a fixed vertex x ∈ A is colored by color 2, all other vertices of A are colored
with color 3, the sets Bi with one vertex are colored with color 1, and any set Bi with
at least two vertices is colored using the same rule: if x is adjacent to all vertices of
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Bi, then color all vertices of Bi with color 1; otherwise, a fixed vertex of Bi which is
not adjacent to x is colored with color 2 and all other vertices of Bi are colored with
color 1. It is straightforward to check that under this coloration every maximal clique
of G gets at least two colors.

It is worth noting that the theorem is sharp in the sense that there are generalized
split graphs with 3-chromatic clique-hypergraphs, for instance, the graph in Figure
5.1.

The result of Prömel and Steger [20] mentioned above yields the following corol-
lary, which is an asymptotic answer to Question 1.

Corollary 6. Almost all perfect graphs are 3-clique-colorable.

7. Open problems. In Theorem 1, we proved that Maximal clique con-
tainment is NP-complete for the complements of K1,4-free graphs. It is therefore
natural to first ask the following question.

Question 2. Is Maximal clique containment polynomially solvable for the
complements of K1,3-free graphs?

Since it is NP-complete to compute the chromatic number of a triangle-free graph
[12], it is NP-complete to compute the clique-chromatic number of a complement of
a K1,3-free graph. Nevertheless, we know by Theorem 6 that χ(H(Ḡ)) ≤ 3 when G
is K1,3-free and α(G) ≥ 3. Hence we should ask the next question.

Question 3. Is it NP-complete to determine whether Ḡ is 2-clique colorable when
G is K1,3-free?

We saw that it is NP-complete to determine whether a graph of maximum degree
3 is 2-clique-colorable. Moreover, Corollary 5 gives that any K1,3-free graph with no
odd hole is 2-clique colorable.

Question 4. Is it NP-complete to determine whether G is 2-clique colorable when
G is K1,3-free?

Most of our results concern classes of graphs defined by forbidden configurations.
Thus it would be interesting to study hereditary properties of the clique-chromatic
number of a graph. Hoàng and McDiarmid in [7] studied such questions. Concerning
the complexity aspect, we ask the following.

Question 5. What is the complexity of deciding whether a graph and all its
induced subgraphs can be 2-clique-colored?
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376 BACSÓ, GRAVIER, GYÁRFÁS, PREISSMANN, AND SEBŐ
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Abstract. In 1989, F. R. K. Chung gave a construction for certain directed h-regular graphs
of small diameter. Her construction is based on finite fields, and the upper bound on the diameter
of these graphs is derived from bounds for certain very short character sums. Here we present two
similar constructions that are based on properties of discrete logarithms and exponential functions in
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1. Introduction. We recall that, in a directed graph G, the distance between
two vertices is defined to be the length of the shortest directed path joining them,
and the diameter D(G) of G is defined to be the maximum distance over all possible
pairs of vertices.

We say the a directed graph G is h-regular if the in-degree and the out-degree at
every node is equal to h.

In many applications, such as in the design of communication networks, it is re-
quired that the underlying h-regular graphs have sufficiently many nodes, and it is
desirable not only to keep h as small as possible (in order to reduce the complex-
ity of the network), but also to minimize the diameter (so that information can be
transmitted efficiently).

In [2], a construction of graphs with the above properties is proposed using finite
fields of the form Fqn . Namely, for any prime q and any integer n ≥ 2 with q >
(n − 1)2, the construction produces q-regular graphs G(q, n) with qn − 1 nodes and
with diameter

D (G(q, n)) ≤ 2n+
4n log n

log q − 2 log(n− 1)
.(1)

In [11], a more flexible construction has been proposed that produces
h-regular graphs for any h ≥ q1/2+ε, ε > 0.

The inequality (1) of [2] is based on bounds for very short character sums consid-
ered in [1, 7], while the result of [11] is based on bounds for even shorter sums in [10].
All of these estimates are derived from the celebrated Weil bound.

There are several other similar constructions and bounds for character sums;
see [3, 9]. An alternative approach to bounding the diameter of G(q, n), which in
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some cases gives improved estimates, is described in [4, 5]. This method makes use
of the Weil bound in a more direct way, but it applies only when q is extremely large
relative to n.

In this paper, we show that similar constructions can be applied to the design of
directed h-regular graphs with small diameter over the residue ring Zpn , where p is an
odd prime. One construction is an exact analogue of the construction of [2]. The other
is an additive variant whose analogue over finite fields does not seem possible owing to
a general lack of good bounds for short sums of additive characters with exponential
functions. We also give a third construction, again over Zpn , which has small diameter
and small regularity for certain choices of the parameters. Our estimates for this last
construction do not depend on bounds for exponential sums.

For any integer h, we denote by Sh the set consisting of the first h positive integers
that are not divisible by p. In our first design (the multiplicative case), we specify
vertices of our graph by elements of Z

∗
pn , and then we select an integer h and connect

vertices u → v if and only if uv−1 ∈ Sh. We denote the corresponding graph by
G×(h, p, n).

Next, let ϑ be a fixed primitive root modulo pn. For every element a ∈ Z
∗
pn , we

can define the discrete logarithm ind a uniquely by the conditions

ϑind a ≡ a (mod pn), 0 ≤ ind a < (p− 1)pn−1.

In our second design (the additive case), we specify vertices of our graph by elements
of Zpn and connect vertices u→ v if and only if u− v ∈ Z

∗
pn and ind(u− v) ∈ [1, h].

We denote the corresponding graph by G+(h, p, n)
In our third design, we specify the vertices of our graph by elements of Zm, where

m is any integer greater than 1, and connect vertices u→ v if and only if the integer
u− v, reduced modulo m, has precisely one nonzero digit when written in base g. We
denote the corresponding graph by G(m, g). For a wide range of parameters, these
graphs have a smaller diameter than the corresponding graphs from [2] with the same
number of nodes and the same regularity.

Throughout the paper, log z denotes the natural logarithm of z. For any integer
m, we denote by em the additive character em(z) = exp(2πiz/m). Constants in the
“O” symbol depend only on p.

2. Preparations. Let X be the set of (p − 1)pn−1 multiplicative characters
modulo pn, and let X∗ ⊂ X be the subset of all nonprincipal characters.

We need the following well-known statements.
Lemma 1. For any z ∈ Z

∗
pn ,

∑
χ∈X

χ(z) =

{
(p− 1)pn−1 if z = 1,

0 otherwise.

Lemma 2. For any z ∈ Zpn ,

pn−1∑
a=0

epn(az) =

{
pn if z = 0,

0 otherwise.

As we have already mentioned, our results are based on bounds for short character
sums. The first one is essentially Exercise 8 in Chapter 9 of [6] (note that the largest
element of Sh is hp/(p− 1) +O(1)).
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Lemma 3. Let p ≥ 3 be a fixed prime number and let χ ∈ X∗. For any integer h,
p2 ≤ h ≤ (p− 1)pn−1, we define r = n log p/ log h so that hr = pn. Then the bound∣∣∣∣∣

∑
x∈Sh

χ(x)

∣∣∣∣∣ = O
(
h1−α/r2

)

holds for some absolute constant α > 0.
Our second result is a combination of Lemma 2 (for r ≤ 3/2) and Theorem 4 (for

r > 3/2) of [8].
Lemma 4. Let p ≥ 3 be a fixed prime number, let ϑ be a primitive root modulo

pn, and suppose that gcd(a, p) = 1. For any integer h, 2 ≤ h ≤ (p − 1)pn−1, let
r = n log p/ log h as before. Then the bound∣∣∣∣∣

h∑
x=1

epn(aϑx)

∣∣∣∣∣ = O
(
h1−β/r2

)

holds for some absolute constant β > 0.
Lemma 5. Let p ≥ 3 be a fixed prime number, let ϑ be a primitive root modulo

pk, and suppose that gcd(a, p) = 1. Then

(p−1)pk−1∑
x=1

epk(aϑ
x) =

{
−1 if k = 1,

0 if k ≥ 2.

Proof. We have

(p−1)pk−1∑
x=1

epk(aϑ
x) =

∑
x∈Z

∗
pk

epk(ax) =

pk∑
x=1

epk(ax)−
pk−1∑
x=1

epk(apx),

and the result follows from Lemma 2.

3. Main results. We can now prove our main results.
Theorem 6. Let p ≥ 3 be a fixed prime number. For any integer h in the range

p2 ≤ h < (p− 1)pn−1, let r = n log p/ log h. Then the bound

D (G×(h, p, n)) = O(r3)

holds, provided that r = o(n1/3).
Proof. Two vertices u, v ∈ Z

∗
pn are connected by a path of the form

u = w0 → w1 → · · · → wd = v

if and only if

xi+1 = wi/wi+1 ∈ Sh, 0 ≤ i ≤ d− 1.

Thus, u is connected to v along such a path if only if there exist integers x1, . . . , xd ∈
Sh such that

v = u

d∏
j=1

xj .
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Therefore, to show that D (G×(h, p, n)) ≤ d, it suffices to prove that every element
w ∈ Z

∗
pn can be represented in the form

w =

d∏
j=1

xj , x1, . . . , xd ∈ Sh.(2)

By Lemma 1, the number T of solutions to (2) is given by

T =
1

(p− 1)pn−1

∑
x1,... ,xd∈Sh

∑
χ∈X

χ

(
w−1

d∏
k=1

xk

)
;

hence it is enough to show that T > 0 for every choice of w. Now, pulling off the
contribution from the principal character, we have

T =
hd

(p− 1)pn−1
+

1

(p− 1)pn−1

∑
χ∈X∗

χ(w−1)

(∑
x∈Sh

χ(x)

)d
.

By Lemma 3, we see that for some constant C > 0 (depending only on p),∣∣∣∣T − hd

(p− 1)pn−1

∣∣∣∣ < Cdhd−αd/r2 = Cdhdp−αnd/r
3

;

hence T will be positive if

Cdp−αnd/r
3

<
1

(p− 1)pn−1
.

This we can ensure by choosing

d =

⌊
r3 log p

α log p− n−1r3 logC

⌋
+ 1.

Consequently, if r = o(n1/3) as n→∞, it follows that the diameter of G×(h, p, n) will
be less than 2α−1r3 for sufficiently large n.

Theorem 7. Let p ≥ 3 be a fixed prime number. For any integer h in the range
2 ≤ h < (p− 1)pn−1, let r = n log p/ log h. Then the bound

D (G+(h, p, n)) = O(r3)

holds, provided that r = o(n1/3).
Proof. Two vertices u, v ∈ Zpn are connected by a path

u = w0 → w1 → · · · → wd = v

if and only if wi − wi+1 ∈ Z
∗
pn , 0 ≤ i ≤ d− 1, and

xi+1 = ind(wi − wi+1) ∈ [1, h], 0 ≤ i ≤ d− 1.

Thus, u is connected to v along such a path if only if there exist integers x1, . . . , xd ∈
[1, h] such that

u = v +

d∑
j=1

ϑxj .
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To show that D (G+(h, p, n)) ≤ d, it suffices to prove that every element w ∈ Zpn can
be represented in the form

w =

d∑
j=1

ϑxj , x1, . . . , xd ∈ [1, h].(3)

By Lemma 2, the number T of solutions to (3) is given by

T =
1

pn

∑
x1,... ,xd∈[1,h]

pn−1∑
b=0

epn


−bw + b

d∑
j=1

ϑxj




=
1

pn

pn−1∑
b=0

epn(−bw)


 ∑
x∈[1,h]

epn(bϑx)



d

=
hd

pn
+

1

pn

pn−1∑
b=1

epn(−bw)


 ∑
x∈[1,h]

epn(bϑx)



d

.

To show that T > 0, it suffices to show that the summation on the right is less than hd

in absolute value. To do this, we collect terms with gcd(b, pn) = pn−k, k = 1, . . . , n,
which gives∣∣∣∣∣∣∣

pn−1∑
b=1

epn(−bw)


 ∑
x∈[1,h]

epn(bϑx)



d
∣∣∣∣∣∣∣ ≤

n∑
k=1

pn−1∑
b=1

gcd(b,pn)=pn−k

∣∣∣∣∣∣
∑

x∈[1,h]

epn(bϑx)

∣∣∣∣∣∣
d

=

n∑
k=1

pk−1∑
a=1

gcd(a,p)=1

∣∣∣∣∣∣
∑

x∈[1,h]

epk(aϑ
x)

∣∣∣∣∣∣
d

.

For pk−1(p− 1) ≥ h, we apply Lemma 4 directly to obtain

∣∣∣∣∣∣
∑

x∈[1,h]

epk(aϑ
x)

∣∣∣∣∣∣� h1−β log2 h/k2 log2 p ≤ h1−β log2 h/n2 log2 p = hp−βn/r
3

.

For pk−1(p − 1) < h, write h in the form h = pk−1(p − 1)i + j with i ≥ 1 and
0 ≤ j ≤ pk−1(p − 1) − 1. If k ≥ 2, then we use Lemma 5 together with Lemma 4 to
derive∣∣∣∣∣∣

∑
x∈[1,h]

epk(aϑ
x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i−1∑
ν=0

(ν+1)pk−1(p−1)∑
x=νpk−1(p−1)+1

epk(aϑ
x) +

pk−1(p−1)i+j∑
x=ipk−1(p−1)+1

epk(aϑ
x)

∣∣∣∣∣∣
=

∣∣∣∣∣
j∑

x=1

epk(aϑ
x)

∣∣∣∣∣� j1−β log2 j/k2 log2 p

� h1−β log2 h/n2 log2 p � hp−βn/r
3

.
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For k = 1, using Lemma 5, we obtain∣∣∣∣∣∣
∑

x∈[1,h]

ep(aϑ
x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
i−1∑
ν=0

(ν+1)(p−1)∑
x=ν(p−1)+1

ep(aϑ
x) +

(p−1)i+j∑
x=i(p−1)+1

ep(aϑ
x)

∣∣∣∣∣∣
≤ i+ j < h/(p− 1) + p ≤ 2h/p,

provided that h is sufficiently large. Consequently, for some constant C > 0 (depend-
ing only on p), we have

n∑
k=1

pk−1∑
a=1

gcd(a,p)=1

∣∣∣∣∣∣
∑

x∈[1,h]

epk(aϑ
x)

∣∣∣∣∣∣
d

< (p− 1)(2h/p)d + Cdhdpn−βnd/r
3

< 2(2h/3)d + Cdhdpn−βnd/r
3

,

<
hd

2
+ Cdhdpn−βnd/r

3

,

provided that d ≥ 4 and h is sufficiently large. Hence, T will be positive for large
values of h if d ≥ 4, and

Cdhdpn−βnd/r
3

<
hd

2
,

which we can ensure by choosing

d =

⌊
r3 log p+ n−1r3 log 2

β log p− n−1r3 logC

⌋
+ 4.

Consequently, if r = o(n1/3) as n→∞, it follows that the diameter of G+(h, p, n) will
be less than 2β−1r3 for sufficiently large n.

Theorem 8. For any integer m ≥ 2 and any base g ≥ 2, G(m, g) is regular of
degree h = (g − 1)K and diameter D

(G(m, g)) = K, where

K =

⌊
log(m− 1)

log g

⌋
+ 1.

Proof. Two vertices u, v ∈ Zm are connected by a path

u = w0 → w1 → · · · → wd = v

if and only if wi−wi+1, reduced modulom, has at most one nonzero digit when written
in base g; that is, wi − wi+1 ≡ agj (mod m) with 1 ≤ a ≤ g − 1 and 0 ≤ j ≤ K − 1.
Since every element w ∈ Zm can be expressed in the form

w =
K−1∑
j=0

ajg
j ,

the diameter of G(m, g) is d = K. Since every node u is connected only to elements
of the form u+ agj , we also see that G(m, g) is regular of degree h = (g − 1)K.
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In particular, taking m equal to a power qn, if g =
⌊
q1/2

⌋
+ 1 and q ≥ (2n+ 1)2,

then h ≤ q and D
(G(qn, g)) ≤ 2n+1, which is stronger than the bound (1) implies for

the graphs constructed in [2]. Moreover, one sees that for any ε ≥ 0, there exists A > 0
such that for g =

⌊
q2/(2+ε)

⌋
+ 1, q > nA, and sufficiently large n, our graphs have qn

nodes of degree h < q and diameter at most (1+ ε)n. Indeed, taking A = 1+3/ε, for
these parameters we obtain K ≤ (1 + ε/2)n+ 1 ≤ (1 + ε)n < qε/(2+ε), provided that
n is large enough.

We also note that the graphs G(m, g) have an obvious algorithm for finding the
shortest path between two nodes using only O(K) arithmetic operations in Zm.

Acknowledgment. The first two authors would like to thank Macquarie Uni-
versity for its hospitality during the preparation of this paper.
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Abstract. In the demand routing and slotting problem on unit demands (unit-DRSP), we are
given a set of unit demands on an n-node ring. Each demand, which is a (source, destination) pair,
must be routed clockwise or counterclockwise and assigned a slot so that no two routes that overlap
occupy the same slot. The objective is to minimize the total number of slots used.

It is well known that unit-DRSP is NP-complete. The best deterministic approximation algorithm
guarantees a solution that is 2 × OPT . A demand of unit-DRSP can be viewed as a chord on the
ring. Let w denote the size of the largest set of demand chords that mutually cross in the interior of
the ring. We present a simple approximation algorithm that uses at most (2−1/�w/2�)×OPT slots
in an n-node network; this is the first deterministic approximation algorithm that beats the factor
of 2 for all values of OPT and therefore for all instances of the input.

If randomization is allowed, an algorithm by Kumar produces, with high probability, a solution
that uses asymptotically (1.5 + 1

2e
+ o(1)) × OPT slots. However, when OPT is not large enough,

the factor can exceed 2. In this paper, we show how combining our algorithm with Kumar’s yields
a randomized approximation algorithm that has, with high probability, a constant factor of 2 −
1/θ(logn). While asymptotically it is not better than Kumar’s, the approximation factor holds for
all values of OPT .

Key words. bandwidth allocation problem, demand routing and slotting, SONET rings, WDM
networks

AMS subject classifications. 68, 90

DOI. 10.1137/S0895480101386723

1. Introduction. Among the most popular configurations of synchronous op-
tical networks, or SONETs, are rings (i.e., cycles). In a SONET ring, nodes are
connected by links made of optical fibers. Each link in the ring has the same capacity
K and is divided into K slots, labeled from 1 to K, where each slot has size equal
to a unit of ring capacity. To transmit a unit demand between two nodes, a route,
whether clockwise or counterclockwise, is chosen and is assigned a slot number. One
slot number is used because unit demands must use the same slot for each of the links
traversed. To transmit a demand of size d units between two pairs of nodes, a route
must again be chosen and d slot numbers are assigned for the route. Once a slot in
a link is assigned to a demand, it is occupied. No other demands that go in either
direction of the link can use the same slot. We note that assigning slots to routes
is equivalent to assigning colors to the routes so that no two overlapping routes are
assigned the same color.

The cost of constructing a SONET ring is an increasing function of the capacity
of the ring. Thus, before purchasing or constructing a SONET ring, it is important
to determine the minimum number of slots needed to transmit all the demands in the
network. (In practice, the goal is to satisfy the expected demands of the network.)
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The demand routing and slotting problem (DRSP) on rings is stated as follows:
given a set of demands on the ring, what is the minimum number of slots needed so
that (i) each demand is routed, (ii) each route assigned a set of slots, and (iii) no two
routes that use the same edge of the ring are assigned the same slots?

Carpenter, Cosares, and Saniee [5] showed that DRSP on rings is NP-hard. They
presented several approximation algorithms whose solutions are within a factor of 2
of the optimal. Sometimes, demands can be split, but only at integral values, and can
be regarded as a multiplicity of unit demands [19]. Thus, an important subcase of
the problem is when all the demands have unit size. Surprisingly, the complexity of
the problem remains the same [6]. The best deterministic approximation algorithm
(given first by Raghavan and Upfal in [18]) does not have a better approximation
factor either. We shall refer to this subcase of DRSP as unit-DRSP.

In this paper, we present the first deterministic approximation algorithm for unit-
DRSP that has an approximation factor less than 2 for all instances of the input. A
unit of demand can be viewed as a chord on the ring whose endpoints correspond to the
source and destination of the demand. Let w denote the size of a largest set of demand
chords that mutually intersect at a point1 in the interior of the ring. We show that it
is always possible to route and slot all demands using at most (2− 1/�w/2�)×OPT
slots in an n-node network in time O(|I|n2), where I is the set of all demands. Since
demand chords are incident to two nodes of the ring, w ≤ �n/2�, and so in the worst
case our algorithm achieves an approximation factor of 2 − 8/(2n + 4). Finally, we
note that currently deployed SONET rings typically have at most 24 nodes [4]. In
this case, our algorithm guarantees a solution that is at most 1.83×OPT .

If we allow randomization, a recent Monte Carlo approximation algorithm by Ku-
mar [14] has a factor of 1.5 + 1

2e + o(1), where e is the base of the natural logarithm;
i.e., asymptotically, the algorithm is a 1.68-randomized approximation algorithm. We
note, however, that when OPT is not large enough, the o(1) additive term can be-
come significant so that the approximation factor exceeds 2. In this paper, we show
how combining our algorithm with Kumar’s produces a randomized approximation
algorithm that has a constant factor of 2−1/θ(log n). Thus, while there are instances
when Kumar’s algorithm has a better guarantee, our approximation factor holds for
all values of OPT and is an improvement over the 2 − 1/θ(n) approximation factor
of our deterministic algorithm.

1.1. Overview of the paper. The remainder of the paper is organized as fol-
lows. In section 2, we define terms, give two lower bounds that are relevant to our
method, and present a 2-approximation algorithm for unit-DRSP. In section 3, we
present a greedy algorithm for coloring circular arcs due to Tucker and discuss some
of its properties. We then describe our deterministic algorithm in section 4 and our
randomized algorithm in section 5.

1.2. Related work. We remark that unit-DRSP has also been studied exten-
sively in SONETs and WDM (wavelength division multiplexing) networks with dif-
ferent topologies, including trees, trees of rings, and meshes [18, 6, 15, 16, 17, 2].
Beauquier et al. survey the most recent results in the area [1]. While the earliest model
of the unit-DRSP in WDM ring networks just reduces to the problem above [18, 14],
another model assumes that the underlying ring network is directed and symmetric.

1We emphasize that the intersection of two chords in this set must be just a single point in the
interior of the ring. Thus, if two demand chords have the same endpoints, only one of them can be
part of the set.
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That is, if edge (i, i + 1) ∈ E(G), then (i + 1, i) ∈ E(G). Thus, two demands that
traverse a link of the network, but in opposite directions, can be assigned the same
slot number since they use, technically, different edges of the network. Wilfong and
Winkler considered this problem and showed that unit-DRSP remains NP-hard in
this setting [21]. The best approximation algorithm known for this problem also has
a factor of 2.

2. Preliminaries. The unit-DRSP problem is defined on an n-node ring. We are
given a set of demands I on a ring network. Each demand is a (source, destination)
pair where the source and destination are distinct nodes on the network. A routing
for I is an assignment to each demand of either the clockwise (which, henceforth,
we abbreviate as cw) or counterclockwise (ccw) source-destination path. A slotting
for a routing of I is equivalent to assigning colors to the |I| paths so that no two
overlapping paths are assigned the same color. (Paths P1 and P2 are said to overlap
if they have at least one edge of the network in common.) Since a path on the ring
network can be viewed as an arc on a circle, we shall use the terms “paths” and “arcs”
interchangeably.

A fixed choice of one of the cw or ccw paths for each demand in I determines a
set of circular arcs C; conversely, a set of circular arcs C is derivable from I if the arcs
are obtained from routing all the demands in I. We let D(I) denote the collection
of arc-sets derivable from I. A solution of I consists of some C ∈ D(I) and a valid
coloring of C. An optimal solution to unit-DRSP is one that uses the fewest number
of colors among all possible solutions.

Let C be a set of circular arcs. A pair of paths in C forms a conflicting pair if the
paths overlap and their union is the entire ring. Assume C is derivable from I. We
say C is a parallel routing if C does not contain any conflicting pairs. We say that
A ⊆ C is an independent set of arcs if no two arcs in A overlap. Thus, arcs that are
assigned the same color in a solution of unit-DRSP form an independent set.

2.1. Lower bounds. We first establish some lower bounds on the number of
colors required by an optimal solution to unit-DRSP in terms of properties of I and
the routings in D(I). One way to view a demand in I is to consider it as a chord on
the circle, where the endpoints of the chord correspond to the source and destination
of the demand. Let us say that two demand chords cross each other if they intersect
at a single point in the interior of the circle. It is easy to see that the paths of two
demands that cross each other will always overlap and must be assigned different
colors. Thus, the size of the largest set of demand chords that mutually cross each
other is a natural lower bound to the number of colors needed for an optimal solution
of unit-DRSP.

Let us denote by GI the graph whose vertex set corresponds to the set of distinct
demand chords generated from the demands of I. Two vertices in the graph are
adjacent if and only if their corresponding demand chords cross. The parameter of
interest to us is the clique number of GI , ω(GI). By the above discussion, ω(GI) is a
lower bound on the optimal number of colors for the unit-DRSP. Gavril showed that
ω(GI) can be computed in time O(|I|3) [9]. Bhattacharya and Kaller later improved
the running time to O(|I|+ n log n) [3].

Let e be an edge on the ring. A set of circular arcs C in D(I) induces a load
Le on e, where Le is the number of arcs in C that contain e. Set C also induces a
ringload of LC = maxe{Le} on the ring. It is not difficult to see that if we wish to
assign colors to each arc in C so that overlapping arcs are assigned different colors,
then at least LC colors must be used.
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I
1

I

I

2

 3

Fig. 2.1. An example of what the demand chords of I could look like in our example if k = 3.

Thus, another lower bound for unit-DRSP can be obtained by modifying the
objective function to minimize the ringload of the network. The ringloading problem
defined on I asks for C∗ such that LC∗ = minC∈D(I) LC . Schrijver, Seymour, and
Winkler [19] showed how to find C∗ so that C∗ is also a parallel routing in time
O(|I|n2). Frank [7] also addressed this problem. Since an optimal solution to unit-
DRSP must have a ringload of at least LC∗ , a coloring of the optimal solution uses
at least LC∗ colors. We have thus shown the following.

Proposition 2.1. The optimal solution to unit-DRSP uses at least max{ω(GI),
LC∗} colors, where C∗ is an optimal solution to the ringloading problem on I.

We must point out, however, that our lower bound can be a weak one; i.e., it can
be significantly smaller than the number of slots used by the optimal solution to unit-
DRSP. Consider the following example, where the vertices of the ring are labeled from
1 to 6k in the cw direction and the set of demands I = I1∪I2 · · ·∪Ik is such that each
Ij = {dj1 = (3(j−1)+1, 3k+3(j−1)+3), dj2 = (3(j−1)+2, 3k+3(j−1)+2), dj3 =
(3(j− 1)+3, 3k+3(j− 1)+1)}. An interesting property of this I is that when d ∈ Ii
and d′ ∈ Ij then the demand chords of d and d′ intersect in the interior of the circle
if and only if i �= j. (See Figure 2.1.)

Clearly, ω(GI) = k. If we route dj1 ccw and dj3 cw for each Ij , the resulting arcs
induce a load of k on the ring. If we also route dj2 cw when j is odd and ccw when
j is even, these additional arcs induce an additional load of �k+1

2 �. So we have found

a routing that induces a ringload of k + �k+1
2 � and thus, LC∗ ≤ k + �k+1

2 �. Thus,

max{ω(GI), LC∗} ≤ max{k, k + �k+1
2 �}.

Suppose i �= j. All the chords of the demands of Ii intersect with all the chords
of the demands of Ij . Thus, the slots occupied by the routed demands of Ii must be
distinct from the slots occupied by the routed demands of Ij . Furthermore, the routed
demands of each Ij must occupy at least two of these slots since two demands have to
be routed in the same direction. Thus, the minimum number of slots needed by the
optimal solution to unit-DRSP is at least 2k, which is roughly 4/3max{k, k+�k+1

2 �},
provided k ≥ 2.

2.2. A 2-approximation scheme. Recall that a solution for unit-DRSP con-
sists of a routing C ∈ D(I) and a valid coloring of C. In the 2-approximation algorithm
of unit-DRSP, an optimal solution to the ringloading problem on I, C∗, is the chosen
routing. The arcs in C∗ are colored as follows. Let Se ⊆ C∗ be the set of arcs that
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pass through edge e. Note that |Se| ≤ LC∗ . All the arcs in Se are assigned different
colors since they overlap. On the other hand, the set of arcs that do not pass through
e, C∗\Se, forms what is called an interval set since the arcs can be considered as
intervals on a line. It is known that such a set of arcs can be colored optimally in
linear time, where the number of colors used is LC∗\Se

[10]. Thus, the total number
of colors used is at most |Se|+ LC∗\Se

≤ 2LC∗ .
The 2-approximation algorithm above is an example of one basic approach to

solving the unit-DRSP: first, route all demands, and then color the arcs. Our algo-
rithm also initially routes all demands. What differentiates our algorithm from this
basic approach is that whenever it detects suboptimality as it colors, it reroutes some
of the demands. This crucial step allows us to show that the approximation factor of
our algorithm is better than 2.

3. Coloring circular arcs. We examine the problem of coloring a fixed C ∈
D(I). Recall that a valid coloring for C assigns a color to each arc in C so that no two
overlapping arcs have the same color. The problem of finding a valid coloring for C
that uses as few colors as possible has been studied extensively. Garey et al. showed
that the problem is NP-complete [8]. Tucker gave a simple 2-approximation scheme
that used the ringload of C as a lower bound [20]. He also conjectured that 3

2 ×ω(C)
colors will be sufficient to properly color C, where ω(C) is the size of the largest
set of arcs that mutually overlap each other. In 1980, Karapetian proved that this
conjecture is indeed true [12]. Independently, Hsu and Shih gave a 5/3-approximation
scheme [11]. More recently, Kumar gave a randomized approximation algorithm that
achieves a factor of 1 + 1/e+ o(1) [13].

We present GREEDY, an algorithm for coloring the arcs of C due to Tucker [20]
that will be used repeatedly as a subroutine in our new algorithm. For an arbitrary
arc a, we shall call the first and second endpoints traversed in the cw direction its left
(denoted by l(a)) and its right endpoint (denoted by r(a)), respectively.

Let cmax = 1. Start with an arbitrary arc a in C and color it with cmax. In the
cw direction, we proceed to the next arc b, an arc whose left endpoint is closest to
the right endpoint of a (in the cw direction) and color it with cmax unless a and b
overlap, in which case we color b with cmax+ 1. We continue this process where the
next arc chosen is always an uncolored arc whose left endpoint is closest to the right
endpoint of the current arc in the cw direction. We color the next arc with cmax
whenever possible. Otherwise, we update cmax with cmax + 1 and color with the
new cmax. (See Figure 3.1 for the pseudocode and Figure 3.2 for an example.) We
store all the arcs colored i in the set Ci and let ci,j denote the jth arc colored i. The
last arc colored i will also be denoted as ci,ni

.
Let us denote the left endpoint of arc a, the first arc we colored, as vertex 1. We

then label the rest of the nodes in the ring from 2 to n starting from vertex 1 in the
cw direction 2. We say that the algorithm has completed k rounds if the algorithm
has traversed vertex 1 k + 1 times. We let Rk be the set of arcs colored during the
kth round. If an arc’s left endpoint was traversed during the kth round but its right
endpoint during the (k + 1)st round, we consider the arc to be in Rk.

Lemma 3.1. If, at some round, GREEDY used exactly 2 colors, say i − 1 and i,
then 1 ≤ l(ci−1,1) < r(ci,1) < l(ci,1) ≤ n and ci,1 was the last arc colored during the

2We point out that this numbering scheme is not fixed for our Unit-DRSP Algorithm in the
following sense. Our algorithm may call GREEDY more than once. For each call, the first colored
arc is randomly picked. Hence, the ccw endpoint of the first colored arc of the ith call is vertex 1 for
that instance, but it may have a different number for the jth call when i �= j.
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GREEDY(C, a)
(Preprocessing step: sort endpoints of arcs and store in a linked list. Let next(a) be
a pointer to the arc whose left endpoint is closest to the right endpoint of a in the
cw direction.)
cmax← 1, j ← 1;
Di ← ∅, i = 1, . . . , |C|;
C ← C \ {a}
while next(a) �= nil and next(a) is not colored

if next(a) overlaps with an arc colored cmax
then ncmax ← j, cmax++, j ← 1 /* use a new color */
else j++; /* keep the same color */

ccmax,j ← next(a);
a← next(a);
C ← C \ {a};

for i = 1 to cmax
Di ← {ci,1, . . . ci,ni

}
return(C, {D1, D2, . . . , Dcmax});

Fig. 3.1. The GREEDY algorithm for coloring circular arcs.

 1

 1

2

3

4

Fig. 3.2. An example of how GREEDY labels the arcs if it started with the arc drawn with
dashed lines.

round.
Proof. Suppose at the beginning of a round, cmax = i − 2 and arcs ci−1,1 and

ci,1 were both colored during the round. This means that 1 ≤ l(ci−1,1) < r(ci−1,1) ≤
l(ci,1) ≤ n and the endpoints of all the arcs in Ci−1 lie between vertex 1 and l(ci,1).
Since ci,1 must overlap with an arc colored i − 1, it must go beyond vertex 1 and
l(ci−1,1), so r(ci,1) < l(ci,1) and l(ci−1,1) < r(ci,1). Consequently, arc ci,1 must be the
last arc colored in the round.

An immediate implication of this lemma is that cmax increases by at most two
in each round of coloring.

Theorem 3.2. GREEDY uses at most two colors during each round of coloring.
Suppose we run the GREEDY algorithm and stop it before all the arcs are col-

ored. Below, we describe a relationship between the number of rounds GREEDY has
completed and the load induced by the uncolored arcs. The proof of the theorem can
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be found in the appendix.
Theorem 3.3. Let 0 ≤ k ≤ LC∗ and let f be an edge of the ring. If GREEDY

traversed edge f k times, then the load induced by the remaining uncolored arcs on f
is at most LC∗ − k.

If GREEDY traversed the ring k times, then it must traverse each edge of the ring
k times as well. Here is a direct consequence of the theorem.

Corollary 3.4. Let 0 ≤ k ≤ LC∗ and let f be an edge of the ring. If GREEDY
traversed the ring k times, then the load induced by the remaining uncolored arcs on
f is at most LC∗ − k.

4. Description and analysis of algorithm. To give the reader an idea of our
algorithm, let us first consider the simple case when ω(GI) ≤ 3. That is, at most
three demand chords in I mutually cross each other. Our algorithm consists of two
basic steps.

(a) Start with C∗, an optimal solution to the ringloading problem I, such that
C∗ is also a parallel routing. (We know that such a routing exists and can be found
in O(|I|n2) time [19].)

(b) While some arc is not colored, apply GREEDY to C∗ for two rounds. Remove
the colored arcs.

From Theorem 3.2, GREEDY uses at most four colors for every two rounds of
coloring. If it uses at most three colors, we do no modifications. However, if it uses
four colors, we argue below that an arc can be rerouted so that this newly rerouted
arc together with all the arcs discovered in two rounds of GREEDY can be colored
with three colors. Hence, if our algorithm goes through 2k rounds of GREEDY, then
it uses at most 3k colors.

Suppose at the end of two rounds of coloring, GREEDY used four colors; i.e.,
GREEDY used colors 1 and 2 during the first round and colors 3 and 4 during the
second round. From the proof of Lemma 3.1, we know that c2,1 is an arc that goes
beyond vertex 1, so the endpoints of c2,1, c3,1, and c4,1 arcs colored during the second
round have the following ordering:

1 < r(c2,1) ≤ l(c3,1) < r(c3,1) ≤ l(c4,1) ≤ n.(4.1)

This means that all the endpoints of arcs in C2\{c2,1} lie between r(c2,1) and
l(c3,1). Since c3,1 must overlap with some arc in C2, it must be the case that

l(c3,1) ≤ l(c2,1) < r(c3,1).(4.2)

From Lemma 3.1, we also have

1 ≤ l(c3,1) < r(c4,1) < l(c4,1) ≤ n.(4.3)

Inequalities (4.2) and (4.3) together with the assumption that C∗ has no conflict-
ing pairs imply a stronger version of (4.1).

1 < r(c2,1) < l(c3,1) < r(c3,1) < l(c4,1) ≤ n.(4.4)

Combining (4.4) and (4.3), and (4.4) and (4.2), we have

1 < r(c2,1) < l(c3,1)< r(c4,1),(4.5)

l(c2,1) < r(c3,1) < l(c4,1)≤ n.(4.6)
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Fig. 4.1. In this example, c1,∗ is c1,1. Notice that the demand chords of c2,1, c3,1, and c4,1
mutually cross each other, but c1,∗’s demand chord does not cross that of c4,1. Thus, we can reroute
c4,1 so that now we have three independent sets, {c1,1, ĉ4,1}, {c1,2, c2,1}, and {c3,1}.

And since C∗ has no conflicting pairs, r(c4,1) < l(c2,1). Hence,

1 ≤ r(c2,1) < l(c3,1) < r(c4,1) < l(c2,1) < r(c3,1) < l(c4,1) ≤ n.(4.7)

That is, the demand chords of c2,1, c3,1, and c4,1 form a K3 in GI .
Let c1,∗ be the last arc in C1 that overlaps nontrivially with c2,1; i.e., l(c1,∗) <

r(c2,1) ≤ l(g), where g = c1,∗+1 if ∗ �= n1 and g = c2,1 otherwise. Thus, either
l(c1,∗) < r(c2,1) ≤ r(c1,∗) or l(c1,∗) < r(c1,∗) < r(c2,1). In both cases, r(c1,∗) < l(c2,1)
or else c1,∗ and c2,1 form a conflicting pair. If, in addition, r(c4,1) < r(c1,∗), then we
have the inequalities

l(c1,∗) < r(c2,1) < l(c3,1) < r(c4,1) < r(c1,∗) < l(c2,1) < r(c3,1) < l(c4,1),(4.8)

which imply the existence of a K4 in GI .
Since ω(GI) ≤ 3, it must be the case that r(c4,1) ≥ r(c1,∗). In other words,

1 ≤ l(c1,∗) < r(c1,∗) ≤ r(c4,1) < l(c4,1) ≤ n. If we reroute c4,1 so that it no longer
passes through vertex 1, then it will not overlap any of the arcs c1,1, c1,2 . . . c1,∗. Let
ĉ4,1 denote the rerouted c4,1. The set {ĉ4,1}∪{c1,1, c1,2 . . . c1,∗} is an independent set.

Since GREEDY colored the arcs {c2,1} ∪ C1\{c1,1, c1,2 . . . c1,∗} in the first round
and since c1,∗ was the last arc in C1 that overlapped with c2,1, the set {c2,1} ∪
C1\{c1,1, c1,2 . . . c1,∗} is an independent set too. Similarly, since GREEDY colored the
arcs in C3∪C2\{c2,1} during the second round and c4,1 was the last arc colored during
the round, l(c2,2) > 1 and r(c3,n3) ≤ n. That is, none of the arcs in C3 overlapped
with the arcs in C2\{c2,1}. Thus, C3 ∪ C2\{c2,1} is also an independent set.

Let us summarize what we have learned. If GREEDY used four different colors in
two rounds of coloring, then the demands chords discovered by GREEDY during these
two rounds must have K3 as a subgraph in GI . Since ω(GI) ≤ 3, we can reroute c4,1
and rearrange the sets so that now R1∪R2 can be partitioned into three independent
sets (instead of four): {ĉ4,1} ∪ {c1,1, c1,2 . . . c1,∗}, {c2,1} ∪ C1\{c1,1, c1,2 . . . c1,∗}, and
C3 ∪ C2\{c2,1}. That is, all the arcs discovered by GREEDY in two rounds can be
colored with three colors. These are precisely the steps our algorithm will take when-
ever it discovers that four colors were used at the end of two rounds of coloring. See
Figure 4.1 for an example.
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Lemma 4.1. Suppose R2∩C4 �= ∅. The demand chords of c2,1, c3,1, and c4,1 form
a K3 in GI . If, in addition, ω(GI) ≤ 3, then the arc c4,1 can be rerouted so that only
three colors are used to color the demands encountered in rounds 1 and 2.

From Corollary 3.4, we know that whenever GREEDY traverses the ring k times,
the remaining uncolored arcs induce a load of at most LC∗ − k on the edges of the
ring. This means that our algorithm can go through at most 2(LC∗/2) rounds of
GREEDY if LC∗ is even, and at most 2(LC∗+1

2 ) rounds of GREEDY if LC∗ is odd. We
have the following result.

Theorem 4.2. Let I be a set of demands on the ring such that ω(GI) ≤ 3. The
Unit-DRSP Algorithm produces a routing and a slot assignment of the demands in I
that uses at most 1.5×OPT slots.

Proof. If LC∗ is even, the algorithm goes through at most LC∗ rounds, so it
uses at most 3

2 ∗ LC∗ colors. If LC∗ is odd, and the algorithm goes through at most
LC∗ − 1 rounds, it also uses at most 3

2 ∗LC∗ colors. However, suppose, after LC∗ − 1
rounds, some arcs are still not colored. From Theorem 3.3, the remaining uncolored
arcs induce a load of 1 on the edges of the ring. Thus, none of the arcs overlap and
one color will be sufficient to color all of them. The total number of colors used then
is at most 3(LC∗−1)/2+1 < 3

2 ∗LC∗ . Since LC∗ ≤ OPT , our theorem follows.
Let us now consider the general case where ω(GI) ≤ 2z− 1, where z is a positive

integer. Our algorithm’s two basic steps are as follows.
(a) Compute C∗, where C∗ is a parallel routing.
(b) While some arc is not colored, apply GREEDY to C∗ for z rounds. Remove

the colored arcs.
Again, GREEDY can only use at most 2z colors for every z rounds of coloring.

We extend Lemma 4.1 to show that because ω(GI) ≤ 2z − 1, 2z − 1 colors will be
sufficient to slot all the demands encountered in the z rounds of coloring.

Lemma 4.3. If Rk ∩ C2k �= ∅, then the following sets of inequalities are true.
(i) l(c1,∗) < r(c2,1) < l(c3,1) < · · · < l(c2i−1,1) < r(c2i,1) < · · · < r(c2k,1) and
(ii) r(c1,∗) < l(c2,1) < r(c3,1) < · · · < r(c2i−1,1) < l(c2i,1) < · · · < l(c2k,1),

where c1,∗ is the last arc in C1 that overlaps nontrivially with c2,1 during the imple-
mentation of the GREEDY algorithm.

Proof. First, suppose k = 1. If R1 ∩ C2 �= ∅, then, from Lemma 3.1, R1 = C1 ∪
{c2,1}. By the definition of c1,∗, 1 ≤ l(c1,∗) < r(c2,1) and since r(c1,n1

) ≤ l(c2,1) ≤ n,
we have r(c1,∗) ≤ l(c2,1). Note, however, that r(c1,∗) �= l(c2,1) since equality would
imply that c1,∗ and c2,1 form a conflicting pair. Thus, the inequalities in (i) and (ii)
are true when k = 1.

Suppose that after i > 1 rounds Ri ∩ C2i �= ∅ and that our lemma holds for
k ≤ i − 1. From Lemma 3.1, we know that arcs c2i−2,1 and c2i,1 were the last arcs
colored in rounds i − 1 and i, respectively. Using the same argument we made to
arrive at inequalities (4.5) and (4.6), where we substitute c2i−2,1 for c2,1, c2i−1,1 for
c3,1, and c2i,1 for c4,1, we have the following inequalities:

1 < r(c2i−2,1) < l(c2i−1,1) < r(c2i,1),(4.9)

l(c2i−2,1) < r(c2i−1,1) < l(c2i,1) ≤ n.(4.10)

These inequalities, together with our assumption that the inequalities in (i) and
(ii) hold for k ≤ i− 1, show that our lemma holds for k ≤ i. By induction, the lemma
holds in general.

In view of the lower bound ω(GI), the next theorem tells us that if GREEDY
traverses k rounds of coloring and uses the maximum possible number of 2k colors,
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then the number of colors used for the arcs encountered in the k rounds is within one
of optimal. Furthermore, if the number of colors used is not optimal, we can reroute
some arc so that there is no need to use the extra color.

Theorem 4.4. Let k ≥ 2. If Rk ∩ C2k �= ∅, then the demand chords of
c2,1, c3,1, . . . , c2k,1 form a K2k−1 in GI . In addition, if the demand chords of c1,∗, c2,1,
c3,1, . . . , c2k,1 do not form a K2k in GI , then by rerouting c2k,1 we can color the arcs
with at most 2k − 1 colors.

Proof. From the previous lemma, r(c2,1) < r(c2k,1) and l(c2,1) < l(c2k,1). If we
also have r(c2k,1) ≥ l(c2,1), then c2,1 and c2k,1 would form a conflicting pair. Thus,
r(c2k,1) < l(c2,1). Combining the fact that Rk ∩ C2k �= ∅ and inequalities (i) and (ii)
of the previous lemma, we have the following inequalities:

r(c2,1) < · · · < l(c2k−1,1) < r(c2k,1) < l(c2,1) < · · · < r(c2k−1,1) < l(c2k,1).(4.11)

This implies that the demand chords of arcs c2,1, c3,1, . . . , c2k,1 mutually intersect
each other and consequently form a K2k−1 in GI .

Suppose we also know that the demand chords associated with the arcs in the
set {c1,∗, c2,1, c3,1, . . . , c2k,1} do not form a K2k in GI . Since the previous lemma
holds, it follows that r(c2k,1) ≥ r(c1,∗). That is, the demand chords of c1,∗ and
c2k,1 do not intersect in the interior of the circle. Let us reroute c2k,1 and denote
the new arc as ĉ2k,1. Thus, {c1,1, c1,2 . . . c1,∗} ∪ {ĉ2k,1} is an independent set. Since
k ≥ 2, we use the same argument as in the proof of Lemma 4.1 to prove that the
sets C1\{c1,1, c1,2 . . . c1,∗} ∪ {c2,1} and C2\{c2,1} ∪ C3 are independent. Finally, by
construction, the sets C4, C5, . . . , C2k−1 must also be independent. If we assign all
arcs belonging to the same independent set the same color, then we have used exactly
2k − 1 colors.

We now describe the algorithm in Figure 4.2, which is based on the proof of the
theorem above.

Unit-DRSP Algorithm (I)

Compute for C∗ and ω(GI).
Compute for the smallest integer z s.t. ω(GI) ≤ 2z − 1.
Q ← ∅.
while (C∗ �= ∅)

Ci ← ∅, i = 1, . . . , 2z;
Choose a ∈ C∗ and apply GREEDY for z rounds;
if C2z �= ∅
c2z,1 ← rerouted c2z,1
C3 ← C3 ∪ C2\{c2,1}
C2 ← {c2,1} ∪ C1\{c1,1, c1,2 . . . c1,∗}
C1 ← {c1,1, c1,2 . . . c1,∗} ∪ {c2z,1}
C2z ← ∅

Q ← Q∪ {C1, . . . , C2z−1}
C∗ ← C∗\{C1, . . . , C2z−1}

return(Q);

Fig. 4.2. Our approximation algorithm for routing and slotting unit demands in rings.
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Theorem 4.5. Let ω(GI) ≤ 2z − 1, where z is a positive integer. The Unit-
DRSP Algorithm produces a routing and a slot assignment that uses at most (2 −
1/�ω(GI)/2�)×OPT slots.

Proof. We first note that z ≤ �ω(GI)/2�. Suppose our algorithm went through
zk rounds of GREEDY. From Theorem 4.4, it used at most (2z − 1)k colors. If
zk ≤ LC∗ , then k ≤ LC∗/z, so the algorithm used at most (2z − 1)(LC∗/z) ≤
(2− 1/�ω(GI)/2�)× LC∗ colors.

But suppose zk > LC∗ . This means that after z(k− 1) rounds of GREEDY, there
were still uncolored arcs. From Theorem 3.3, these remaining arcs induce a load of
at most q = LC∗ − z(k− 1). We claim that 2q − 1 colors would suffice to color them.
If not, from Theorem 4.4, c2,1, . . . , c2q,1 form a K2q−1 in GI . In the proof of that
theorem, we showed that 1 < r(c2,1) < r(c2q,1) < n, which means that c2q,1 went
through edge (1, 2). That is, GREEDY went past edge (1, 2) q+1 times before all the
arcs were colored. According to Theorem 3.3, this means that the load induced by
the remaining arcs was at least q + 1, contradicting our assumption.

Thus, the number of colors used by GREEDY was at most (2z−1)(k−1)+2q−1.
Using the fact that q = LC∗ − z(k − 1) and zk > LC∗ , we have

(2z − 1)(k − 1) + 2q − 1 = 2LC∗ − k
< 2LC∗ − LC∗/z

= (2− 1/z)LC∗

≤ (2− 1/�ω(GI)/2�)× LC∗ .

Corollary 4.6. We have an O(|I|n2)-time algorithm for the unit-DRSP on
rings that produces a (2−8/(2n+4))-approximation to the optimal solution whenever
n ≥ 3.

Proof. Schrijver, Seymour, and Winkler [19] proved that an optimal solution to
the ringloading problem of I, C∗ that is also a parallel-routing can be determined in
O(|I|n2) time. Bhattacharya and Kaller [3] showed that it takes O(|I|+n log n) time
to find a largest clique in GI . Let R denote the set of arcs discovered during z rounds
of GREEDY. It is easy to check that rerouting and coloring takes at most O(|R|) time.
Thus, coloring and rerouting arcs in C∗ takes O(|I|) time. The bottleneck of the
algorithm therefore is finding C∗. Finally, since each demand chord is incident to two
nodes of the network, ω(GI) ≤ �n/2�, so �ω(GI)/2� ≤ n/4+1/2. The approximation
factor follows from the previous theorem.

5. The hybrid randomized algorithm. In [14], Kumar presented an algo-
rithm that considers n − 1 binary integer programs. Let e be an edge of the ring.
Each integer program is a formulation of the unit-DRSP problem with the added
assumption that e and another edge of the ring, f(�= e), are complements of each
other (see the appendix for a definition). There are n − 1 binary integer programs
because all possible candidates for f are considered. If zi is the objective value of
the ith integer program, then OPT = mini zi. To approximate OPT , Kumar’s al-
gorithm relaxes each program and applies randomized rounding. Let z∗frac be the
best optimal fractional solution among the n − 1 programs. Kumar showed that,
with high probability (w.h.p.), the number of slots used by the algorithm is at most
(1.5+1/(2e)+ f(n, z∗frac))z

∗
frac (e, in this case, is the base of the natural logarithm),

where

f(n, z∗frac) = 2
√
2(lnn+ 2 ln z∗frac)/z

∗
frac +

√
2 ln z∗frac/z

∗
frac + 8/(z∗frac)

2.(5.1)
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We observe that when n is large compared to z∗frac, then the bound for the number
of slots used in Kumar’s algorithm can exceed 2× z∗frac. On the other hand, when n
is fixed and z∗frac →∞, the bound converges to (1.5 + 1/(2e))z∗frac.

Let us combine the Unit-DRSP Algorithm with Kumar’s algorithm. That is, given a
set of unit demands I, route I using Kumar’s algorithm and the Unit-DRSP Algorithm.
Output the routing which uses the fewest slots. We call this combination the hybrid
randomized algorithm (HRA). How many slots does this algorithm use? To bound
the number of slots used by HRA, we need the following lemma whose proof can be
found in the appendix.

Lemma 5.1. ω(GI) ≤ z∗frac.
This means that when Kumar’s algorithm has, w.h.p., an approximation factor

of 1.5 + 1
2e + f(n, z

∗
frac), Unit-DRSP Algorithm’s approximation factor is at most 2−

1/�z∗frac/2�.
Let z0(n) = M lnn, where M is a large real number. When z∗frac ≤ z0(n),

the Unit-DRSP Algorithm will use at most (2 − 1/�z0(n)/2�) × OPT slots since the
algorithm’s approximation factor is monotonically increasing. When z∗frac > z0(n),
w.h.p., Kumar’s algorithm will use at most (1.5 + 1/(2e) + f(n, z0(n)))z

∗
frac slots

since this algorithm’s approximation factor is monotonically decreasing with respect
to z∗frac. In the appendix, we prove that if we assume n ≥ 2 (which is valid because
a ring has to have at least two nodes) and we choose M appropriately, then (1.5 +
1/(2e) + f(n, z0(n))) ≤ 2 − 1/�z0(n)/2�; i.e., when z∗frac = z0(n), w.h.p., Kumar’s
algorithm’s approximation factor is not more than that of Unit-DRSP. Hence, w.h.p.,
HRA uses at most (2− 1/O(lnn))×OPT slots.

Theorem 5.2. With high probability, the hybrid randomized algorithm above
produces a solution for the unit-DRSP in rings that uses at most (2−1/O(lnn))×OPT
slots.

6. Future directions. In section 3, we mentioned several ways of coloring cir-
cular arcs. Let C ∈ D(I) . If we use any of these coloring algorithms, we have a
solution to our problem. How close is the number of colors used in the solution to
optimality?

Tucker’s coloring scheme gives a 2-approximation based on the ringload of C.
Thus, if this coloring is applied to C∗ ∈ D(I), where C∗ is a routing of I that
minimizes ringload, then the number of colors used is at most 2LC∗ .

Let GC be the graph whose vertices correspond to the arcs in C and the edges
correspond to the arcs that intersect in C. Karapetian’s coloring scheme gives a 3/2-
approximation scheme based on ω(GC), the largest clique in GC . This suggests a very
interesting problem: How do we route I so that the largest set of arcs that mutually
overlap is as small as possible? If we can answer this question optimally, then we
have a 3/2-approximation algorithm to unit-DRSP.

7. Appendix.

7.1. Reduction of ringload by GREEDY. Let us now prove Theorem 3.3.
Theorem 3.3 Let 0 ≤ k ≤ LC∗ and let f be an edge of the ring. If GREEDY

traversed edge f k times, then the load induced by the remaining uncolored arcs on f
is at most LC∗ − k.

Proof. Throughout this proof, we remind the reader that if GREEDY has finished
k rounds of coloring, then it has also traversed each edge of the ring at least k times.
Futhermore, if the last arc colored by GREEDY went beyond vertex 1, then some edges
of the ring were traversed k + 1 times.
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Let f = (u, u+1), where 1 ≤ u ≤ n and where vertex n+1 is the same as vertex
1. Let {d1, d2, . . . , dl} be the maximal set of arcs GREEDY discovered as it traversed
f the kth time. We note that dl either went through edge f or did not. If the former
is true, then GREEDY was coloring dl as it traversed f ; otherwise, dl was the last arc
GREEDY colored and none of the remaining uncolored arcs have a left endpoint in
the set {r(dl), r(dl) + 1, . . . , l(f)− 1, l(f)}.

Let S
(k)
f ⊆ C∗\{d1, . . . , dl} denote the set of uncolored arcs that traverse edge f af-

ter GREEDY has traversed the edge k times. Thus, the load induced by C∗\{d1, . . . , dl}
on f is exactly |S(k)

f |. To prove the theorem, we shall do a double induction, first on
k and then on u, the left endpoint of edge f .

When k = 0, the theorem is true trivially. Suppose that for some value k′ ≤ LC∗

and for all k satisfying 0 ≤ k < k′, the theorem holds for all the edges in the ring. We
claim that the theorem still holds when the number of times GREEDY traverses the
edge f is k′. Let us start with edge f = (1, 2) and show that |S(k′)

f | ≤ LC∗ − k′.
Since GREEDY has just finished k′ − 1 rounds of coloring, from our induction

hypothesis, |S(k′)
f | ≤ LC∗ − (k′− 1). If |S(k′)

f | ≤ LC∗ − k′, our claim is true. However,

suppose |S(k′)
f | = LC∗−(k′−1). This implies that neither the last arc colored in round

k′ − 1 nor the first arc in round k′ traversed edge (1, 2), because the load induced on
edge (1, 2) did not drop since GREEDY traversed it the (k′− 1)st time. Consequently,

none of the arcs in S
(k′)
f have a ccw endpoint at vertex 1.

Let us denote by b the arc in S
(k′)
f whose left endpoint is closest to vertex 1 in the

cw direction. Thus, all the arcs in S
(k′)
f go through the edges (l(b), l(b) + 1), (l(b) +

1, l(b)+2), . . . , (n, 1), (1, 2). Since none of these arcs were colored during round k′−1,
S

(k′)
f ⊆ S(k′)

(l(b),l(b)+1) ⊆ S(k′−1)
(l(b),l(b)+1).

Since b was not colored during round k′− 1, there must be an arc c in Rk′−1 that
went through edge (l(b), l(b) + 1); otherwise, GREEDY would have colored arc b in

this round. Since c was colored during round k′ − 1, c �∈ S(k′)
f . Thus, S

(k′)
f ∪ {c} ⊆

S
(k′−1)
(l(b),l(b)+1), so |S(k′)

f | + 1 ≤ |S(k′−1)
(l(b),l(b)+1)|. In other words, LC∗ − (k′ − 1) + 1 ≤

|S(k′−1)
(l(b),l(b)+1)|. This violates our induction hypothesis that the theorem holds for k ≤

k′ − 1, so our claim must be true for f = (1, 2).
Let us now suppose that not only does our theorem hold for all edges when k

satisfies 0 ≤ k < k′ but it also holds for edges (u, u + 1), 1 ≤ u < u′ ≤ n, when
k = k′. We shall show that the theorem is true for edge f = (u′, u′ + 1) when

k = k′. From the induction hypothesis, |S(k′)
f | ≤ |S(k′−1)

f | ≤ LC∗ − (k′ − 1). Suppose

|S(k′)
f | = LC∗−(k′−1). None of the arcs colored during the k′th round traversed edge

(u′, u′ + 1); otherwise, |S(k′)
f | = |S(k′−1)

f | − 1 = LC∗ − k′. Consequently, none of the

arcs in S
(k′)
f start at u′. Thus, all the arcs in S(k′)

f traverse edge (u′ − 1, u′). That is,

S
(k′)
f ⊆ S(k′)

(u′−1,u′), so LC∗ − (k′− 1) ≤ |S(k′)
(u′−1,u′)|, violating our induction hypothesis.

It must be the case that |S(k′)
f | ≤ LC∗ − k′. By induction, our theorem is true.

7.2. Kumar’s algorithm for unit-DRSP. In [14], Kumar presented an ap-
proximation algorithm for unit-DRSP. The solution the algorithm outputs is based on
the optimal fractional solution of a relaxed binary integer program, which we denote
as z∗frac. Our goal is to show that z∗frac is bounded below by ω(GI). Let us first
discuss some observations Kumar made, which we state in the form of lemmas. Let I
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be a set of demands on the ring.

Let us define a (c, w)-color partition of a family of circular arcs C to be a partition
of C into c families of arcs C1, C2, . . . , Cc all with ringload 1 and a set of interval arcs S
with ringload w. (That is, there is at least one edge of the ring which is not traversed
by any of the arcs in S.) The size of the partition is defined to be c + w. Kumar
noticed that coloring the arcs in C with as few colors as possible is equivalent to
finding the smallest-sized color partition for C.

Lemma 7.1. A family of circular arcs C has a color partition of size k if and
only if it can be colored with k colors.

He also made the following observation.

Lemma 7.2. In a parallel routing of I, for every edge e on the ring, there is
another edge f such that no arc in the routing goes through both e and f . We say
that e and f are complements of each other in the parallel routing.

Given edge e, Lemma 7.2 asserts that in a parallel-routing optimal solution for
unit-DRSP, there exists an edge f such that e and f are complements of each other.
Since f is not known in advance, Kumar’s algorithm considers each edge of the ring
(except, of course edge e) as a candidate for f . The algorithm then tries to find
the best solution for unit-DRSP on rings based on the assumption that e and f are
complements in an optimal parallel routing. Once all the candidates for f have been
considered, the algorithm outputs the best solution.

Let us assume for now that there is a parallel-routing optimal solution for unit-
DRSP where edges e and f are complements of each other. Suppose a demand can be
routed so that it does not go through both edges e and f . From Lemma 7.2 we know
that in the optimal solution this demand must indeed be routed so that it misses
edges e and f . Thus, the algorithm considers all the demands in I, and whenever a
demand can be routed so that it misses edges e and f , this route is chosen for the
demand.

Let I ′ consist of the routes that have now been routed as well as the remaining
demands in I that have not been routed. Let us call the unrouted demands in I ′

crossover demands since, whatever route we choose for these demands, the route
crosses either e or f . We shall denote them as r1, r2, . . . , rl. Note that I ′ consists of
arcs and crossover demands.

The algorithm then considers a binary integer program that seeks to find a routing
of I ′ that has the smallest-sized color partition. To approximate the best solution, the
continuous relaxation of the program is solved and randomized rounding is performed.
We discuss the binary integer program formulation below. We refer the reader to [14],
which contains the proof that this formulation outputs the optimal solution to unit-
DRSP on rings if e and f are indeed complements in some optimal parallel routing.

Consider the following collection of arcs: {a1, . . . al, al+1, . . . , a2l, . . . , am}, where
ai and al+i represent the routes of ri that go through edges e and f , respectively, for
i = 1, . . . l and a2l+1, . . . am represent the arcs in I ′.

Let xi be the indicator variable that is set to 1 if ri is routed as ai for i = 1, . . . , l
and 0 otherwise. Let us adopt the convention that if ri is routed as ai, then ai is
assigned the color i too; otherwise, if ri is routed as al+i, color i will not be used at
all. The arc al+i can, however, be assigned other colors. Thus, xi also denotes the
quantity of color i used.

If the colors 1, . . . , l are not enough to color all the m arcs, then some of them
are obliged to remain uncolored; in this case, the arcs are assigned the color 0. (Note
that 0 is not one of the colors mentioned in the earlier paragraph.) Let yi,j be the
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Minimize z = u +
l∑

i=1

xi(7.1)

subject to

yi,i = xi for i = 1, . . . , l,(7.2)

l∑
j=0

yl+i,j = 1 − xi for i = 1, . . . , l,(7.3)

l∑
j=0

yi,j = 1 for i = 2l + 1, . . . ,m,(7.4)

∑
i:g∈ai

yi,j ≤ xj for every edge g, j = 1, . . . , l,(7.5)

∑
i:g∈ai

yi,0 ≤ u for every edge g,(7.6)

xi ∈ {0, 1} for i = 1, . . . , l,(7.7)

yi,j ∈ {0, 1} for i = 1, . . .m, j = 1, . . . , l.(7.8)

Fig. 7.1. Kumar’s formulation for unit-DRSP with the assumption that edges e and f are
complements in an optimal parallel routing.

variable that is set to 1 if ai is assigned the color j for i = 1, . . .m, j = 0, . . . , l. The
formulation is presented in Figure 7.1.

Constraint (7.2) is based on our convention that, for 1 ≤ i ≤ l, if ri is routed as
ai (i.e., xi = 1), then ai is assigned the color i. Constraint (7.3) enforces the rule
that, for 1 ≤ i ≤ l, if ri is routed as ai, then no colors are assigned to al+i. If, on
the other hand, ri is routed as al+i, then it must be assigned a color. Constraint
(7.4) guarantees that each arc ai, 2l + 1 ≤ i ≤ m, is assigned a color. Constraint
(7.5) guarantees that if color j is available, at most one arc that goes through edge
g can be colored j. In the fractional sense, the constraint also requires that no more
than xj of color j should appear on all arcs that go through the edge g. Constraint
(7.6) captures the ringload of the collection of uncolored arcs. It is easy to check that
for i = 1, . . . , l, the family of arcs colored i has a ringload equal to 1 and that all
uncolored arcs collectively have ringload u.

Since solving integer programs exactly is NP-hard, the algorithm considers the
continuous relaxation of the formulation above. Let z∗e,f be the objective value of the
optimal fractional solution for unit-DRSP on rings where e and f are complements
in an optimal parallel routing. Kumar was able to show that there exists at least one
such optimal fractional solution with the following property: for i in the set {1, . . . , l}
such that xi �= 0, yl+i,0 = 1 − xi. That is, if ri is routed partly as ai and partly as
al+i in the fractional solution, then the “fractional arc” al+i must be uncolored. We
shall call this the uncolorable property.

Recall that GI is the graph obtained from viewing the demands of I as chords. We
let the vertices of GI represent the chords and two vertices in GI were adjacent if and
only if their respective chords intersect in the interior of the circle. Let ω(GI) = w.
Without loss of generality, let the chords of the first w′ crossover demands and the
chords of the first w − w′ arcs in I ′ be the demand chords in I that form a clique of
size w in GI . Since the w chords mutually intersect in the interior of the circle, for
1 ≤ j ≤ w′, the route of demand rj will overlap the routes of r1, . . . , rj−1, rj+1, . . . , rw′

and the arcs a2l+1, . . . , a2l+(w−w′). In particular, for 1 ≤ j ≤ w′, the arc aj overlaps
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with both arcs ak and al+k, where 1 ≤ k ≤ w′, k �= j; similarly, aj overlaps with
a2l+k, where 1 ≤ k ≤ w − w′.

Let the vector ( -x∗, -y∗) be an optimal fractional solution that satisfies the uncol-
orable property and yields the optimal objective value z∗e,f . Let 1 ≤ j ≤ w′. In the op-
timal fractional solution, we claim that none of the arcs in {al+1, . . . , al+w′ , a2l+1, . . . ,
a2l+(w−w′)} can be assigned a positive quantity of color j. If x∗j = 0, the claim is
clearly true since color j will not be available at all for coloring any arcs. If x∗j > 0,
the arc al+j cannot be assigned the color j because of the uncolorable property. If
some al+k is assigned a positive quantity of color j, where 1 ≤ k ≤ w′ and k �= j,
then at least x∗j + y

∗
l+k,j amount of color j will appear on all the edges where aj

and al+k overlap, violating constraint (7.5). For the same reason, none of the arcs in
{a2l+1, . . . , a2l+(w−w′)} can be assigned a positive quantity of the color j. In other
words,

y∗l+k,j = 0 for 1 ≤ k ≤ w′, 1 ≤ j ≤ w′,(7.9)

y∗2l+k,j = 0 for 1 ≤ k ≤ w − w′, 1 ≤ j ≤ w′.(7.10)

Earlier we said that since the demand chords of the arcs in the set {al+1, . . . , al+w′}
∪{a2l+1, . . . , a2l+(w−w′)} mutually intersect in the interior of the circle, the arcs must
mutually overlap. In addition, all these arcs do not pass through the edge e. Thus,
there must exist an edge of the ring where all these arcs overlap. Let us call this edge
g. We have the following inequality when we apply constraint (7.5) on edge g and the
colors j = w′ + 1, . . . , l:

w′∑
i=1

y∗l+i,j +
2l+w−w′∑
i=2l+1

y∗i,j ≤ x∗j for j = w′ + 1, . . . , l.(7.11)

We are now ready to show that ω(GI) is a lower bound to z∗e,f . We note that
from constraints (7.2), (7.3), and (7.4) in the formulation,

y∗i,i +
l∑

j=0

y∗l+i,j = 1, i = 1, . . . , l,

l∑
j=0

y∗i,j = 1, i = 2l + 1, . . . ,m.

Thus, since w = w′ + (w − w′), by the last two equations we have

w =
w′∑
i=1


y∗i,i + l∑

j=0

y∗l+i,j


+

2l+w−w′∑
i=2l+1

l∑
j=0

y∗i,j

=

w′∑
i=1

y∗l+i,0 +
2l+w−w′∑
i=2l+1

y∗i,0 +
w′∑
i=1


y∗i,i + l∑

j=w′+1

y∗l+i,j


+

2l+w−w′∑
i=2l+1

l∑
j=w′+1

y∗i,j ,
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where the second equality follows from (7.9) and (7.10). Hence,

w ≤ u+
w′∑
i=1

x∗i +
l∑

j=w′+1


 w′∑
i=1

y∗l+i,j +
2l+w−w′∑
i=2l+1

y∗i,j




≤ u+
w′∑
i=1

x∗i +
l∑

j=w′+1

x∗j

= z∗e,f ,

where the first inequality follows from (7.6) and (7.2) and the second inequality from
(7.11).

Let E denote the set of edges in the ring. Since ω(GI) ≤ z∗e,f for each f ∈ E, we
have the following theorem.

Theorem 7.3. Let I be a set of demands on the ring and z∗frac = minf∈E z∗e,f ,
where z∗e,f is the optimal fractional solution to the binary integer program for unit-
DRSP on rings which assumes that edges e and f are complements in an optimal
parallel routing of unit-DRSP on rings. Let ω(GI) denote the size of the largest clique
in GI . Then ω(GI) ≤ z∗frac.

7.3. Bounding the number of slots used in HRA. Our goal in this section
is to show that there exists an M so that when z0(n) =M lnn,

1.5 + 1/(2e) + f(n, z0(n)) ≤ 2− 1/�z0(n)/2�.(7.12)

That is, w.h.p., the approximation factor of Kumar’s algorithm is better than that of
the Unit-DRSP Algorithm.

First, let us assume that n ≥ 2 since a ring should have at least two nodes. Also
assume that z0(n)

3 ln z0(n) ≥ 1 so that 8/z20(n) ≤ 8
√
ln z0(n)/z0(n). Thus,

1.5 +
1

2e
+ f(n, z0(n)) = 1.5 +

1

2e
+ 2
√
2(lnn+ 2 ln z0(n))/z0(n)

+
√
2 ln z0(n)/z0(n) + 8/(z0(n))

2

≤ 1.69 + (12 +
√
2)

√
lnn+ ln z0(n)

z0(n)
.

= F1(n, z0(n)).

Let F2(z0(n)) = 2 − 2/z0(n) ≤ 2 − 1/�z0(n)/2�. We note that if n ≥ 2,
z0(n)

3 ln z0(n) ≥ 1, and F1(n, z0(n)) ≤ F2(z0(n)), then (7.12) is true. Let us con-
sider a necessary and sufficient condition for F1(n, z0(n)) ≤ F2(z0(n)):

1.69 + (12 +
√
2)

√
lnn+ ln z0(n)

z0(n)
≤ 2− 2

z0(n)

⇔
√

lnn+ ln z0(n)

z0(n)
≤ 1

12 +
√
2

(
0.31− 2

z0(n)

)

⇔ lnn ≤ z0(n)

(12 +
√
2)2

(
0.31− 2

z0(n)

)2

− ln z0(n).

Thus, we have established the following proposition.
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Proposition 7.4. Let K0 = ( 0.31
12+

√
2
)2, K1 = 4(0.31)

(12+
√

2)2
, and K2 = ( 2

12+
√

2
)2.

Assume n ≥ 2. If
(a) z0(n)

3 ln z0(n) ≥ 1 and
(b) lnn ≤ K0z0(n)−K1 +K2/z0(n)− ln z0(n),

then 1.5 + 1/(2e) + f(n, z0(n)) ≤ 2− 1/�z0(n)/2�.
Earlier, we set z0(n) =M lnn. Let us now defineM so that conditions (a) and (b)

of Proposition 7.4 are true. To findM , we note that as x→∞, the fraction x
ln x →∞.

Since K0 and K1 are constants, there must exist an M0 such that K0M0−2
lnM0−K1

> 1
ln 2 .

Set M = max{M0, e/ ln 2}. Hence, M lnn ≥ e so z0(n)3 ln z0(n) ≥ 1. Furthermore,

K0M lnn−K1 +K2/(M lnn)− ln(M lnn)

= K0M lnn−K1 +K2/(M lnn)− lnM − ln lnn

≥ lnn+ lnn− ln lnn+ (K0M − 2) lnn− lnM −K1

≥ lnn+ lnn− ln lnn+ (K0M − 2) ln 2− lnM −K1

≥ lnn,

where the first and second inequalities are true because n ≥ 2, so K2/(M lnn) > 0
and lnn ≥ ln 2 and the third inequality follows from the choice ofM and the fact that
lnn > ln lnn when n ≥ 2. From Proposition 7.4, we have proved that our choice for
M makes the inequality 1.5 + 1/(2e) + f(n, z0(n)) ≤ 2 − 1/�z0(n)/2� true. So when
z∗frac = z0(n) = max{M0, e/ ln 2} lnn, w.h.p., the approximation factor of Kumar’s
algorithm is not more than that of Unit-DRSP.
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Abstract. We are interested in a version of graph coloring where there is a “co-site” constraint
value k. Given a graph G with a nonnegative integral demand xv at each node v, we must assign xv

positive integers (colors) to each node v such that the same integer is never assigned to adjacent nodes,
and two distinct integers assigned to a single node differ by at least k. The aim is to minimize the span,
that is, the largest integer assigned to a node. This problem is motivated by radio channel assignment
where one has to assign frequencies to transmitters so as to avoid interference. We compare the span
with a clique-based lower bound when some of the demands are large. We introduce the relevant
graph invariant, the k-imperfection ratio, give equivalent definitions, and investigate some of its
properties. The k-imperfection ratio is always at least 1: we call a graph k-perfect when it equals
1. Then 1-perfect is the same as perfect, and we see that for many classes of perfect graphs, each
graph in the class is k-perfect for all k. These classes include comparability graphs, co-comparability
graphs, and line-graphs of bipartite graphs.

Key words. imperfection ratio, generalized graph coloring, perfect graphs, channel assignment
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1. Introduction. We are interested in a problem motivated by radio channel
assignment in cellular networks, where one has to assign sets of frequencies or channels
to transmitters so as to satisfy the local demand for channels at every transmitter,
to avoid unacceptable interference, and to use the minimum amount of the spectrum;
see, for example, [13], [14], or [17]. We assume that the interference is acceptable if
any two channels assigned to a pair of potentially interfering transmitters are differ-
ent and the distance (in the spectrum) between two distinct channels assigned to the
same transmitter is at least k, where the positive integer k is a given constant which
is called the co-site constraint value. Typically k will be a small positive integer. We
are particularly interested in this problem when the demand for channels at some of
the transmitters is large. This is not only because this case is important in practi-
cal situations, but even more since it leads to significant simplifications that reveal
interesting structure.

If we represent colors by positive integers 1, 2, . . . , then this problem translates to
coloring the nodes of a weighted graph G = (V,E) with nonnegative integral weight
vector x = (xv : v ∈ V ) in such a way that xv colors are assigned to each node v,
two colors assigned to adjacent nodes are different, and two distinct colors assigned
to the same node differ by at least the co-site constraint value k. Such a coloring is
called k-feasible for G and x. The objective is to minimize the largest number used.
We define spank(G,x) to be the minimum value of the largest number used, over all
k-feasible assignments for G and x. Observe that span1(G,1) equals the chromatic
number χ(G) of the graph G.
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We want to compare spank(G,x) with a clique-based lower bound, when some of
the demands are large. To do this we set

ωk(G,x) = max {spank(K,x) : K is a clique in G} ,
where we abuse notation and use x also for its restriction to subgraphs of G. It is
known [9] that for a clique K, there is a simple formula for spank(K,x); see (2.1) be-
low. Observe that ωk(G,x) is always at least ω(G,x), where ω(G,x) is the maximum
of
∑
v∈V (K) xv over all cliques K of G.
Given a weight vector x of a graph G, that is, a nonnegative vector indexed by

the nodes of G, we let xmax denote the maximum value of xv over all the nodes v.
We set

sjk(G) = max

{
spank(G,x)

ωk(G,x)
: xmax = j

}
,(1.1)

where the maximum is over all integral weight vectors with xmax = j. Observe that
sjk(G) ≥ 1 by definition, and sjk(G) = 1 if G is a complete graph. Consider the case

k = 1: it is known [7] that limj→∞ sj1(G) exists and is the imperfection ratio, which
we discuss below. We will see that the corresponding result holds for each positive
integral k, namely sjk(G) tends to a limit as j →∞. This limit is the “k-imperfection
ratio” and is the subject of this paper. In order to give a convenient definition of it,
we first introduce the fractional k-clique-bound and the fractional k-span.

For a fixed positive integer k, the fractional k-clique-bound ωfk (G,x) of a graph
G with weight vector x is

ωfk (G,x) = max {kxmax, ω(G,x)} ,
and the fractional k-span spanfk(G,x) is the value of the following linear program (LP)
which has a variable yS for each induced k-colorable subgraph S of G: min k

∑
S yS

subject to
∑
S�v yS ≥ xv for each node v, and yS ≥ 0 for each k-colorable induced

subgraph S of G. Observe that for any graph G, spanf1 (G,x) is the weighted fractional

chromatic number χf (G,x), and, in particular, spanf1 (G,1) is the fractional chromatic
number χf (G). It is easy to check that

spanfk(G,x) ≥ ωfk (G,x),(1.2)

and we do so toward the end of this introductory section. Observe that one can easily
extend the definitions of ωfk (G,x) and spanfk(G,x) to rational or real weight vectors,
and we will use them in this way later, whereas we will use ωk(G,x) and spank(G,x)
for integral weight vectors only.

The k-imperfection ratio impk(G) of a graph G is defined by setting

impk(G) = sup
x

spanfk(G,x)

ωfk (G,x)
,(1.3)

where the supremum is over all nonzero integral weight vectors x. It turns out that
there always exists such a vector x with impk(G) = spanfk(G,x)/ω

f
k (G,x) (see (2.7)

below), and thus the supremum in the definition (1.3) may be replaced by the max-
imum. Observe that if H is an induced subgraph of G, then impk(H) ≤ impk(G).
By (1.2) we have

impk(G) ≥ 1.(1.4)

We say that a graph G with impk(G) = 1 is k-perfect. Observe that if χ(G) ≤ k, then

trivially G is k-perfect, since then spanfk(G,x) = kxmax (take yV = xmax).
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The 1-imperfection-ratio has been studied in [7], [8]. It is called the imperfection
ratio and is denoted by imp(G). Its name was motivated by the fact that imp(G) ≥ 1
for all graphs G and that imp(G) = 1 if and only if G is perfect. We shall see
that not every perfect graph is k-perfect when k ≥ 2, but, for example, this does
hold for comparability graphs and some other classes of graphs, and there are many
interesting properties of the imperfection ratio which have their equivalents in the
more general case.

The plan of the paper is as follows. After giving three introductory results at the
end of this section, we see in section 2 that for any graph G and any positive integer
k, the quantity sjk defined in (1.1) above satisfies

sjk(G)→ impk(G) as j →∞,(1.5)

and we present equivalent alternative polyhedral definitions of impk(G).
In section 3 we find upper and lower bounds on the k-imperfection ratio, including

the result that impk(G)/imp(G) ≤ 1
1+1/e ∼ 1.6. These bounds yield some extremal

results. We also see, for example, that the Petersen graph P satisfies imp2(P ) = 10/7.
In section 4 we see that the class of 2-perfect graphs is a proper subclass of the

class of perfect graphs. In contrast, it is easy to find nonperfect graphs which are
k-perfect for each k ≥ 3, for example, the odd cycles Cn on n ≥ 5 nodes (the odd
holes). We then consider some classes of perfect graphs, where each graph G in the
class is k-perfect for each positive integer k. We call such a graph G all-perfect. We
already know that this holds for bipartite graphs (since χ(G) ≤ k for each k ≥ 2), and
we shall see shortly that it is true also for complete graphs. In section 4 we shall see
that it is also true for comparability graphs, co-comparability graphs, and line-graphs
of bipartite graphs.

In section 5 we see that, in contrast to the nice behavior for perfect graphs, for
each k ≥ 2 there are many nonisomorphic node-minimal non-k-perfect graphs: indeed,
the number on at most n nodes grows at least exponentially with n. We see that an
odd hole on n nodes is node-minimal non-2-perfect and that its complement (an odd
antihole) is node-minimal non-k-perfect for all k ≤ (n−1)/2. We also determine impk
for all odd holes and antiholes.

In section 6 we consider disk graphs, which crop up naturally in models for radio
channel assignment, and give bounds for their k-imperfection ratio.

In section 7 we see that for the random graph Gn, 12 , the k-imperfection ratio

is about n/(4 log2
2 n) (which is independent of k), and also we obtain corresponding

results for sparse random graphs and random regular graphs (which do depend on k).
Let us finish this section by giving three simple introductory results, as mentioned

above. The first task is to prove (1.2). Let (yS) be a feasible solution to the LP defining

spanfk(G,x). If xv is xmax, then

k
∑
S

yS ≥ k
∑
S:v∈S

yS ≥ kxv = kxmax.

Also, if the set K of nodes forms a complete subgraph of G with ω(G,x) =
∑
v∈K xv,

then, since |K ∩ S| ≤ k for each k-colorable subset S, we have

k
∑
S

yS ≥
∑
S

∑
v∈K∩S

yS =
∑
v∈K

∑
S:v∈S

yS ≥
∑
v∈K

xv = ω(G,x).

Hence k
∑
S yS ≥ ωfk (G,x), which yields (1.2).
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The second of our three introductory results shows that (not unexpectedly) we
may restrict our attention to connected graphs.

Proposition 1.1. For any positive integer k and any graph G, if G consists of
the disjoint union of graphs G1, . . . , Gt, then

impk(G) = max{impk(G1), . . . , impk(Gt)}.
Proof. Directly from the definitions, for any weight vector x

spanfk(G,x) = max
i
{spanfk(Gi,x)}

≤ max
i
{impk(Gi) ω

f
k (Gi,x)}

≤ (max
i

impk(Gi)) ω
f
k (G,x),

and so impk(G) ≤ maxi impk(Gi). The lower bound follows immediately from the
earlier remark that the k-imperfection ratio of an induced subgraph of G is always at
most the k-imperfection ratio of G.

Next we meet a connection with scheduling theory. Recall that we say that a
graph is all-perfect if it is k-perfect for each positive integer k.

Proposition 1.2. Each complete graph K is all-perfect.
Proof. This result will follow directly from the fact we noted above (see (2.6)

below) that 1 = sjk(K)→ impk(K) as j →∞, but it is interesting to note that it is a
disguised form of a standard basic result in scheduling theory. Suppose that we have
k identical machines in parallel, a collection V of jobs v with processing time xv, and
pre-emptions are allowed (we need at most 1 per job). It is well known [19] and not
hard to see that the makespan m (the minimum completion time) is given by

m = max

{
xmax,

(∑
v

xv

)
/k

}
= ωfk (K,x)/k.

Given a schedule with makespan m, for each set S ⊆ V let yS be the total time that
S is the set of jobs being processed. Then

∑
S:v∈S yS = xv for each v ∈ V , and∑

S yS = m.

2. Equivalent descriptions. In this section we introduce equivalent polyhedral
descriptions for impk(G); see Theorem 2.3. We also show that for any graph G there is

an integral weight vector x with impk(G) = spanfk(G,x)/ω
f
k (G,x) and each coordinate

at most 2−n(n+1)(n+1)/2 (where n = |V (G)|). It was shown in [7] that we may need
coordinates as large as 2(n−5)/4 if k = 1.

To prove Theorem 2.3 we need one preliminary lemma, some more notation, and
a result of [9], which says that for any clique K and any integral weight vector x,

spank(K,x) = max


(xmax − 1)k + |{v ∈ V (K) : xv = xmax}|,

∑
v∈V (K)

xv


 .(2.1)

By this result,

ωfk (G,x)− k + 1 ≤ ωk(G,x) ≤ ωfk (G,x),(2.2)

and since ωfk (G, ax) = aωfk (G,x),

ωfk (G,x) = lim
a→∞

ωk(G, ax)

a
.
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The latter equality partially motivated the notation ωfk (G,x) since many fractional
versions of graph parameters can be defined in this way [21]—see also Corollary 2.2
below.

Lemma 2.1. For any graph G on n nodes with integral weight vector x,

spanfk(G,x)− k ≤ spank(G,x) ≤ spanfk(G,x) + 2nk.

Proof. In any k-feasible assignment each node belongs to at most one of any
k consecutive color classes, and the graph induced by the nodes of k consecutive
color classes is k-colorable. Hence each node v can be covered xv times by at most
spank(G,x)/k� k-colorable graphs, which yields

spanfk(G,x)

k
≤
⌈
spank(G,x)

k

⌉
≤ spank(G,x) + k − 1

k
,

and so

spanfk(G,x)− k + 1 ≤ spank(G,x).

To prove that spank(G,x) ≤ spanfk(G,x) + 2nk, consider an optimal basic feasible

solution y of the LP determining spanfk(G,x). Since y is a basic feasible solution,
at most n values yS are nonzero. Hence by rounding up y one obtains an integral
feasible solution z with value less than spanfk(G,x) + nk. Now we can color a k-
colorable subgraph S of G in a k-feasible way zS times using zSk consecutive colors.
To put these colorings together for a k-feasible assignment one can introduce gaps of
size k − 1 to ensure that two distinct colors assigned to a node are at least k apart.
Hence

spank(G,x) < spanfk(G,x) + nk + (n− 1)(k − 1) ≤ spanfk(G,x) + 2nk

as claimed.
Since spanfk(G, ax) = a spanfk(G,x), Lemma 2.1 yields as a corollary the following

result, which motivated the choice of the name “fractional k-span.”
Proposition 2.2. spanfk(G,x) = lima→∞ spank(G, ax)/a.

We denote the set of all real weight vectors x with ωfk (G,x) ≤ 1 by QSTABk(G),
or equivalently

QSTABk(G) = QSTAB(G) ∩ [0, 1/k]n,

where QSTAB(G) = QSTAB1(G) is the fractional node-packing polytope; see [12]
for further discussion. The convex hull of the incidence vectors of the k-colorable
induced subgraphs of G scaled by 1/k is denoted by STABk(G). Thus STAB1(G) is
the familiar stable set polytope; again see [12] for further discussion. Note that

spanfk(G,x) ≤ t if and only if x ∈ t STABk(G).(2.3)

Here t P denotes the scaled set {tx : x ∈ P}. We are now able to state and prove the
main theorem of this section.

Theorem 2.3. For any graph G,

impk(G) = min{t : QSTABk(G) ⊆ t STABk(G)}(2.4)

= max{spanfk(G,x) : x is a vertex of QSTABk(G)}(2.5)

= lim
j→∞

sjk(G).(2.6)
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In addition, there exists an integral weight vector x with

impk(G) =
spanfk(G,x)

ωfk (G,x)
,(2.7)

and if G has n nodes, then there is such a vector x with each coordinate at most
2−n(n+ 1)(n+1)/2.

Proof. Let s(G) denote the right-hand side of (2.4). Observe that

s(G) = min{t : x ∈ t STABk(G) for all vertices x ∈ QSTABk(G)},

which equals (2.5) because of (2.3). Thus s(G) is rational, and QSTABk(G) ⊆
s(G)STABk(G). Consider a weight vector x, with ωfk (G,x) = l, which implies that

x ∈ l QSTABk(G), so x ∈ ls(G)STABk(G), and hence spanfk(G,x) ≤ ls(G). Thus

spanfk(G,x)/ω
f
k (G,x) ≤ s(G), and it follows that impk(G) ≤ s(G).

Now we show that impk(G) ≥ s(G). Let x be a vertex of QSTABk(G) such that

s(G) = spanfk(G,x). Since x is rational, we may choose a positive integer N such

that the vector x̃ = Nx is integral. Then spanfk(G, x̃) = Ns(G), and ωfk (G, x̃) ≤ N .

Hence impk(G) ≥ spanfk(G, x̃)/ω
f
k (G, x̃) ≥ s(G). Thus s(G) = impk(G), and further

the supremum of the ratios spanfk(G,x)/ω
f
k (G,x) over all weight vectors x as in the

definition of impk(G) is attained at x̃ (and thus at all integer multiples of x̃).
Next we prove (2.6). Let x̃ be an integral weight vector as above such that

spanfk(G, x̃)/ω
f
k (G, x̃) = impk(G). Let u be a node of maximal demand, and let

l̃ = x̃max = x̃u. For any l ≥ l̃, write l = ql̃ + r with 0 ≤ r < l̃, and define
ylu = l = qx̃u + r and ylv = qx̃v for all v �= u. We have ylmax = l and thus

slk(G) ≥ spank(G,y
l)

ωk(G,yl)
≥ spank(G, qx̃)

ωk(G, qx̃) + rk
≥ spanfk(G, qx̃)− k

ωfk (G, qx̃) + rk + 2nk

≥ spanfk(G, qx̃)

ωfk (G, qx̃)

ωfk (G, qx̃)

ωfk (G, qx̃) + l̃k + 2nk
− k

ωfk (G, qx̃)

≥ impk(G)
k(l − l̃)

kl + 2nk
− k

k(l − l̃)
.

Now, let xl be a weight vector such that xlmax = l and slk(G) = spank(G,x
l)/ωk(G,x

l).
We obtain

slk =
spank(G,x

l)

ωk(G,xl)
≤ spanfk(G,x

l) + 2nk

ωfk (G,x
l)− k

≤ spanfk(G,x
l)

ωfk (G,x
l)

ωfk (G,x
l)

ωfk (G,x
l)− k

+
2nk

ωfk (G,x
l)− k

≤ imp(G)
kl

kl − k
+

2nk

kl − k
,

and the result follows.
It remains to show that there is weight vector x as in (2.7) with “small” co-

ordinates. Any vertex y of QSTABk(G) is the unique solution of Az = b for some
n × n matrix A with 0, 1 entries and some vector b the entries of which equal 0, 1
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or 1/k. Therefore and because yi ≤ 1/k, Cramer’s rule implies that y has entries of
the form ai/(k det(A)) for integers 0 ≤ ai ≤ det(A), i = 1, . . . , n. But since A is a
0, 1-matrix, det(A) ≤ 2−n(n + 1)(n+1)/2 [1]. Considering a vertex y of QSTABk(G)

with impk(G) = spanfk(G,y) and setting x = k det(A)y yields the result.
Let us note one more equivalent definition of the k-imperfection ratio, which

follows easily from the work above. We could define impk(G) as the least a such
that (2.8) below holds for some choice of b.

Proposition 2.4. Consider a graph G and a positive integer k. Let A be the set
of values a such that, for some b,

spank(G,x) ≤ aωk(G,x) + b for each integral weight vector x.(2.8)

Then a ∈ A if and only if a ≥ impk(G).
Proof. If G has n nodes, by Lemma 2.1 and (2.2)

spank(G,x) ≤ spanfk(G,x) + 2nk

≤ impk(G)ωfk (G,x) + 2nk

≤ impk(G)ωk(G,x) + impk(G)(k − 1) + 2nk.

Thus there is a constant b such that (2.8) holds. Conversely, suppose that a and b
are such that (2.8) holds. Then sjk(G) ≤ a + b/j, and so by (2.6) it follows that
impk(G) ≤ a.

3. Bounds. In this section, we first give bounds on impk(G) in terms of the
χ(G), χf (G), ω(G), and so on. From these bounds we make various deductions,
including determining the value of imp2(P ) for the Petersen graph P . Next we give
an upper bound on impk(G) in terms of imp(G). These results, together with results
from [8], yield various extremal results.

Lemma 3.1. For any positive integer k and any graph G,
(a) impk(G) ≥ min{χf (G)/k, χf (G)/ω(G)},
(b) impk(G) ≤ spanfk(G,1)/k ≤ max {1, χ(G)/k} .
Proof. We have

impk(G) ≥ spanfk(G,1)

ωfk (G,1)
≥ χf (G)

max{ω(G), k} = min

{
χf (G)

k
,
χf (G)

ω(G)

}

as required for (a).
For every x in QSTABk(G), we have x ≤ (1/k)1 and therefore

spanfk(G,x) ≤ spanfk(G, (1/k)1) =
spanfk(G,1)

k
.

The first inequality of (b) now follows by (2.5). For the second inequality observe

that spanfk(G,1) = k if χ(G) ≤ k. If χ(G) > k, then we can partition G into
χ(G) = χ color classes. With the

(
χ
k

)
k-colorable subgraphs each consisting of a

different set of k color classes, we can cover every node
(
χ−1
k−1

)
times. Therefore, we

have spanfk(G,x) ≤ k
(
χ
k

)
/
(
χ−1
k−1

)
= χ, and so spanfk(G,1)/k ≤ χ(G)/k.

Observe that part (b) extends the result noted earlier that G is k-perfect if χ(G) ≤
k. It follows directly from the definition of the fractional k-span that

1

k
spanfk(G,x) ≥

1

k + 1
spanfk+1(G,x).
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Fig. 3.1. The Petersen graph.

Also, if k ≥ ω(G), then impk(G) ≥ spanfk(G,1)/ω
f
k (G,1) = spanfk(G,1)/k. Hence

from part (b) above we obtain the following result.

Lemma 3.2. If k ≥ ω(G), then impk(G) = spanfk(G,1)/k, and impk(G) ≥
impk+1(G).

In particular, the last result implies that for any k ≥ 2 and for any triangle-free
graph G, we have impk(G) = spanfk(G,1)/k. The case k = 1 is different [7]: if G
is a triangle-free graph which contains at least one edge, then imp(G) = χf (G)/2 =

spanf1 (G,1)/2.

If ω(G) ≤ k ≤ χ(G), then by Lemma 3.1 and [15]

χf (G) ≤ k impk(G) ≤ χ(G) ≤ (1 + log2 n)χf (G)

if G has n nodes. Hence if we could prove that it is hard to approximate the chromatic
number of a triangle-free graph G up to some factor f(n) ≥ (1 + log2 n), then this
would show that it is hard to approximate impk(G) up to the factor f(n)/(1+log2 n).

It is NP-hard to approximate the chromatic number up to a factor of n
1
7−ε for general

graphs [3]. Also, it is NP-hard to determine χf (G) exactly for triangle-free graphs,
and hence it is NP-hard to determine imp(G) exactly [7].

We cannot replace χ(G) by χf (G) in part (b) of Lemma 3.1 as we might hope,
by analogy with the case k = 1 (recall from [7] that imp(G) ≤ χf (G)/2 if G has at
least one edge), as the following example shows.

Example 3.1. The Petersen graph P , shown in Figure 3.1, satisfies

imp2(P ) = 10/7 > 5/4 = χf (P )/2.

For, observe that P is node-transitive, and the maximal number of nodes in a bi-
partite induced subgraph is 7. Thus we obtain spanf2 (P,1) = 20/7 by considering
the hypergraph which has a hyperedge for each 2-colorable graph and applying, for
example, Proposition 1.3.4 of [21, p. 7]. But Lemma 3.2 shows that imp2(P ) =

spanf2 (P,1)/2 = 10/7.

Lemma 3.1 also implies that if ω(G) ≤ k < χf (G), then impk(G) > 1: the next
lemma extends this result, and will be useful in the next section.

Lemma 3.3. For any graph G, if ω(G) ≤ k < χ(G), then G is not k-perfect.

Proof. Since ω(G) ≤ k, (1/k)1 ∈ QSTABk(G), but since k < χ(G), (1/k)1 �∈
STABk(G). The result now follows from (2.4).

The next result gives a bound on the k-imperfection ratio in terms of the im-
perfection ratio. It will allow us to extend the known extremal results for the case
k = 1 [8] to cover each k ≥ 1.
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Theorem 3.4. For any graph G,

impk(G) ≤ 1

1− (1− 1/k)k
imp(G) ≤ 1

1− 1/e
imp(G).

Note that (1− 1/e)−1 < 1.582. To prove the theorem we need one auxiliary lemma.
Lemma 3.5. Let G be a graph with weight vector x. For any ρ ≥ xmax/χf (G,x),

we have

spanfk(G,x) ≤
kρ

1− (1− ρ)k
χf (G,x).

Proof. Let y be an optimal feasible solution for the LP defining χf (G,x), and
let χf (G,x) = γ. Set y′S = yS/γ for each stable set S, so

∑
S y

′
S = 1. For each

k-colorable set T of nodes in G, let

zT =
∑

S1,S2,...,Sk
S1∪S2∪...∪Sk=T

y′S1
y′S2

. . . y′Sk
.

Then ∑
T

zT =
∑
S1

∑
S2

. . .
∑
Sk

y′S1
y′S2

. . . y′Sk
= 1.

(Indeed, zT is the probability that we obtain T if we form the union of k (not nec-
essarily distinct) stable sets picked independently at random where the stable set S
has probability y′S .) For a node v ∈ V (G), we have∑

T�v
zT = 1−

∑
S1 
�v

∑
S2 
�v

. . .
∑
Sk 
�v

y′S1
y′S2

. . . y′Sk

= 1−

∑
S1 
�v

y′S1




∑
S2 
�v

y′S2


 . . .


∑
Sk 
�v

y′Sk




= 1−

∑
S 
�v

y′S



k

≥ 1− (1− xv/γ)
k.

It is easily verified that the function f(x) = (1−(1−x)k)/x is decreasing for 0 ≤ x ≤ 1.
Hence ∑

T�v
zT ≥ 1− (1− xv/γ)

k =
xv
γ
f(xv/γ) ≥ xv

γ
f(ρ).

Therefore spanfk(G,x) ≤ kγ/f(p) = (kρ/1− (1− ρ)k)χf (G,x).
Proof of Theorem 3.4. For any k ≥ ω(G) we have by Lemma 3.2 that impk(G) ≥

impk+1(G). Therefore it suffices to consider the case k ≤ ω(G). Let x be a weight
vector such that

spanfk(G,x) = impk(G) and ω(G,x) = 1 ≥ kxmax.

Since χf (G,x) ≥ ω(G,x) = 1 ≥ kxmax, we have xmax/χf (G,x) ≤ 1/k and imp(G) ≥
χf (G,x). Hence by Lemma 3.5

impk(G) = spanfk(G,x) ≤
χf (G,x)

1− (1− 1/k)k
≤ imp(G)

1− (1− 1/k)k
.

Finally, note that (1− 1/k)k ≤ e−1.
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Theorem 3.4 together with Theorem 3.1 of [8] (which says that there exists a
constant c′ such that for all graphs G with n ≥ 3 nodes imp(G) ≤ c′n log log n/ log2 n)
implies the following extension of the latter result.

Proposition 3.6. There exists a constant c such that for each graph G with
n ≥ 3 nodes, and each positive integer k,

impk(G) ≤ c
n(log log n)

log2 n
.

The upper bound here is at most a factor log logn too generous; see Theorem 7.2
below. We can also extend a result from [8] concerning graphs G with bounded
maximum degree.

Proposition 3.7. For each ε > 0, there exists a constant d0 such that, for
each positive integer k, for each d ≥ d0, and for each graph G with maximum degree
∆(G) ≤ d,

impk(G) ≤ εd.

This result shows that the k-imperfection ratio grows more slowly than the max-
imum degree. It may be proved along similar lines to the proof of Theorem 3.2 in [8].

4. Some classes of perfect graphs. Which perfect graphs are k-perfect? In
this section, we first give a polyhedral characterization. We then investigate whether
a nonperfect graph can be k-perfect. This question is easily answered for k ≥ 3, since
in this case there are indeed graphs which are nonperfect but are k-perfect—just take
any nonperfect graph G with χ(G) ≤ k. We will see that this is not true for k = 2:
the 2-perfect graphs form a subclass of the perfect graphs, and we shall see that it is
in fact a proper subclass, by considering a class of perfect graphs G (the split graphs)
such that G need not be k-perfect when k ≥ 2. Finally, we consider three standard
classes of perfect graphs, namely comparability graphs, line graphs of bipartite graphs,
and co-comparability graphs, and show that each graph in these classes is all-perfect
(that is, k-perfect for each k).

Proposition 4.1. Let G be a perfect graph with n nodes, and let k be a positive
integer. Then G is k-perfect if and only if the polytope

{x ≥ 0 : ω(G,x) ≤ k} ∩ [0, 1]n

has only integral extreme points. If the polytope has a unique nonintegral extreme
point z, then impk(G) = 1

k spanfk(G, z).
Proof. Let A denote the polytope in the proposition, and let B denote the

convex hull of the incidence vectors of the k-colorable sets of nodes (so that A =
k QSTABk(G) and B = k STABk(G)). Then A ⊇ B, and by (2.4) in Theorem 2.3,
G is k-perfect if and only if A = B. So, if G is k-perfect, then of course the extreme
points of A are 0, 1-valued. For the converse, let z be any integral point in A. Then z
is the incidence vector of the nodes in a subgraph H of G with ω(H) ≤ k, and so with
χ(H) ≤ k: hence z ∈ B. Hence if each extreme point of A is integral, then A ⊆ B,
and it follows that G is k-perfect. This completes the proof of the first part of the
proposition.

Further, it now follows using (2.5) in Theorem 2.3 that if A has a nonintegral

extreme point z, then impk(G) is the maximum value of 1
k spanfk(G, z) over such

points z.
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u v

w

Fig. 4.1. The “Hajos” graph G2 as in
Proposition 4.3.

vw

u

Fig. 4.2. The complement of the “Hajos”
graph.

The next two propositions show that the 2-perfect graphs form a proper subclass
of the perfect graphs.

Proposition 4.2. Each 2-perfect graph is perfect.
Proof. Recall from [7] that the binary imperfection ratio impb(G) is the maximum

value of span1(G,x)/ω(G,x) over all nonzero 0, 1 weight vectors x: also impb(G) ≤
imp(G), and impb(G) = 1 if and only if G is perfect. We claim that imp2(G) ≥
impb(G) for each graph G. But then, if G is not perfect, we have imp2(G) ≥
impb(G) > 1 and so G is not 2-perfect, and the proposition follows.

To prove the claim, note first that if G consists of isolated nodes, then imp2(G) =
1 = impb(G), so we may assume that G has at least one edge. Let x be a 0,1 weight

vector of G with impb(G) = χf (G,x)/ω(G,x) and ω(G,x) ≥ 2. Then ωf2 (G,x) =
ω(G,x), and hence

imp2(G) ≥ spanf2 (G,x)

ωf2 (G,x)
≥ χf (G,x)

ω(G,x)
= impb(G)

as claimed.
The next proposition shows that for each k ≥ 2 there are perfect graphs which are

not k-perfect. Recall that a split graph is a graph the nodes of which can be covered
by a clique and a stable set. It is well known and easy to see that such graphs are
perfect; see, for example, [12].

Proposition 4.3. For each k ≥ 2, there exists a split graph Gk which is not
k-perfect.

Proof. Consider the graph Gk which consists of a clique of size 2k − 1 and a
stable set of size

(
2k−1
k

)
such that every k-subset of nodes of the clique is adjacent

to exactly one node of the stable set. For the graph G2, the “Hajos graph,” see
Figure 4.1. Let xk be the weighting of Gk with xku = 1 for each node u of the clique,

and xkv = 2 for each node v of the stable set. Since k ≥ 2, we have ωfk (Gk,x
k) = 2k but

spanfk(Gk,x
k) > 2k. For suppose that there is a solution y to the LP for spanfk(Gk,x

k)
with value 2k. Then any k-colorable graph S actually used (that is, with yS > 0)
must contain all the nodes of the stable set, and so can contain at most k − 1 nodes
of the clique. Hence the total weight covered on the nodes of the clique is at most
2k − 2 < 2k − 1, and so the covering is not feasible for Gk and xk. In summary,
impk(Gk) ≥ spanfk(Gk,x

k)/ωfk (Gk,x
k) > 1.

Example 4.1. Let us consider more carefully the Hajos graph H shown in Fig-
ure 4.1, which we have already noted is perfect. We shall see that H is a minimal
non-2-perfect graph and that imp2(H) = 9

8 .
It is easy to check that any proper induced subgraph of H is an interval graph,

and hence it is a co-comparability graph and thus is all-perfect by Proposition 4.8
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below. Let z be the demand vector with zv = 1 on the three degree 2 nodes and
zv = 1

2 on the other three nodes. We claim that z is the unique nonintegral vertex
of 2QSTAB2(H). Then by Proposition 4.1, imp2(H) = 1

2 span2(H, z). Since the
maximum number of nodes in a bipartite subgraph of H is 4, and

∑
v zv = 9

2 , it
follows that span2(H, z) ≥ 9

4 . But it is straightforward to find an appropriate covering
which shows that equality holds.

It remains to establish the claim. Let x be a nonintegral vertex of 2QTAB2(H) =
2QSTAB(H) ∩ [0, 1]V . Since each proper subgraph of H is 2-perfect, we must have
that each xv > 0. Also, since each vertex corresponds to a basic feasible solution and
H has 6 nodes, there must be at least 6 tight constraints.

Suppose that all 4 triangles yield a tight constraint. Then opposite pairs of nodes
must have the same value xv. (An opposite pair consists of a degree-2 node and the
nonadjacent degree-3 node.) Also, at least 6–4=2 coordinates xv equal 1. Let the
values on the opposite pairs be 1, x, and y, where 0 < x ≤ y < 1. (Note that y < 1
since x+ y ≤ 1.) But then x is not a vertex, since we could replace x, y by x± δ and
y ∓ δ, where δ = min{x, 1− y} > 0.

Hence at most 3 triangles yield a tight constraint, and so xv = 1 for at least 3
nodes v. But no two of these nodes can lie on a triangle, so they must be the three
degree-2 nodes. Now we are forced to put value 1

2 on the other nodes. Thus indeed z
is the unique nonintegral vertex of 2QSTAB(H) ∩ [0, 1]V , as claimed.

Now we consider three classes of perfect graphs G such that each G is all-perfect,
namely comparability graphs, line graphs of bipartite graphs, and co-comparability
graphs. Before we proceed further, let us remark that in contrast to the case k =
1, when k ≥ 2 the complement G of a k-perfect graph G need not be k-perfect.
Consider, for example, the odd holes and antiholes; see Proposition 5.3 below. Also,
the Hajos graph G2 shown in Figure 4.1 is not 2-perfect, but its complement shown in
Figure 4.2 is the line-graph of a bipartite graph and so is 2-perfect, indeed all-perfect;
see Proposition 4.7 below.

A graph is a comparability graph if there exists a partial order of the nodes such
that distinct nodes u and v are adjacent exactly when they are comparable in the
partial order. We use one lemma to prove that comparability graphs are all-perfect
(and indeed we use this lemma again in section 6). The lemma involves “circular” (or
“cyclic”) interval colorings. An m-circular interval coloring of G with integral weight
vector x is a multicoloring of the nodes of G using the colors 0, 1, . . . ,m − 1 such
that for each node v of G, the set {i : v has color i} has cardinality xv and forms an
interval in the cyclic order (0, 1, . . . ,m− 1).

Lemma 4.4. Let G be a graph with integral weight vector x. Suppose that there
is an m-circular interval coloring of the graph G,x, where m satisfies m ≥ kxmax and
m ≡ 1 (mod k). Then spank(G,x) ≤ m.

Proof. Consider the assignment φ(v) = {ki(modm) : v has color i}. Then for
i, j ∈ {0, 1, . . . ,m− 1}, ki = kj is equivalent to i = j since m ≡ 1(mod k). It follows
that |φ(v)| = xv for each node v and φ(u) ∩ φ(v) = ∅ for adjacent nodes u and v.

It remains to show that for each node v ∈ V (G) and any two distinct elements
c1, c2 ∈ φ(v), we have |c1− c2| ≥ k. For each node v ∈ V (G), two distinct elements of
φ(v) are of the form kc+ ik(modm) and kc+ jk(modm) with 0 ≤ i < j ≤ xv − 1 by
the definition of φ and the fact that the colors of v form an interval in the cyclic order
0, 1, . . . ,m−1. But |k(j−i)−0| = k(j−i) ≥ k and |m−k(j−i)| ≥ m−(xmax−1)k ≥ k,
and the assignment is therefore k-feasible and uses only the colors 0, . . . ,m−1.

Proposition 4.5. Each comparability graph is all-perfect.
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Proof. Let k be a positive integer, and let G = (V,E) be a comparability graph.
Let ≺ be a partial order on V such that distinct u and v are comparable if and only
if {u, v} is an edge of G. Let D be the corresponding acyclic (transitive) orientation
of G, where we orient the edge {u, v} from u to v if u ≺ v. Let x be a integral weight
vector. Form an acyclic directed graph D′ from D by replacing each node v by a
directed path of xv nodes. Thus D′ has nodes v1, . . . , vxv

for each v ∈ V , and there
is an arc uivj in D′ if and only if either u = v and i < j, or u �= v and uv is an arc in
D.

For each node vi in D′, let φ(vi) be the maximum length (i.e., number of arcs)
in a path in D′ ending at vi. Then φ takes values in {0, 1, . . . , ω(G,x)− 1}; for each
node v ∈ V , φ takes distinct consecutive values on the xv nodes v1, . . . , vxv

of D′;
and if uv is an arc of D, then φ(ui) < φ(vj) for each i, j. Thus φ gives a proper
coloring of (G,x), using colors {0, 1, . . . , ω(G,x)− 1}, such that for each node v ∈ V
the colors on v are consecutive. Hence there is an m-cyclic interval coloring of G,x
with m ≤ ωk(G,x) + k − 1. So by Lemma 4.4, spank(G,x) ≤ ωk(G,x) + k − 1, and
the result now follows by (2.6).

The first part of the above proof is not new. We defined circular interval col-
orings above, and in a similar way, when we use ordinary linear channels, we may
define an interval coloring of G,x. The interval span ispan(G,x) is the smallest num-
ber for which an interval coloring exists. A graph G is called superperfect in [10] if
ispan(G,x) = ω(G,x) for each integral weight vector x. Observe that by Lemma 4.4,
any superperfect graph is all-perfect. Hoffman showed that any comparability graph
is superperfect; see [10]. It is also shown there that any graph in a certain class is
superperfect, where this class contains the complements of the even cycles.

We shall consider two more classes of perfect graphs and show that each graph in
these classes is all-perfect. These classes are the line-graphs of bipartite graphs and
the co-comparability graphs (that is, complements of comparability graphs). We give
a unified proof treatment, based on the polyhedral characterization in Proposition 4.1.

Recall that a matrix is totally unimodular if each square submatrix has determi-
nant 0 or ±1. Let us call a polyhedron totally unimodular if it may be expressed as
{x : Ax ≤ b} for some totally unimodular matrix A and integral vector b. It is well
known that such a polyhedron is integral; that is, it has the property that each face
contains an integral vector; see, for example, [20]. If S ⊆ Rn and I is a nonempty
subset of the indices {1, . . . , n}, we call {x ∈ RI : (x,y) ∈ S for some y} the projec-
tion of S onto the coordinates I. If we start with an integral polyhedron and project
onto some set of coordinates, then the resulting polyhedron is again integral.

Lemma 4.6. Let G be a perfect graph, and let P = STAB(G) (= QSTAB(G)).
If P is a totally unimodular polyhedron, or more generally the projection of such a
polyhedron onto some set of coordinates, then G is all-perfect.

Proof. Note first that if the (m×n) matrix A is totally unimodular, then so is any
submatrix of the ((m+ 2n)× n) matrix obtained by stacking the matrices A, In,−In
above one another (where In denotes the (n × n) identity matrix). It follows that
if P satisfies the condition in the lemma, then so does Q = kP ∩ [0, 1]V for any
positive integer k. Then Q is the projection of an integral polyhedron onto some
set of co-ordinates, and so Q is integral. Hence the result follows from Proposition
4.1.

Now let us consider the line-graphs of bipartite graphs and use Lemma 4.6 to
show that such graphs are all-perfect. The complements of these graphs need not be
all-perfect: we have already seen that the Hajos graph is not 2-perfect, and it is the
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complement of the line-graph of a bipartite graph.
Proposition 4.7. Let G = (V,E) be a bipartite graph. Then the line-graph L(G)

is all-perfect.
Proof. Observe that

QSTAB(L(G)) =

{
x ∈ RE+ :

∑
e:v∈e

xe ≤ 1 (∀v ∈ V )

}
,

which is a totally unimodular system (see, for example, [20]); so the result follows
from Lemma 4.6.

Finally in this section, we use Lemma 4.6 to show that co-comparability graphs
are all-perfect.

Proposition 4.8. Each co-comparability graph is all-perfect.
Proof. Let ≺ be a partial order on V such that distinct nodes u and v are adjacent

in G if and only if they are incomparable under ≺. We construct a directed graph
D as follows. There are nodes v− and v+ for each node v in V , together with a new
source node s and sink node t. There is an arc st, there are arcs sv− and v+t for each
v ∈ V , and there are arcs u+v− for each pair of nodes u, v ∈ V with u ≺ v. Also,
there is an arc v−v+ for each v ∈ V . We shall identify in the obvious way a vector
indexed by the arcs v−v+ with a vector indexed by V .

Note that a stable set in G corresponds to an s − t path in D, and a convex
combination of incidence vectors of stable sets of G corresponds to a unit volume s− t
flow in D. Now x ∈ STAB(G) if and only if x is a convex combination of incidence
vectors of stable sets of G. Thus x ∈ STAB(G) if and only if x “is” the projection
onto the arcs v−v+ of a unit volume s − t flow in D. But such flows in D form a
totally unimodular polyhedron (since the node-arc incidence matrix of D is totally
unimodular), so the result follows from Lemma 4.6.

5. Minimal non-k-perfect graphs. In this section we consider minimal non-
k-perfect graphs, in other words, graphs G which are not k-perfect, but deleting any
node yields a k-perfect graph. The strong perfect graph theorem [2] asserts that
the only minimal non-1-perfect graphs are the odd holes and antiholes, that is, the
odd cycles Cn for n ≥ 5 and their complements; so there would be a “small” list of
excluded induced subgraphs for perfection. Can we hope for such a concise result
for k-perfect graphs? Regrettably, the answer is no, at least not in this form; see
Theorem 5.4.

Before we prove this theorem, we consider the k-imperfection ratio of minimal
non-k-perfect graphs and of the odd holes and antiholes. We show first that for any
minimal non-k-perfect graph G on n nodes, impk(G) ≤ n/(n−1). To do this we need
the following lemma.

Lemma 5.1. If the nodes of a graph G can be covered q times by p induced
subgraphs H1, . . . , Hp, then

impk(G) ≤ 1

q

p∑
i=1

impk(Hi).

Proof. For every weight vector x of G, we have

q spanfk(G,x) = spanfk(G, qx) ≤
p∑
i=1

spanfk(Hi,x)
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≤
p∑
i=1

impk(Hi)ω
f
k (Hi,x) ≤ ωfk (G,x)

p∑
i=1

impk(Hi),

and the result now follows by the definition of impk(G).
Proposition 5.2. For each k ≥ 1, if G is a minimal non-k-perfect graph on n

nodes, then

impk(G) ≤ n

n− 1
.

Proof. The removal of any node v yields a k-perfect graph, and hence G can be
covered n− 1 times by n k-perfect graphs. Lemma 5.1 now yields the result.

We can now determine the k-imperfection ratios of the odd holes and antiholes.
Recall that we already know that even cycles and their complements are k-perfect for
all k, since even cycles are bipartite, and thus are comparability graphs. Let n be odd
and at least 5. Then Cn is k-perfect for k ≥ 3, since χ(Cn) ≤ 3, and Cn is k-perfect
for all k ≥ (n + 1)/2 since χ(Cn) ≤ (n + 1)/2. The following proposition completes
the picture.

Proposition 5.3. Let n ≥ 5 be an odd integer. Then the odd hole Cn is minimal
non-2-perfect, and imp2(Cn) =

n
n−1 . Also, for each k = 1, . . . , n−1

2 , the odd antihole

Cn is minimal non-k-perfect, and impk(Cn) =
n
n−1 .

Proof. Since ω(Cn) = 2 and χf (Cn) =
2n
n−1 , Lemma 3.1 shows that impk(Cn) ≥

n
n−1 . Since bipartite graphs are 2-perfect, it follows that Cn is minimal non-2-perfect,
and so impk(Cn) ≤ n

n−1 by the last proposition.

Since ω(Cn) = n−1
2 and χf (Cn) = n

2 , Lemma 3.1 shows that impk(Cn) ≥ n
n−1 .

Since co-bipartite graphs are 2-perfect, it follows that Cn is minimal non-k-perfect,
and so impk(Cn) ≤ n

n−1 by the last proposition.
We saw at the end of the introduction that cliques and stable sets always form

k-perfect graphs. Hence by Lemma 5.1, the cochromatic number z(G) of G is an
upper bound on impk(G). (Recall that the cochromatic number z(G) is the least
number of stable sets and cliques needed to cover the graph G.) For the case k = 1,
one can strengthen this bound and obtain impk(G) ≤ z(G)/2 for any nontrivial graph
G [7]. Proposition 4.3 shows that this is not true when k ≥ 2, but it is easy to see
that impk(G) < z(G)/2 + 1 by noting that any two stable sets and any two cliques
induce an all-perfect graph.

We now consider the number of (node-)minimal non-k-perfect graphs on n nodes
and show that when k ≥ 2 there are many such graphs.

Theorem 5.4. For each integer k ≥ 2, let fk(n) be the number of nonisomor-
phic minimal non-k-perfect graphs on at most n nodes. Then fk(n) grows at least
exponentially with n.

The rest of this section is devoted to proving this result. We first consider the
easier case when k ≥ 3. After that, we start the proof for the case k = 2, then break
to state and prove four lemmas, and then complete the proof.

Proof. Consider first the case k ≥ 3. We call a graph G k-critical if χ(G) = k
and deleting any node yields a graph with chromatic number k − 1. Note that each
(k + 1)-critical graph G other than Kk+1 has ω(G) ≤ k, and so G is node-minimal
non-k-perfect by Proposition 3.3. It is known [23] that the number of nonisomorphic

4-critical graphs on at most n nodes is at least c(n
2) for some c > 1. By adding to

a 4-critical graph G a clique with l nodes, each of which is adjacent to each of the
nodes of G, one obtains a (4+ l)-critical graph. This completes the proof for the case
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Fig. 5.1. The seed graph H. Fig. 5.2. The graph H′. Fig. 5.3. The graph G = G(H, e).

k ≥ 3, but this approach will not work for k = 2, as the only 3-critical graphs are the
odd cycles.

We now consider the case k = 2. We shall show that each graph G formed as
below is node-minimal non-2-perfect (and outerplanar and perfect). The smallest
graph G we shall construct is the Hajos graph, as shown in Figure 4.1.

Construct the graph G as follows. Start with any 2-node-connected outerplanar
bipartite graphH with at least one edge, the “seed” graph. It has a unique outerplanar
embedding with each node on the infinite face. Pick an edge e = uv on the infinite
face and add a new degree-2 node v∗ adjacent to u and v. The new graph H ′ is
2-node-connected and outerplanar, with a unique outerplanar embedding such that
each node is on the infinite face. Let C be the Hamilton cycle bounding the infinite
face, which is in fact the unique Hamilton cycle in H. Note that C has an odd number
of nodes. For each edge f = ab on C, add a new degree-2 node vf adjacent to a and
b. This gives the desired graph G = G(H, e); see Figures 5.1–5.3. The graph G is
outerplanar, and as it has no odd holes, it is perfect [24]. It remains to show three
things.

1. It is easy to see that the number of nonisomorphic graphs G as above on at
most n nodes grows at least exponentially with n, since this holds for the
seed graphs H.

2. The graph G is not 2-perfect. For we may give weight 2 to each of the degree-2
nodes added at the last step when we formed G from H ′, and weight 1 to each
of the other nodes (which came from H ′). It is easy to see that ω2(G,x) = 4.

But spanf2 (G,x) > 4. For suppose that there is a solution y to the LP for

spanf2 (G,x) with value 4. Then any 2-colorable graph S actually used (that
is, with yS > 0) must contain all the nodes v with xv = 2 and so can contain

at most |C|−1
2 nodes of the circuit C. Hence the total weight covered on the

nodes of C is at most |C| − 1, and so the covering is not feasible for G,x.
3. Finally, we must check that any proper induced subgraph of G is 2-perfect.

We shall complete this last requirement, and thus complete the proof of the
theorem, after stating and proving four lemmas.

The next lemma (together with Proposition 1.1) shows that each node-minimal
non-k-perfect graph is 2-node-connected.

Lemma 5.5. Let the graph G be connected, with a cut node v. Let G1, G2, . . .
be the components formed when the node v is deleted, and for i = 1, 2, . . . let Hi be
the graph formed by adding back the node v to Gi (that is, Hi is the subgraph of G
induced by V (Hi) ∪ {v}). Then for any positive integer k,

impk(G) = max
i
{impk(Hi)}.

Proof. It suffices to note that if Ai ⊆ V (Hi) is k-colorable for each i = 1, 2, . . .
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Fig. 5.4. A bipartite graph H. Fig. 5.5. The graph Ĥ. Fig. 5.6. The all-perfect graph G.

(that is, each induced subgraph G[Ai] is k-colorable) and either v ∈ ∩iAi or v �∈ ∪iAi,
then ∪iAi is k-colorable.

Lemma 5.6. Let the 2-node-connected graph G have no odd holes. Suppose that
there is a separating set consisting of a node u and an edge vw, where it is not the
case that u is adjacent to both v and w. Let G1 and G2 be the components formed
when the separating set is deleted, and let H1 and H2 be the graphs formed by adding
back the node u to G1 and G2, respectively. Then

imp2(G) = max{imp2(H1), imp2(H2)}.

Proof. It suffices to show that if A1 ⊆ V (H1) and A2 ⊆ V (H2) are 2-colorable
and either u ∈ A1 ∩ A2 or u �∈ A1 ∪ A2, then A1 ∪ A2 is 2-colorable. This is obvious
if u �∈ A1 ∪ A2, so assume that u ∈ A1 ∩ A2. Suppose that there is an odd cycle
contained in A1 ∪A2. This cycle must go through both the node u and the edge vw.
Without loss of generality, we may assume that v is in H1 and w is in H2. There is
a u-v path in H1: consider a shortest such path Q1. Similarly, there is a u-w path in
H2: consider a shortest such path Q2. Then the cycle formed from Q1, Q2, and the
edge vw is an odd hole in G, a contradiction.

Lemma 5.7. (a) Start with a bipartite graph H. For each edge e = ab, add a new
degree-2 node ve adjacent to a and b. Then the graph Ĥ formed is all-perfect.

(b) Now take an edge a0b0 in Ĥ, where the node a0 is in H and the node b0 is
in Ĥ but not in H, and add a new degree-2 node v∗ adjacent to a0 and b0. Then the
graph G formed is all-perfect.

See Figures 5.4–5.6 for an illustration of the construction.
Proof. It suffices to prove (b). Let x be a weight vector for G. Denote ω(G,x) by

ω. We shall show that there is an interval coloring of G,x using colors 1, . . . , ω. The
result will then follow by Lemma 4.4.

Properly color the nodes of H with the two labels “low” and “high,” where a0 is
“low.” Give each “low” node v the “low” colors 1, . . . , xv; give each “high” node v
the “high” colors ω − xv + 1, . . . , ω. For each edge e of H, assign node ve in Ĥ the
interval xa+1, . . . , xa+xve , where a is the “low” node incident with e. This gives an
interval coloring of Ĥ,x with colors 1, . . . , ω.

Finally we handle the node v∗ formed at the last stage. Note that node a0 has
been assigned the “low” interval of colors 1, . . . , xa0

, and node b0 has been assigned
the “next” interval of colors xa0 + 1, . . . , xa0 + xb0 . Thus we may assign to v∗ the
“high” interval of colors ω − xv∗ + 1, . . . , ω.

Completion of the proof of Theorem 5.4. Recall that we must check that
any proper induced subgraph of the graph G = G(H, e) is 2-perfect. We use induction
on the number of nodes of the seed graph H. The base case is the Hajos graph, which
we have already handled. Now let G = G(H, e), where H has Hamilton circuit C,
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and suppose that we know the result for any smaller seed graph. Let v be a node in
G, and let G′ be the graph G− v obtained from G by deleting v. We must show that
G′ is 2-perfect. Let T denote the unique triangle in H ′. We consider four cases. The
first two cover the possibilities when v is in H ′, and the second two when v is not in
H ′ (and so v has degree 2).

1. Suppose that v is in T . Then H ′ − v is bipartite, so G′ is 2-perfect by
Lemma 5.7(a).

2. Suppose that v is in H ′ and not in T , and so v is in H. Consider the
outerplanar embedding ofH ′. Let F be a bounded face such that its boundary
cycle D contains v. Let x be a node on D not adjacent to v. Then x is a cut-
node for G′. Let G̃ be the graph obtained by adding x back to the component
of G′ − v which contains v∗. Then imp2(G

′) = imp2(G̃) by Lemmas 5.5
and 5.7(a). But G̃ is 2-perfect by Lemma 5.5 and the induction hypothesis.

3. Suppose that v is vf for some edge f = ab in C and not in T . Consider the
outerplanar embedding of H ′. Let F be the bounded face containing f on its
boundary. There is a node x on F other than a and b such that x and the edge
f form a separating set S for G′. Let G̃ be the graph obtained by adding x
back to the component ofG′−S which contains v∗. Then imp2(G

′) = imp2(G̃)
by Lemmas 5.6 and 5.7(a). But G̃ is 2-perfect by Lemma 5.5 and the induction
hypothesis.

4. The remaining case is when v is vf for one of the two edges f of C in T , and
this is exactly the case covered by Lemma 5.7(b).

6. Disk graphs. In this section we bound the k-imperfection ratio of unit disk
graphs, general disk graphs, and induced subgraphs of the triangular lattice (which
are a subclass of unit disk graphs).

In a unit disk graph the nodes can be represented by unit diameter (closed) disks
in the plane such that two distinct nodes are adjacent if and only if the corresponding
disks intersect. These graphs are important in radio channel assignment, since we
obtain a unit disk graph as an interference graph if we assume that the service area of
a transmitter corresponds to a unit size disk. It is known [21, pp. 60–63] that we can
fractionally cover the nodes of a unit disk graph G d times by about 4.36d graphs,
which are disjoint unions of cliques, and hence by Lemma 5.1 we have impk(G) ≤ 4.36.
The next result improves this bound: it extends Proposition 3.3 of [7], which is the
case k = 1.

Proposition 6.1. For each unit disk graph G and each positive integer k,

impk(G) ≤ 1 + 2/
√
3 ∼ 2.155.

Proof. If the center of each disk lies in a stripe of width
√
3/2, then the cor-

responding unit disk graph is a co-comparability graph [11], and so is all-perfect by
Proposition 4.8. If t is sufficiently large, then with t such graphs we can cover a given

finite unit disk graph at least
√

3
2+

√
3
t times; see the proof of Proposition 3.3 of [7].

The result now follows by Lemma 5.1.
A generalization of a unit disk graph is a disk graph. A disk graph is a graph

the nodes of which can be represented by (closed) disks in the plane such that two
nodes are adjacent if and only if the corresponding disks intersect. (The nodes may
correspond to transmitters with different powers.) It is easy to verify that the neigh-
borhood of the node represented by a smallest size disk can be covered by 6 cliques.
Hence the bound below follows from the lemma after it.
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Proposition 6.2. For each disk graph G and each positive integer k,

impk(G) ≤
{

6 if k ≤ 6,
6− 6

k if k ≥ 6.

Lemma 6.3. For each graph G and t ≥ 1, if each induced subgraph of G contains
a node the neighborhood of which can be covered at least p/t times by a family of p
cliques, then impk(G) ≤ t+max{0, 1− t/k} < t+ 1.

Proof. Let G have n nodes. We can order the nodes of G in such a way that, for
each i = 2, . . . , n, the nodes of {v1, . . . , vi−1} which are adjacent to vi can be covered
qi times by a family of pi cliques, where pi/qi ≤ t. Consider any integral weight vector
x for G. Now, we greedily color the nodes of G in the order above, i.e., when we come
to color the node v we assign to it the lowest color, say c, which is not already assigned
to a neighbor of v, then the lowest color available which is at least c + k, and so on
until the node v is colored xv times. Clearly, we obtain a k-feasible assignment. We
claim that this procedure uses only the colors up to tωk(G,x)+(t−k) if k ≤ t and the
colors up to (t+1−t/k)ωk(G,x) if t < k. To see this, for each i = 2, . . . , n, let w(i) be
the sum of the values xvj over all neighbors vj of vi with j < i. Observe that we have
pi(ω(G,x)−xvi) ≥ qiw(i), and so w(i) ≤ t(ω(G,x)−xvi). When we come to color vi,
at most w(i) colors are already used for the neighbors of vi. Thus we can color vi with
xvi colors using only colors up to t(ω(G,x)−xvi)+k(xvi−1) = tω(G,x)+(k−t)xvi−k.
Therefore we use only the colors up to tω(G,x)− k ≤ tωk(G,x) + (t− k) if k− t ≤ 0,
and only the colors up to t(ω(G,x)−1)+(1− t/k)(xmax−1)k ≤ (t+1− t/k)ωk(G,x)
if k − t > 0. The result now follows by (2.6).

A subclass of unit disk graphs, the class of finite induced subgraphs G of the
triangular lattice, has attracted considerable attention from researchers interested in
the channel assignment problem. The reason for this interest is the fact that when
the potential service area for each transmitter is a unit diameter disk in the plane,
arranging the transmitters on a triangular lattice is most efficient, in the sense of
achieving universal coverage with as few transmitters as possible. Observe that such
a graph G is k-perfect for each k ≥ 3, since χ(G) ≤ 3.

Proposition 6.4. Let G be a finite induced subgraph of the triangular lattice.
Then impk(G) ≤ 4

3 for k = 1 and k = 2.
Proof. For k=1 we can use a result obtained in [18], which says that span1(G,x)≤

(4ω1(G,x)+ 1)/3 and thus implies that imp(G) ≤ 4/3 by (2.6); see also [7]. To prove
the result for k = 2 consider a weight vector x of G. We will show that

span2(G,x) ≤
4ω2(G,x) + 8

3
.(6.1)

The result will then follow by (2.6). This result appears in [22] in a slightly weaker
form, but since the improvement is easy from [18] once you know Lemma 4.4, we spell
out a proof.

We may assume without loss of generality that ω(G,x) ≥ 2xmax, since for graphs
with no edges the result is trivial, and for all other graphs if ω(G,x) is strictly less
than 2xmax, then we could increase the weights at some nodes without increasing
ω2(G,x). Let us denote ω(G,x) simply by ω. By the proof of the main result in [18]
we can find weight vectors x(1) and x(2) such that x = x(1) + x(2), and the following
holds:

• there is an ω-cyclic interval coloring of G,x(1), and

• the subgraph H of G induced by the nodes v with x
(2)
v > 0 is bipartite (indeed

acyclic), and x
(2)
v ≤ (ω + 2)/6 for each v.
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Hence by Lemma 4.4, span2(G,x
(1)) ≤ ω + 1, and since the graph H is bipartite,

span2(G,x
(2)) ≤ 2x

(2)
max ≤ (ω + 2)/3. Hence

span2(G,x) ≤ span2(G,x
(1)) + span2(G,x

(2)) + 1 ≤ (4ω + 8)/3,

as required.
For k = 1 and k = 2 we can have impk(G) > 1 for a finite induced subgraph

of the triangular lattice, since the cycle C9 on 9 nodes is such a graph and we have
already seen that imp(C9) = imp2(C9) = 9/8. It would be interesting to determine
whether in fact imp2(G) ≤ 9/8 for all induced subgraphs of the triangular lattice; see
[7] for a discussion on the corresponding question for imp(G).

7. Random graphs. In this section we use results on the imperfection ratio of
a random graph from [8] to prove corresponding results for the k-imperfection ratio.
First we need one deterministic lemma, which gives a bound on the k-imperfection
ratio of a graph G in terms of the imperfection ratios of k induced subgraphs of G.

Lemma 7.1. Let V0, . . . , Vk−1 be a partition of the node set of a graph G, and let
Gi be the subgraph induced by Vi for i = 0, . . . , k − 1. Then

impk(G) ≤ kmax
i
{imp(Gi)},

where the maximum is over i = 0, . . . , k − 1.
Proof. Suppose that G has n nodes. Let x be a nonzero integral weight vector

for G. Let Gix denote the graph where each node v of V (Gi) is replaced by a clique
of xv nodes. Recall that

χ(Gix) ≤ χf (G
i,x) + |V (Gi)| ≤ χf (G

i,x) + n;(7.1)

see, for example, the proof of Lemma 2.1.
For each i = 0, . . . , k − 1 consider a coloring of Gi,x which uses the colors

{1, 2, . . . , χ(Gix)}. To a node v ∈ Vi which is colored with the xv colors {c1, . . . , cxv},
assign the xv new colors {kc1 − i, . . . , kcxv − i}. This yields a k-feasible assignment
for G,x, and so

spank(G,x) ≤ kmax
i
{χ(Gix)} ≤ kmax

i
{χf (Gi,x)}+ kn

by (7.1). Hence since ω(Gi,x) ≤ ωk(G,x) for each i,

spank(G,x)

ωk(G,x)
≤ kmax

i

{
χf (G

i,x)

ω(Gi,x)

}
+

kn

ωk(G,x)

≤ kmax
i
{imp(Gi)}+ n

xmax
,

and the result follows by (2.6).
The first theorem in this section shows that for dense random graphs the k-

imperfection ratio is asymptotically independent of k.
Theorem 7.2. Let k be a positive integer, and let 0 < p < 1. Then for any

η > 0, a.s.

n

4 log 1
p
n log 1

q
n
≤ impk(Gn,p) ≤ (1 + η)

n

4 log 1
p
n log 1

q
n
,

where q = 1− p.
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Proof. First we consider the lower bound. A simple first moment argument shows
that the following two conditions on Gn,p are a.s. satisfied (see, for example, [4]):

α(Gn,p) ≤ 2 log 1
q
n and ω(Gn,p) ≤ 2 log 1

p
n.

In addition, it is easy to verify that a.s. ω(Gn,p) ≥ k, and hence by Lemma 3.1, we
have a.s.

impk(G) ≥ χf (Gn,p)

ω(Gn,p)
≥ n

α(Gn,p)ω(Gn,p)
≥ n

4 log 1
p
n log 1

q
n
.

Now we consider the upper bound. By Lemma 7.1, for any t ≥ 0

P (impk(Gn,p) > tk) ≤ kP (imp(Gn/k�,p) > t),

and hence by Theorem 3.3 of [8], we have a.s.

impk(Gn,p) ≤ k (1 + η/2)
n/k�

4 log 1
p
n/k� log 1

q
n/k�

≤ (1 + η)
n

4 log 1
p
n log 1

q
n

for sufficiently large n.

The next result corresponds to Theorem 3.5 of [8], which shows that for suitable
sparse random graphs Gn,p, imp(Gn,p) is about np/(4 lnnp). Now we may allow
slightly denser graphs and see that impk(Gn,p) is about np/(2k lnnp) when k ≥ 2.
Note that this formula depends on k, in contrast to the dense case, and it does not
give the correct answer for k = 1.

Theorem 7.3. Let k ≥ 2, and suppose that p = p(n) satisfies np→∞ as n→∞
but p = o(n−2/(k+1)). Then for any ε > 0, a.s.

(1− ε)
np

2k lnnp
≤ impk(Gn,p) ≤ (1 + ε)

np

2k lnnp
.

Proof. Since p = o(1) and np→∞ as n→∞, for any ε > 0 we have a.s.

χ(Gn,p) ≤ (1 + ε)
np

2 lnnp
;(7.2)

see [16]. The required upper bound on the k-imperfection ratio now follows by
Lemma 3.1(b).

For the lower bound, assume that 0 < ε < 1, and let δ > 0 satisfy (1−δ)/(1+δ) ≥
1− ε. By [5], a.s.

α(Gn,p) ≤ (1 + δ)
2 lnnp

p
.

Also, the expected number of cliques with k+1 nodes is
(
n
k+1

)
p(

k+1
2 ), which is at most

nk+1p
k(k+1)

2 . Hence the probability that the number of cliques with k + 1 nodes in

Gn,p is at least δn is at most (np
k+1
2 )k/δ. Since np

k+1
2 = o(1), there is a.s. an induced

subgraph H of Gn,p on at least n− δn nodes with ω(H) ≤ k. But then a.s.

χf (H) ≥ n− δn

α(H)
≥ 1− δ

1 + δ

np

2 lnnp
≥ (1− ε)

np

2 lnnp
.
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Hence by Lemma 3.1(a), a.s.

impk(Gn,p) ≥ impk(H) ≥ (1− ε)
np

2k lnnp
,

as required.
There is a similar result for random r-regular graphs Gn,r, which are graphs taken

uniformly at random from the set of all r-regular graphs on the n nodes {1, 2, . . . , n}
(where rn is even). The limit in the following theorem refers to n → ∞ with n
restricted to even integers if r is odd.

Theorem 7.4. Let k ≥ 2. For each integer r ≥ 2, there exists ε = ε(r) > 0 such
that ε(r)→ 0 as r →∞ and such that for each fixed r ≥ 2, a.s.

r

2k ln r
≤ impk(Gn,r) ≤ (1 + ε)

r

2k ln r
.

Proof. We may argue much as in the proof of Theorem 7.3. To do this, the upper
bound (7.2) has to be replaced by the following result from [6]: for each r ≥ 2, there
exists ε = ε(r) > 0 with ε(r)→ 0 as r →∞, such that

χ(Gn,r) ≤ (1 + ε)
r

2 ln r
.

The lower bound follows from the result that Gn,r a.s. contains a triangle-free induced
subgraph H with χf (H) ≥ r/2 ln r; see the proof of Theorem 3.6 of [8].
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Abstract. A class of codes is said to reach capacity C of the binary symmetric channel if for
any rate R < C and any ε > 0 there is a sufficiently large N such that codes of length ≥ N and rate
R from this class provide error probability of decoding at most ε, under some decoding algorithm.

The study of the error probability of expander codes was initiated by Barg and Zémor in 2002
[IEEE Trans. Inform. Theory, 48 (2002), pp. 1725–1729], where it was shown that they attain
capacity of the binary symmetric channel under a linear-time iterative decoding with error probability
falling exponentially with code length N . In this work we study variations on the expander code
construction and focus on the most important region of code rates, close to the channel capacity. For
this region we estimate the decrease rate (the error exponent) of the error probability of decoding for
randomized ensembles of codes. The resulting estimate gives a substantial improvement of previous
results for expander codes and some other explicit code families.
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1. Introduction. We study transmission of information with linear codes over
the binary symmetric channel (BSC). An [N,K] binary linear code C is a K-dimen-
sional linear subspace of {0, 1}N . The number N is called the length of the code, and
the relative dimension K/N is called the rate of the code, denoted by R = R(C). A
binary digit sent over the BSC is received correctly with probability 1− p and flipped
with probability p < 1/2. The objective of the decoder is to restore correctly the
transmitted code vector x. Maximum likelihood (or complete) decoding of C consists
of choosing a codeword x′ closest to the received vector y. The event that x �= x′
corresponds to a decoding error. The probability Pe(C) that decoding goes wrong
is independent of the transmitted codeword and is a polynomial function of p. This
polynomial is notoriously difficult to compute exactly, but estimating the value Pe(C)
can be somewhat simplified: when p is small enough, Pe(C) behaves like its lowest-
degree term, and the lowest degree equals half the minimum Hamming distance of
C. For this reason, combinatorial coding theory is concerned with the construction
of large codes with large minimum distance.

However, for both theoretical and practical reasons (like the emergence of mobile
communications and their very noisy channels), there has been a renewed interest in
studying the situation when p is large or, equivalently, when R is close to capacity.
Shannon’s theorem [11] states that Pe(C) can stay close to zero only as long as we
have R < C, where C is the channel capacity and depends only on p. Furthermore,
when R is close to C, we know that for large N , for fixed rate R < C, and for
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the best possible codes of rate R, the decoding error probability Pe(C) takes the
form Pe(C) = 2−E(R,p)N+o(N), where E(R, p), called the error exponent, is a positive
quantity that depends only on p and the rate R and can be computed exactly [8].
Unfortunately, the only known way to achieve this best possible error exponent is to
use a random code C together with decoding algorithms that find the closest codeword
by essentially performing an exhaustive search over C.

Turning to manageable decoding algorithms, until fairly recently only one class of
codes was known to achieve a nonzero decoding exponent in polynomial time (though
less than E(R, p)) for rates arbitrarily close to channel capacity: the class of concate-
nated codes, introduced by Forney [9] and extensively studied through the mid-1980s
(see [1], [7] for overviews).

In the 1990s the discovery of turbo-codes [4] with their largely unexplained close-
to-capacity performance shifted emphasis to iterative decoding techniques. One par-
ticular class of codes that can be iteratively decoded is that of expander codes. An
expander code is constructed by assigning binary digits to edges of a bipartite graph
in a way that was introduced by Tanner [16]. A surge of interest in them occurred
after it was shown in [15] that if the underlying graph is an expander graph, then they
correct an Ω(N) number of errors under an O(N) iterative decoding. Not only was
this a significant achievement for iterative decoding, but it was the first example of
this kind in coding theory at large; indeed, the concatenated decoding rival requires
an O(N2) decoding time.

In our work [2] we employ the iterative decoding algorithm of [17] to show that
expander codes actually reach the capacity of the BSC with a positive error exponent.
Though the error exponent of concatenated codes [9] is better than that of expander
codes of [2], their performance again relies on a quadratic-time decoding algorithm,
as opposed to a linear-time decoding algorithm in [17], [2].

An expander code C in [15], [17] is constructed from a bipartite ∆-regular graph
G = [A ∪B,E] with |A| = |B| = n and a binary code [∆, R∆] code C0. Coordinates
of a codeword in C are in one-to-one correspondence with edges of G (unlike some
other constructions of codes on bipartite graphs where the coordinates of the code
correspond to vertices) and satisfy the condition that the subvector incident to every
vertex v ∈ A ∪ B is a code vector in C0. The decoding algorithm of [17] consists of
iterations that alternate between A and B. In each iteration all the vertices of the
respective part are decoded in parallel with the code C0. [17] also provides a bound
on the number of errors correctable by this decoding.

Among the new ideas introduced in [2] is the use of two different codes: C0 for
the part A and C1 for B. The value of the resulting error exponent is then optimized
on the choice of the rates of these codes. Another idea of [2] is associating with each
edge of G t binary digits of the codeword for some constant t rather than one digit in
earlier constructions. (Alternatively, this can be viewed as replacing each edge by t
parallel edges.) It turns out that the parameters and performance of the code C can
be improved if we view the constituent codes both as binary linear codes and q-ary
additive codes, q = 2t. See more on this in section 4.3.

In this paper we obtain a substantial improvement of the estimate of the er-
ror exponent for expander codes, focusing on R close to capacity (Theorem 6.1 and
Figure 6.1). In particular, we surpass in this region the error exponent of Forney’s
concatenated codes [9], a benchmark for a long time. The improvement relies on the
following ideas, which were not employed in earlier analysis. In the first iteration,
again relying on the q-ary structure of the code C0, we employ detailed information
on the error events. Namely, it can be shown that in the event of a decoding error
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the distance from the transmitted code vector to the decoded vector will most likely
concentrate around some particular value. This restricts the possibilities for the incor-
rectly decoded code vectors of C0. We can use this fact to make a stronger statement
about the decoding error probability of the code C1 in the second decoding itera-
tion. Finally, we modify the original construction by adjoining a number of vertices
of degree one to the expander graph. This decreases the error correcting potential
but improves the overall code rate, and the resulting trade-off improves the overall
error exponent. This idea borrows from turbo-codes for which the underlying graph
has many degree one vertices, contrary to other classes of codes amenable to iterative
decoding.

The rest of the paper is organized as follows. In sections 2 and 3 we introduce the
necessary coding background. In section 4 we summarize previous work on expander
codes. The new results start with section 5, where we introduce our new variation
on decoding and give a refined probabilistic analysis of its behavior: this results in a
first error exponent in Theorem 5.2. Already, this result improves the best previously
known error bound for expander codes [2]. In section 6 this is improved to Theorem
6.1 through a modified construction that we analyze. Finally, we give some concluding
comments.

2. Codes and their parameters. In this section we introduce basic notation
and recall some bounds on the parameters of codes used in deriving properties of
the expander code construction. Although our ultimate goal will be binary codes,
we will also consider codes over larger alphabets of size q = 2t. By Hq = HN

q we
denote the q-ary Hamming space, i.e., the N -dimensional coordinate space over the
field of q elements. The number of nonzero coordinates of a vector x ∈ Hq is called the
(Hamming) weight, denoted |x|. The Hamming distance is defined by d(x, y) = |x−y|.

For a given linear code C the minimum weight of a nonzero codeword in C is
called its distance. For a given q we will use notation C[N,K,D] to refer to a linear
code of length N , dimension K, and distance D = D(C), occasionally omitting the
distance.

One of the key problems of combinatorial coding theory is finding the maximum
size of a code C of lengthN and distanceD. Consider families of codes Ci, i = 1, 2, . . . ,
of growing length Ni, rate Ri, and relative distance δi = D(Ci)/Ni. According to the
well-known Gilbert–Varshamov (GV) bound there exist sequences of codes of rate
R(Ci)→ R and relative distance δi → δ for any

R < 1−Hq(δ),

where

Hq(x) = −x logq
x

q − 1
− (1− x) logq(1− x)

is the q-ary entropy function. For a given R we let δ
(q)
GV (R) denote the GV distance:

δ
(q)
GV (R) = H

−1
q (1−R). Note that δ

(q)
GV (0) = (q− 1)/q, δ

(q)
GV (1) = 0. For q = 2 we omit

the superscript and write simply δGV(R). Likewise, throughout the paper, if the base
of the logarithms and exponents is missing, it is equal to 2.

A number of upper bounds are known on the relative distance δ(R) of a code
sequence of rate R. We mention the Bassalygo–Elias bound which asserts that, for
binary codes

δ(R) ≤ δE(R) := 2δGV (R)(1− δGV (R)).
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We call the quantity δE(R) := 2δGV(R)(1− δGV(R)) the Elias radius; its relevance to
decoding will become apparent from Proposition 3.1 below.

As q = 2t gets large, the quantity (q − 1)/q comes close to one, and the inverse
entropy function gets close to the linear function 1−R. More precisely, for any β > 0
there exists a value t0 such that for all t > t0,

0 < (1−R)− δ(q)GV (R) < β.(2.1)

3. Decoding and error exponents. This section is devoted to some properties
of random linear codes related to their maximum likelihood decoding, which will be
used in the analysis of expander decoding.

3.1. Decoding. Let C be an [N,K] binary code used on a BSC(p), and let
Pe(C) be its average probability of decoding error under maximum likelihood decod-
ing. By the classical results of coding theory [8], [11] there exist sequences of binary
linear codes such that the probability Pe(C) under maximum likelihood decoding
falls exponentially with the code length N . Therefore, define the error exponent
E(C) = −N−1 logPe(C).We define the best attainable error exponent for the rate R
as

E(R, p) = lim inf
N→∞

max
C⊂HN

2 :R(C)≥R
E(C).

It was proved in [8] (see also [11]) that E(R) > 0 for 0 ≤ R < C.

3.2. Random coding exponent and typical events. The best known exis-
tence (lower) bound E0(R, p) on the error exponent E(R, p) of binary codes (linear or
not) is obtained by the random coding method [11]. The function E0(R, p) is positive
for all rates below the channel capacity C = 1−H(p). It is easy to prove by random
choice [11] that there exist sequences of binary linear [N,RN ] codes that attain the
GV bound on the minimum distance and reach the error exponent E0(R, p) under
maximum likelihood decoding. We assume that p is fixed and R varies from zero to
C. The form of the bound depends on the location of R with respect to C. We are
interested in the high-rate region, i.e., R close to C. For high rates we obtain the
bound [8], [11]

E0(R, p) = D(δGV (R)‖p),
where

D(x‖y) := x log(x/y) + (1− x) log((1− x)/(1− y)).
This bound is actually tight in the region Rcrit ≤ R ≤ C, where the value Rcrit =
1−H(ρ0),

ρ0 =

√
p√

p+
√
1− p ,(3.1)

is called the critical rate of the channel. In other words, for Rcrit ≤ R ≤ C we have
E(R, p) = E0(R, p) (see [8]). Note that E0(C, p) = 0.

For rates 0 ≤ R ≤ Rcrit the random coding exponent has the following form:

E0(R, p) = −δGV(R) log 2
√
p(1− p) (0 ≤ R ≤ Rx),

E0(R, p) = D(ρ0‖p) +Rcrit −R (Rx ≤ R ≤ Rcrit),
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where Rx = 1−H(2ρ0(1− ρ0)).
Both construction and decoding complexity of known code sequences that attain

this error exponent grow exponentially with the code length N .

It is possible to say more about the geometry of typical error events under max-
imum likelihood decoding of random codes. Namely, in the high-rate region which
interests us, conditional on the event of a decoding error, the typical relative dis-
tance between the transmitted codeword and the decoded codeword is close to δE(R).
Formally we have the following proposition.

Proposition 3.1. Let p be the parameter of a BSC. Assume that the transmitted
vector is the all-zero one, and denote by z the decoded vector output by maximum
likelihood decoding (this is a random variable which depends on the noise realization).

For any R and for any large enough N , there exists a code C such that, for any
p such that Rcrit ≤ R < C,

• C has error exponent E0(R, p);
• for any α > 0 we have

Pr

[∣∣∣δE(R)− |z|
N

∣∣∣ ≥ α ∣∣ z �= 0

]
< 2−Nc(α) (c(α) > 0 is independent of N),

where Pr[·] is the probability that the random vector z fulfills the condition in the
brackets.

The proof of this result (see the appendix) relies on a combination of facts known
to coding theorists but not spelled out in the literature.

3.3. Error exponents of concatenated codes. An important example of
codes that attain channel capacity under low-complexity decoding is given by For-
ney’s concatenated codes [9] (see also [7]). Concatenated codes form a generalization
of Elias’s product codes and provide code families with better parameters in terms of
both code distance and error exponents.

Binary [N = nm, k"] concatenated codes are constructed by first encoding the k
q-ary message symbols, q = 2�, with an [n, k] q-ary code C1, then representing every
code symbol back as a string of " bits, and then encoding it with an [m, "] binary code
C0. We assume that both rates R0 = "/m of the inner code C0 and R1 = k/n of the
outer code are fixed.

Letm = log2N . As with all linear codes, properties of a typical concatenated code
found by random choice are much better than those of the known explicit families.
In particular, there exists a sequence of binary [m, " = mR0] codes C0 for which the
error probability of maximum likelihood decoding falls as 2−mE0(R0,p). Moreover, a
brute-force implementation of decoding of the code C0 has complexity O(m2R0m) =
O(N logN). An explicit family is obtained by taking as outer codes a sequence of
Reed–Solomon codes C1 of growing length n over the alphabet of growing size q = 2�.
Performing algebraic (generalized minimum distance) decoding of the code C1 with
complexity O(n2), we obtain the error exponent (see [9])

EF(R) = max
R<R0<C

E0(R0, p)

(
1− R

R0

)
.

The overall decoding complexity is O(N2).

The error exponent EF was improved by Blokh and Zyablov [5] (see also [7]), who
consider multilevel concatenated codes: this involves replacing the inner code C0 by
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Fig. 3.1. Error exponents of concatenated codes; p = 0.01, C ≈ 0.919. Bottom to top: the
exponent EF of concatenated codes; bound (3.2) with i = 5; the random coding bound E0(R, p).

i different binary codes and the outer code C1 by i Reed–Solomon codes of different
rates. They obtain the exponent

Ei(R) = max
R<R0<C

(
i(R0 −R)

R0

∑i
j=1

(
E0(R0

i−j+1
i , p)

)−1

)
(3.2)

under an O(N2) multistage decoding algorithm. We have EF(R) = E1(R), and

Ei(R) < Ei+1(R), 0 < R < C, i = 1, 2, . . . ;

see Figure 3.1.
We note that for code rates not too close to capacity, the quotient E0(R, p)/EF(R)

is uniformly bounded from above by a function that depends only on p. Moreover,
for R → 0 we even obtain EF(R) ∼ E0(R, p). The situation changes dramatically
for R → C. Indeed, letting C − R = ε, we obtain E0(R, p) ≈ c(p)ε2, where c(p)
depends only on the channel. In contrast, EF(R) = O(ε3). Thus, the quotient
E0(R, p)/EF(R) → ∞ as ε → 0. This is also the case for the multilevel exponents:
we have limR→C(E0(R, p)/Ei(R)) = ∞ for any finite i and even in the limit i → ∞.
Improving error exponents of low-complexity decoding algorithms in the range of code
rates R close to C is therefore of most interest. In this paper we improve the constant
factor in front of the ε3 compared to EF, while the problem of improving the decrease
order from ε3 remains an open question.

4. Expander graphs and expander codes.

4.1. Expander graphs. Consider a balanced ∆-regular bipartite graph G =
[A ∪ B,E] with the vertex set A ∪ B, where |A| = |B| = n and where every edge
has one endpoint in A and one in B. Let λ be the second eigenvalue of G. We have
|E| = N := n∆. Any vertex v ∈ A (v ∈ B) will be called a left (right) vertex.

For a vertex v and a subset of vertices S, denote by dS(v) the S-degree of v, i.e.,
the number of edges that connect v to some vertex of S.

We need one result from [17].
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Lemma 4.1 (see [17]). Let S ⊂ A and T ⊂ B. Then the average degree dST of
the subgraph induced by S ∪ T satisfies

dST ≤ 2|S||T |
|S|+ |T |

∆

n
+ λ.

This lemma implies that expander graphs approximate well the behavior of ran-
dom bipartite graphs. Namely, if λ is small compared to ∆, the size of the set T of
right vertices whose S-degrees exceed substantially the expected S-degree of a vertex
in a random graph can be made arbitrarily small by choosing a sufficiently large ∆.
This is made formal in the following lemma.

Lemma 4.2. Let S ⊂ A with |S| = s = σn. Let α > ασ, where ασ = λ
2σ∆ . Let T

be the subset of B defined by T = {v ∈ B, dS(v) ≥ (1 + α)σ∆}. Then we have

|T | ≤ ασ
α− ασ |S|.

Proof. The number of edges of the graph GS∪T induced by S ∪ T is at least
|T |(1 + α)σ∆, and therefore the average degree dST satisfies

2|T |(1 + α)σ∆
|S|+ |T | .

Applying Lemma 4.1, we therefore have

2|T |(1 + α)σ∆
|S|+ |T | ≤ 2|S||T |

|S|+ |T |
∆

n
+ λ,

whence

2|T |(1 + α)σ∆ ≤ 2|S||T |∆
n

+ λ(|S|+ |T |),

|T |
(
ασ∆− λ

2

)
≤ λ

2
|S|,

and the result follows after some rearranging.

4.2. Expander codes. Let G = [A∪B,E] be as above, with λ� ∆. Let us fix
an arbitrary order of the edges in E. For a vertex v this defines an ordering of edges
v(1), . . . , v(δ) incident to it. Given a binary vector x ∈ HN

2 , this ordering induces a
subvector xv = (xv(1), . . . , xv(∆)).

To construct a linear code C associated with the graph G we also need two binary
codes, C0[∆, R0∆, δ0∆] and C1[∆, R1∆, δ1∆]. An N -vector x is a codeword of C if
and only if for every left vertex v the subvector xv is a codeword in C0 and for every
right vertex w the subvector xw is a codeword in C1. The code C has length N = n∆
and rate R ≥ R0 +R1 − 1.

Codes associated with bipartite graphs were considered in [2], [6], [10], [14], [15],
[16], [17]. In particular, Sipser and Spielman [15] introduced an important idea of
estimating properties of a simple iterative decoding procedure via spectral properties
of the graph G. The main result of [15] is given by the following theorem.

Theorem 4.3 (see [15]). For any ε > 0 there exists a polynomial-time con-
structible code with relative distance δ−ε and rate 1−2H(

√
δ) for which any α < δ/48

fraction of errors can be corrected by a circuit of size O(N logN) and depth O(logN).
The complexity of a sequential implementation of this decoding is O(N).



ERROR EXPONENTS OF EXPANDER CODES 433

This theorem gives codes with positive rate R > 0 for 0 < δ < 0.011. We note
that [15] used the above family of expander codes with C0 = C1 but with a somewhat
different decoding algorithm than the ones used in this paper. The present construc-
tion together with the decoding procedure (5.1) below was used in [17] to improve the
fraction of correctable errors in Theorem 4.3 to δ/4.

4.3. Replicated expander codes. A modification of the above construction
was introduced in [2]. Namely, assume that every edge (v, w) ∈ E is really a bundle
of t parallel edges, each with one end in v and the other in w. Further, assume that
C0 is a [t∆, t∆R0] code and C1 a [t∆, t∆R1] code. Both codes can be considered as
binary linear codes and also as q-ary additive codes (additive subgroups of Fq, q = 2t).

The purpose of introducing replication is to make use of (2.1). In particular, with
C0 = C1 we obtain the following theorem.

Theorem 4.4 (see [2]). For any R0, 0 < R0 < 1, and ε > 0 there exists an
expander code C of rate R ≥ 2R0−1 and relative distance δ = (1−R0)H

−1(1−R0)−ε.
Iterative decoding applied to this code corrects any α < δ/4 fraction of errors.

This is an improvement over Theorem 4.3: in particular, we obtain codes C with
positive rates for all 0 ≤ δ < 0.055. This is the best result known to date for the
fraction of errors correctable in linear time with expander codes.

5. Attaining capacity with linear complexity.

5.1. A simple bound. Replication also enables us to obtain good estimates of
the error exponent of iterative decoding. Consider the following decoding algorithm
of an expander code C. For a vector y ∈ HN

2 let L(y) (R(y)) be the vector z such
that for every v ∈ A (v ∈ B) the vector zv is one of the codewords of C0 (C1) closest
to yv. Suppose that the transmitted zero vector is received as y �= 0. Consider the
decoding procedure of [17], [2]:

y(0) = y, y(1) = L(y(0)), y(2) = R(y(1)), y(3) = L(y(2)) . . . .(5.1)

We assume that in computing L(y(0)) the algorithm relies on the representation of
C0 as a binary code. In other words, for every left vertex v the associated binary

subvector (y
(0)
v(1), y

(0)
v(2), . . . , y

(0)
v(t∆)) is decoded with the binary code C0[t∆, t∆R0] into

one of the closest code vectors of C0. All the subsequent stages use the q-ary structure
of C1 and C0. For instance, in the second stage this amounts to grouping consecutive
groups of t bits of the vector y(1) into q-ary symbols. More precisely, for every right

vertex w the q-ary subvector y
(1)
w = (y

(1)
w,1, y

(1)
w,2, . . . , y

(1)
w,∆) associated with it can be

written in binary representation as

[(y
(1)
w(1), . . . , y

(1)
w(t)), . . . , (y

(1)
w((i−1)t+1), . . . , y

(1)
w(it)), . . . , (y

(1)
w((∆−1)t+1), . . . , y

(1)
w(∆t))].

All the n∆-subvectors yw are independently decoded with the q-ary code C1 according
to the minimum of the q-ary Hamming distance.

The procedure stops after either having met a fixed point (i.e., when y(i+2) =
y(i+1) = y(i) for some i) or after having made O(logN) steps.

Error exponents of this decoding algorithm for expander codes (replicated or not)
were analyzed in [2]. The strongest result obtained in that paper is as follows.

Theorem 5.1 (see [2]). For a given rate R, any ε > 0, and α < 1 there exists
a polynomial-time constructible family of replicated expander codes of length N such
that Pe(C, p) ≤ 2−αNF1(R,p), where

F1(R, p) = max
R<R0<C

E0(R0, p)(R0 −R)/2− ε.(5.2)
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The decoding complexity of these codes is the same as in Theorem 4.3.
The idea behind the proof is as follows. We take a code C0 of rate R0 > R and

a code C1 of rate R1 close to one. The first decoding step, y(1) = L(y(0)), removes
most of the errors from the received word, which is possible because the code C0 has
relatively large distance. By taking a large but fixed ∆ we ensure that, for every left
vertex, the error exponent after the first step is close to the random coding bound
E0(R0, p) (section 3.2).

At the second step, most vertices correspond to subvectors containing less than
D1/2 ≈ (R0 − R)/2 errors and are therefore corrected. The expanding properties
of the graph G ensure that the remaining atypical subvectors, call them “badly in
error,” are corrected at later iterations if their number is small enough. Small enough
means smaller than nδq1/2, where δ

q
1 = D1/∆ is the q-ary relative minimum distance of

C1. Specifically, Lemma 4.2 ensures that if at some point of the decoding procedure
the number of wrongly decoded subvectors (or vertices of the graph) is less than
nδq1/2, then the number of subvectors in error must decrease geometrically at the
next iteration.

Summarizing, we simply upperbound the probability of a decoding error by the
probability that the number of left subvectors remaining in error after the first itera-
tion is more than nδq1/2.

Remark. For any fixed rate R the decoding complexity of expander codes is
bounded above as O(N). The value of the multiplicative constant depends on the
code rate and increases as R approaches capacity C. In the neighborhood of capacity
this constant becomes large: for R = C(1−γ) it can be estimated to be exp(γ−2). This
remark applies to Theorem 5.1 and to the subsequent constructions of this paper. Note
that such a behavior was already the case for the concatenated code constructions of
section 3.3.

5.2. Refined technique: Overview. What precludes one from obtaining a
better error exponent in this way is the fact that at the second step the proof relies
on a very strong convergence condition, namely, that most right vertices receive fewer
than D1/2 errors. Since the length of the code C1 is a fixed constant, we could in
principle involve more powerful decoding, but it is unclear how to bound its error rate.
Moreover, incorrect codewords obtained in left vertices after the first iteration tend
to be of one and the same Hamming weight (by Proposition 3.1). This information is
also unclaimed in the proof of Theorem 5.1.

Our strategy will therefore be to study the probability that the number of vertices
in error after the second iteration is sufficiently small for Lemma 4.2 to apply and again
guarantee convergence of the decoding algorithm.

Our analysis is first based on the observation that, given the number σn of left
vertices that are wrongly decoded by the first iteration, we know that the typical
resulting error vector y(1) satisfies the following:

1. For almost every right vertex w, the right subvector y
(1)
w has q-ary weight

very close to σ∆. This is an application of Lemma 4.2.
2. Almost every edge corresponds to a binary t-tuple which is either all-zero or

of weight very close to δE(R0)t. This is an application of Proposition 3.1.

Given this information on the right subvectors y
(1)
w , we want to use a modified max-

imum likelihood decoder for the code C1 and estimate the probability that an error
will occur at the second decoding iteration. However, the difficulty we face is that

even if we have a typical error pattern for almost every y
(1)
w , we have little control

over its probability distribution. To tackle this problem we will introduce partial ran-



ERROR EXPONENTS OF EXPANDER CODES 435

domization of the overall code construction and determine an error distribution for
almost every right subvector y

(1)
w .

5.3. Refined technique: Details. We modify somewhat the code family and
the decoding algorithm.

The general code construction is the same as in section 4.3. For a more detailed
analysis of decoding we need some further properties of the graph G and the codes
C0, C1. Since we will use the full power of Lemma 4.2, it is important that we choose
bipartite graphs G with the smallest possible λ, e.g., Ramanujan graphs [13] with
λ = O(

√
∆). Next, we take the code C0 to satisfy the condition of Proposition

3.1. The code C1 is chosen to satisfy a restriction on the nature of decoding error
events made precise in Lemma 5.4 below. Finally, we introduce a small amount
of randomization: namely, we consider an ensemble of expander codes obtained by
choosing randomly and independently the coordinate ordering of every vertex subcode.

Two relative minimum distances are used for C0: the binary relative distance
δ0 = d0/(t∆), where d0 is the binary minimum distance of C0, and the q-ary relative
distance δq0 = dq0/∆, where dq0 is the q-ary minimum distance of C0. By choosing ∆ and
t large enough (but fixed) we ensure that both distances are close to the GV bounds,

δ0 ≈ δGV (R0) and δq0 ≈ δ(q)GV (R0), and that the error probability of max-likelihood
decoding of C0 behaves as

Pe(C0) ≈ 2−t∆E0(R0,p) (R→ C).

For the code C1 we consider only its q-ary distance D1 = δq1∆, of which we assume

δq1 ≈ δ(q)GV (R1).
The decoding algorithm consists of alternating left and right decodings. The

first (left) decoding, L(y(0)), is the same as in (5.1). The second (right) decoding
uses a modified “max-likelihood” decoding adapted to a nonsymmetric additive q-
ary channel, which we describe in section 5.4. Every subsequent decoding step uses
standard decoding for the q-ary symmetric channel, described in section 5.1.

The claim about the properties of this construction, proved in the remainder of
section 5, is the following theorem.

Theorem 5.2. For a given rate R, there exists a polynomial-time constructible
family of replicated expander codes of length N , defined up to the orderings of the
coordinates of the constituent codes, such that, given a random set ω of orderings of
the constituent codes,

Pe(C, p, ω) ≤ 2−NF (R,p)(1−ε(R,p)),

where ε(R, p) is a function depending only on R and p such that ε(R, p) < 1 when
R < C and ε(R, p)→ 0 when R→ C and where

F (R, p) = max
R<R0<C

E0(R0, p)
R0 −R
H(δE(R0))

.

The decoding complexity of these codes is the same as in Theorem 4.3.
Proof. Let γ0 be the typical fraction of bits in error after decoding a corrupted

codeword of C0, given that a wrong codeword is output. By Proposition 3.1 for
R0 ≥ Rcrit we have γ0 = δE(R0). Let us denote by S the set of vertices of A in error
after the first iteration and by T the set of vertices of B in error after the second
iteration. Note that

Pr[|S| = σn] �
(
n

σn

)
2−t∆σnE0(R0,p) � exp[−NσE0(R0, p)]
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since by choosing t and ∆ sufficiently large the term N−1 log
(
n
σn

)
can be made arbi-

trarily small. Here and henceforth the probability Pr[·] is computed with respect to
the random vector z received from the channel.

Lemma 4.2 implies that the event |T | < δq0n/4 is sufficient to ensure convergence
of the decoding algorithm. This is because the number of vertices in error at the next
iteration will have an order of magnitude that can be made as small as (const·|T |/√∆),
which we can make smaller than δq1n/2 by choosing a sufficiently large ∆. Under this
condition the convergence of the algorithm after O(log n) iterations follows by [2,
Prop. 2].

The error probability Pe under the iterative decoding algorithm is upperbounded
by the probability that the convergence conditions do not hold. Let F be the set of
multiple edges (or q-ary symbols) that are “heavy” after the first decoding iteration,
i.e., have binary weight at least (1 + α)2γ0t. We can therefore claim that for any ε,
α > 0,

Pe ≤
∑

s≥D1/2

[P0(ε, α, s) + P1(ε, α, s)],(5.3)

where

P1(ε, α, s) = Pr

[
|S| = s, |F| > εs∆

]
,

P0(ε, α, s) = Pr[As,ε] Pr

[
|T | ≥ δ

q
0

2
n
∣∣ As,ε

]

and where As,ε stands for the event As,ε = {|S| = s, |F| ≤ εs∆}.
The rest of the proof is upperbounding Pe. We first obtain a rough estimate of

P1. Denote σ = s/n. An edge may be “heavy” for two reasons. It may be incident
to the set SF ⊂ S made up of those vertices for which left decoding of the first
iteration outputs a (wrong) codeword of C0 of binary weight at least (1 + α)γ0t∆.
Being incident to SF is a rare event, but given that, a high proportion of its edges
are likely to be heavy. Or it may be incident to S \ SF , but then being heavy is in
itself a rare event. We write

P1 ≤ P2 + P3,

where

P2 = Pr
[
|SF | > εσn

2

∣∣ |S| = σn],
P3 = Pr

[
|F| ≥ εσn∆ ∣∣ |SF | ≤ εσn

2
, |S| = σn

]
.

Lemma 5.3. We have P2 ≤ Pr[|S| = s]2−f2(δ0,α)εσN and P3 ≤ Pr[|S| =
s]2−f3(δ0,α)εσN , where f2(δ0, α) and f3(δ0, α), both positive, stay bounded away from
zero as R→ C.

Proof. We have

P2 ≤ Pr[|S| = s]
(
σn

εσn/2

)
Pr

[∣∣∣∣γ0 − |y|t∆
∣∣∣∣ ≥ αγ0

]εσn/2
.
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By Proposition 3.1 we can write − log Pr[·]εσn/2 ≥ c(αγ0)εσN/2. Compared to this,
the binomial coefficient

(
σn

εσn/2

)
can be made to have a negligible exponent by choosing

t∆ large enough. This gives an exponent f2(δ0, α) ≈ c(αγ0)/2.
Let us now evaluate P3. Take any vertex v of S \SF , and let γ be the proportion

of bits in error of the corresponding output codeword of the code C0. By definition of
SF we have γ ≤ (1 + α)γ0. Consider any multiple edge: the random grouping of the
t∆ coordinate positions of C0 into ∆ multiple edges will give

(
t∆
t

)
possible choices for

the t edges that will form the multiple edge. The probability that the multiple edge
contains more than (1 + α)γt bits in error is therefore

π =
∑

t≥k>(1+α)γt

(
γt∆
k

)(
t∆−γt∆
t−k

)
(
t∆
t

) .(5.4)

The dominating term in this last sum occurs for the smallest k; after rearranging and
neglecting terms nonexponential in t it is fairly routine to obtain that

π ≈ γ(1+α)γt(1− γ)(1−(1+α)γ)t

(
t

(1 + α)γt

)
,

which gives, for small α,

π ≈ e− γ
2(1−γ)

α2t,

so that for fixed α and γ we obtain that π is exponentially small in t in a way that
does not depend on ∆.

Next observe that if we compute the probability π′ that a given multiple edge has
weight larger than (1 + α)γ, given that i other given edges have weight larger than
(1 + α)γ, then we will obtain the formula (5.4) with ∆ replaced by ∆′ = ∆− i and γ
replaced by γ′ < γ. We will therefore have π′ ≤ π. With this in mind we write that

P3 ≤ Pr[|S| = s]
(
σn∆

εσn∆/2

)
πεσn∆/2.

Again, by choosing t large enough, we obtain that
(

σn∆
εσn∆/2

)
has negligible exponent

and obtain the desired upper bound for P3 with

f3(δ0, α) ≈ 1

4 ln 2

γ0
1− γ0α

2

for small α.
We see that the exponents of P2 and P3, however small, stay larger than a constant

times σN as R→ C. It will therefore be apparent that when R→ C, the probabilities
P2 and P3, and hence P1, are negligible compared to P0. Next, we upperbound P0 in
(5.3) by writing

P0 ≤ Pr[|S| = σn] Pr
[
|T | ≥ δ

q
0

2
n
∣∣ |S| = σn, |SF | ≤ εσn

]
.

Assume that P0 = 2−NE(R). Since we are interested only in the exponential behavior
of the sum in (5.3), we simply need to find the term P0 with the smallest exponent.
Therefore, letting

Pr

[
|T | ≥ δ

q
0

2
n
∣∣ As,ε

]
= 2−NET
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and switching to exponents, we obtain

E(R) ≥ min
σ≥δq1/2

(E0(R0, p)σ + ET ).(5.5)

Next we evaluate the exponent ET : this is where the random choice of coordinate
orderings comes in. Because the coordinate orderings of the right subcodes have been
chosen randomly and are independent of the error vector (they might very well have
been chosen after the first decoding step), we can argue that each right subcode is,
independently of the others, submitted to an error vector chosen equiprobably among
a set of error vectors with a given weight pattern. We therefore need to estimate the
typical weight pattern of the error vector on a right vertex after the first decoding
step. By Lemma 4.2, all but a negligible fraction of right vertices have more than
(1 + α)σ∆ edges incident to S (recall that ασ in Lemma 4.2 can be made as small as
we want because λ = O(

√
∆) and ∆ can be taken to be arbitrarily large). This means

that almost every right vertex w has an error vector of weight at most (1 + α)σ∆.
Let us establish a further property of these error vectors.

Let Q′ be the subset of Q defined by the set of those q-ary symbols whose binary
representation is of weight at most (1 + α)2γ0t. We now argue that almost all of the

subvectors y
(1)
w have most of their symbols in the subset Q′.

Indeed, F is exactly the set of symbols that do not belong to Q′ after the first
decoding iteration. By Lemma 5.3 we can assume that |F| ≤ εσn∆ because the
opposite event occurs with an exponent that would be much greater than the others
(and thus negligible probability) when R→ C.

By the Markov inequality, the number of right vertices w that have more than
βσ∆ incident edges that correspond to a symbol in Q \ Q′ is less than εn/β. Now
we can simultaneously choose β and ε such that β, ε, and λ = ε/β are all small.
Summarizing, we obtain that almost all vertices of B (i.e., |B|(1 − η) of them) have
an error vector of weight at most (1+α)σ∆ and such that all but βσ∆ of its nonzero
symbols belong to Q′, where β is again arbitrarily small. We now claim that

ET ≥ (δq0/4− η)E1,(5.6)

where E1 is an error exponent for the right decoder, given that the error vector has the
above pattern. To see this, assume the worst, namely, that all η|B| vertices with their
error vector of the wrong pattern will be wrongly decoded. The claim now consists
of saying that if not more than nδq0/4 right vertices are in error, then the subsequent
decoding steps must converge correctly. This in turn follows from Lemma 4.2, which
implies that the number of left vertices that have more than ∆δq0/2 edges incident to
T (the only ones that can be wrongly decoded at the third iteration) can, by choosing
λ/∆ small enough, be made sufficiently small (smaller than nδq1/4, for example) so
that the number of vertices in error will shrink geometrically at each iteration as in
[17], [2], or section 5.1. The choice of the fraction 1/4 is arbitrary and can be replaced
by any number less than 1/2.

We next evaluate E1.

5.4. Decoding C1. The right decoder assumes that the q-ary error vector has
weight not more than σ′∆ with σ′ = σ(1 + α) and that among its nonzero symbols,
not more than βσ∆ do not belong to the subset Q′ ⊂ Q (q-ary vectors with restricted
binary weight of symbols). If it does not find any codeword that fits this hypothesis
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it returns an arbitrary codeword (say, a random one). We have

|Q| = q = 2t and |Q′| =
∑
k≤γt

(
t

k

)
≈ 2H(γ)t,

where γ = (1 + α)2γ0.
Lemma 5.4. There exists a [∆, R1∆] linear q-ary code C1 such that for sufficiently

large ∆ and t and any β > 0,

E1 ≥ δq1 − σ′H(γ)− 2βσ.

Proof. A nonzero vector falls in a random q-ary linear [∆, R1∆] code C1 with
probability equal to q−∆(q∆R1−1). Hence the average number of codewords of weight
i > 0 in C1 with at most βσ∆ nonzero symbols in Q \Q′ equals

EAi,β ≤ q−∆(1−R1)

(
∆

i

) βσ∆∑
j=0

(
i

j

)
|Q′|i−j(q − 1)j .

When t is large, by (2.1) we have 1 − R1 ≈ δq1, and the exponents of both binomial
coefficients are small. Therefore the above inequality can be rewritten as

EAi,β � q∆(−δq1+H(γ)i+βσ).

We now compute the error probability for the right decoder under the condition that
the input vector is a random vector of the required pattern. It can be bounded above
by the probability that such a vector covers at least half the symbols of a given vector
of weight i > 0 and of the above pattern, which is not more than

q∆(−H(γ)i/2+βσ+ε(∆)),

where ε(∆) > 0 can be made smaller than any given number by an appropriate choice
of ∆. The probability that the random error vector covers half a codeword of weight
i is not more than

Ai,βq
∆(−H(γ)i/2+βσ+ε(∆)).(5.7)

As usual, we can choose a code C1 such that every Ai,β is not more than EAi,β times
a polynomial in n. We obtain therefore that the maximum of (5.7) is obtained when
i is as large as possible, namely, i = 2σ′∆.

Switching to exponents we obtain

E1 ≥ δq1 − σ′H(γ)− 2βσ.

Let us complete the proof of Theorem 5.2. As R→ C, the first term in (5.5) tends
to zero, while the second remains bounded away from zero. Together with (5.6) this
enables us to claim that the lower bound (5.5) is minimized for

σ → δq1
H(γ0)

=
1−R1

H(γ0)
=
R0 −R
H(γ0)

.(5.8)

Substituting this value of σ into (5.5), we obtain the exponent F (R, p) of the theorem.
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6. A further improvement of the exponent. Borrowing from turbo-
codes. In this section we show how to modify slightly the code construction to im-
prove Theorem 5.2 to the following theorem.

Theorem 6.1. For a given rate R, there exists a polynomial-time family of
(replicated, generalized) expander codes of length N , defined up to the orderings of the
coordinates of the constituent codes, such that, given a random set ω of orderings of
the constituent codes,

Pe(C, p, ω) ≤ 2−NF (R,p)(1−ε(R,p)),

where ε(R, p) is a function depending only on R and p such that ε(R, p) < 1 when
R < 1−H(p) and ε(R, p)→ 0 when R→ 1−H(p) and where

F (R, p) = max
R<R0<C

E0(R0, p)
1−R/R0

H(δE(R0))
.

The decoding complexity of these codes is the same as in Theorem 4.3.

The idea is based on the following remark. Every bit of an expander code belongs
to two constituent codes, C0 and C1. Turbo-codes, on the other hand, have the
property that only the information bits belong to two constituent codes, while the
redundancy bits belong to a single one.

To mimic this structure in the expander code context, let us modify the code
construction that we have used in the following way: we keep the same expander
graph G as before but append some extra edges; namely, we add at∆ “dangling”
edges to every one of the left vertices of A. By “dangling” we mean that we introduce
as many vertices (of degree one) as we introduce edges. The right side of the graph is
left untouched; so is the constituent code C1. The left constituent code C0 is modified
only inasmuch as it is now a randomly chosen code of rate R0 and length t∆(1 + a)
(instead of t∆). We now assign coordinate positions to C0 in such a way that all
information bits are assigned edges of the bipartite graph G: in other words, all the
“dangling” edges must correspond to redundancy bits. For this to be possible the
number of additional edges must be such that R0t∆(1 + a) ≤ t∆: to this end we
choose a = R−1

0 (1−R0 − ε) so that R0t∆(1 + a) = t∆(1− ε).
The decoding procedure is hardly modified: the first decoding step is again max-

likelihood decoding of C0. The second decoding step is unchanged. The third decoding
step and subsequent unevenly numbered decoding steps are slightly modified in the
sense that q-ary max-likelihood decoding is again applied, not to the code C0, however,
but to the shortened code CS

0 obtained from C0 by throwing away the redundancy
bits corresponding to the dangling edges. The code CS

0 has q-ary length ∆ and the
same dimension as C0, i.e., rate R0(1 + a) = 1 − ε. Throughout the rest of the
decoding procedure the dangling edges are ignored, and their value is recovered only
at the very end if the algorithm has converged (and has therefore recovered all the
information bits). An examination of the convergence conditions of section 5.3 shows
that everything holds in the modified case, with the exception that δq0 must now be
understood to refer to the q-ary relative minimum distance, not of C0 but of the
shortened code CS

0 . We will be careful to choose ε to be sufficiently big so that we
can again claim that the first term in (5.5) dominates the second term. Nevertheless,
this does not stop us from having ε→ 0 when R→ C.

As a result, the conditions for convergence are essentially unchanged, but now the
overall rate R of the code is higher. Indeed, the new length is now N = nt∆(1 + a),
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0.913 0.916 0.919

4.· 10-8

8.· 10-8

✲R

Fig. 6.1. Error exponents of expander and concatenated codes in the neighborhood of capacity
of a BSC with p = 0.01, C ≈ 0.919. Bottom to top: basic construction of expander codes, Theorem
5.1; the exponent EF of concatenated codes; improved bound of Theorem 6.1.

and the new redundancy is

(1−R)N = n(t∆(1−R1) + t∆(1 + a)(1−R0)),

which gives, after some rearranging, the expression for the new rate

R = R0R1 − ε

1− εR0(1−R1).

Together with (5.5)–(5.8) this implies Theorem 6.1.
We include a sketch of the exponents discussed in the paper in Figure 6.1 for code

rate R in the neighborhood of capacity.

7. Concluding comments. For code rates close to capacity the result of The-
orem 6.1 improves substantially on our earlier result [2]. Interestingly, for R → C

we also have F (R, p) > EF(R); i.e., expander codes have an exponentially smaller
error rate than Forney’s (quadratic–time-decodable) concatenated codes. A common
point that these two families share is the use of two constituent codes; however, in the
expander code construction both codes are binary, while in the concatenated scheme
the q-ary code C1 has a strong algebraic structure.

We note that in the study of minimum distance of codes there is a substantial dif-
ference between explicit families of codes and randomized ensembles. This difference
does not play such a prominent role when we study decoding error exponents. Indeed,
in this context the focus is on decoding performance, and the goal is to estimate the
error probability of some explicit decoding algorithm. It hardly matters whether this
probability is computed for a fixed code and a random error vector or the product of
a random code and a random error vector.

Comparing Theorem 6.1 with the error exponent of multilevel concatenations
(3.2), we notice that Ei(R) > F (R, p) starting from some finite (not too large) value
of i that depends on the channel crossover probability p.

The following research problem suggests itself rather naturally: Is it possible
to improve the error exponents of expander codes by using several constituent codes
similarly to the improvement (3.2) by Blokh and Zyablov of Forney’s exponent EF(R)?

More generally, now that concatenated codes finally have a rival, it should be
very interesting to see whether expander codes (or some enlarged family) ultimately
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have the potential to provide the best constructive exponents. An even more general
question is whether there exist polynomial-time decodable code families with error
exponent E(R) such that the quotient E0(R, p)/E(R) stays bounded as R→ C.

Finally, we observe that the study of exponents provides an interesting theoretical
framework for trying to discern which properties of codes are relevant for iterative
decoding.

Postscriptum of July 8, 2003: During the year-and-a-half that this paper was
under review, the following developments took place.

Several ways have been discovered to attain the performance of concatenated
codes with expander and expander-like codes, including the full bound EF(R) [3] and
the Zyablov bound on the minimum distance [3], [12].

One of the questions in this section was resolved positively: it is possible to
construct and analyze multilevel expander codes [3]. Their error exponents behave in
a way similar to those of concatenated codes in (3.2).

Appendix: Proof of Proposition 3.1. We will study properties of an ensemble
A of binary linear codes defined by (N−K)×N parity-check matrices whose elements
are chosen independently with P (0) = P (1) = 1/2.

Let K = RN. We write f(N) ∼= g(N) if limN→∞ 1
N log f(N)

g(N) = 0.

Let C ∈ A be a linear code and Aw be the number of vectors of weight w in it.
It is easy to see that

EAw =

(
N

w

)
(2K − 1)2−N .

By the Markov inequality there exist codes with

Aw ≤ N
(
N

w

)
2K−N (w = 1, 2, . . . , N).(7.1)

We continue with a technical lemma.

Lemma 7.1. Let Sj = {x ∈ HN
2 : |x| = j}, r ≤ w ≤ N/2,

M(w, r) :=
∑
c∈Sw

∣∣{y ∈ Sr : d(y, c) ≤ r}∣∣.

Then for N →∞, r = ρN, M(w, r) �
(
N
r

)2
, with equality

M(w, r) ∼=
(
N

r

)2

only for w
N ∼ 2ρ(1− ρ).

Proof.

M(w, r) =

(
N

w

) r∑
i=w/2

(
w

i

)(
N − w
r − i

)
.

The unconstrained maximum of the summation term is attained when i = wr/N <
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w/2. Hence we write

M(w, r) ∼=
(
N

w

)(
w

w/2

)(
N − w
r − w/2

)

=

(
N

r

)(
N − r
w/2

)(
r

w/2

)
(rewriting the multinomial coefficient)

�
(
N

r

)(
N − r
r(1− ρ)

)(
r

ρ(N − r)
)
.

Finding the maximum on w in the last step calls for some explanation. For a fixed
vector y of weight r we count the number of weight-w vectors c with d(y, c) = r =
ρN. This number is maximized if c is a typical vector obtained after n independent
drawings from the binomial probability distribution given by P [y + c = 1] = ρ, P [y +
c = 0] = 1−ρ. Hence the maximizing argument is given by w/2 = r(1−ρ). Substituting
it, we obtain

M(r(1− ρ), r) ∼= exp[N(H(ρ) + (1− ρ)H(1− ρ) + ρH(1− ρ))] = exp(2NH(ρ))

∼=
(
N

r

)2

.

Now let us compute the error exponent of maximum likelihood decoding for a
code C of rate R with weight distribution as in (7.1). Suppose that y ∈ HN is a
vector received from the channel BSC(p) and that the transmitted vector is the all-
zero one. Let d = δGV(R)N be the distance of C. Let E be the event of a decoding
error, and let Ew ⊂ E be the event where the decoded codeword is of weight w.

We have

Pr[E ] ≤ Σ1 +Σ2,(7.2)

where

Σ1 =

2d∑
w=d

d∑
r=d/2

Pr
[Ew ∣∣ |y| = r]Pr[|y| = r], Σ2 = Pr[|y| ≥ d].

Now, conditional on the event |y| = r, the probability that y is decoded incorrectly
to a given codeword of weight w equals

Pwr =

(
N

r

)−1 r∑
i=w/2

(
w

i

)(
N − w
r − i

)
,

and writing

Pr
[Ew ∣∣ |y| = r] ≤ AwPwr,

we get, since Aw = 2−N(1−R)
(
N
w

)
and Pr[|y| = r] = (Nr )pr(1− p)N−r,

Σ1 ≤ 2−N(1−R)
2d∑
w=d

d∑
r=d/2

M(w, r)pr(1− p)N−r.
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Let w = ωN, r = ρN . Since we are dealing with exponential terms the sums
can asymptotically be replaced with maximums: by Lemma 7.1 the unconstrained
maximum on w = ωN is attained for ω = 2ρ(1− ρ), and then

Σ1 � 2−N(1−R) max
d/2≤r≤d

(
N

r

)2

pr(1− p)N−r

= max
δGV(R)/2≤ρ≤δGV(R)

exp[−N(D(ρ‖p) + (1−R)−H(ρ))].

The unconstrained maximum on ρ on the right-hand side (the minimum of the ex-
ponent) is attained for ρ = ρ0 (3.1). We are interested in the case of R ≥ Rcrit, i.e.,
ρ0 ≥ δGV(R). Then both the present upper bound on Σ1 and Σ2 behave (in the ∼=
sense) as exp(−ND(δGV(R)‖p)). Moreover, the exponent D(δGV(R)‖p) is attained
for ρ = δGV(R), and hence for ω = δE(R).

To prove that δE(R) is indeed the typical relative weight of incorrectly decoded
codewords it is now enough to argue that Pr[E ] ∼= Σ1, i.e., that the estimate (7.2) and
all subsequent upper bounds are in fact asymptotic equalities. This is the so-called
sphere-packing bound [11, p. 164], which states that for any code with the same rate
R we must have Pr[E ] ≥ Σ2.

So we have proved that

Pr[E ] ∼= Pr[|y| = d] ∼= Pr
[Ew ∣∣ |y| = d]Pr[|y| = d]

for w = δEN and that Pr[Ew
∣∣ |y| = r] Pr[|y| = r] is an exponentially smaller quantity

for all w separated from δEN and for all r. In other words,

Pr
[Ew ∣∣ E] = Pr[Ew]

Pr[E ]
∼= Pr[Ew]

Pr[|y| = d] =
∑

r Pr
[Ew ∣∣ |y| = r]Pr[|y| = r]

Pr[|y| = d]
is maximum (and ∼= 1) for w = δEN and exponentially small for ω �= δE , which is
exactly the statement of Proposition 3.1.
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Abstract. In the 1-rate(f) network, each link can carry up to f messages for some integer f .
The classical model is the special case when f = 1. We show that a network is strictly nonblocking
under the 1-rate(f) model if and only if it is strictly nonblocking under the classical model.
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1. Introduction. A switching network consists of a set of nodes and a set of
(directed) links. Typically, an outlink of a node is the inlink of another node, and vice
versa. There are two special types of nodes: the inputs and the outputs. Each input
(output) is a node which has no inlink (outlink) and exactly one outlink (inlink).

We view a network as a directed graph G = (V,E), where each vertex is a node
and each edge is a link. The inputs and outputs are subsets I,O of V . To emphasize
the special roles of the inputs and outputs, we denote a network as G = (V,E, I,O). A
network is called acyclic if the directed graph G is acyclic; i.e., G contains no directed
cycles.

Let G = (V,E, I,O) and f be a positive integer. The 1-rate(f) network, denoted
by (G, f), is a network G together with the capacity constraint that each edge can
carry up to f messages. If f = 1, then the 1-rate network (G, 1) is the classical model.
In other words, a classical model is a network in which each edge can carry at most
one message. In this paper, we consider only 1-rate networks.

A traffic of (G, f) is a sequence of input-output pairs (i, j), where i ∈ I and
j ∈ O. There are two types of traffics: requests and cancellations. A request is a pair
(i, j) such that neither of i, j has appeared in more than f − 1 previous uncancelled
requests. Namely, the pair requests a connection in the network. A cancellation is a
previous request whose connection in the network is to be removed. A request (i, j) is
routed if a directed i-j-path is chosen, without exceeding the capacity of the edges. So
a request (i, j) can be routed in the network (which has already routed many previous
requests) if and only if there exists a directed i-j-path, each of whose edges has not
been used more than f − 1 times.

A state S of (G, f) is a collection of (not necessarily distinct) directed paths of
G joining vertices of I to vertices of O such that each edge e is contained in at most
f directed paths. Given a state S, let S(e) denote the number of directed paths
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containing e. Then 0 ≤ S(e) ≤ f . A state is blocking if there exist a vertex i ∈ I and
j ∈ O such that both i and j are contained in fewer than f directed paths in S, and
every directed i-j-path of G contains an edge e with S(e) = f . We say that (G, f) is
strictly nonblocking if there is no blocking state.

The classical model is, of course, the dominating model in the study of switching
networks. Recently, the multirate network has received increasing attention due to
the popular attempt to integrate multimedia service into one network. Since the
theory of the classical model is well established, it is profitable to ask how much of it
can be extended to the multirate model. The 1-rate model is the simplest multirate
model but also has its own application. It is used in the digital symmetrical matrices
in time-space switching [7, 10]. The principle of providing more links between two
nodes, known as statistical line grouping in [8], was promoted as a major technique
to cut down network blocking. On the other hand, strict nonblockingness is one of
the most fundamental properties of a switching network. Therefore, asking whether
one model implies the other on this property can serve as a natural start to explore
the relation between the classical model and the multirate model. In this paper we
prove that if G = (V,E, I,O) is an acyclic network, then the strict nonblockingness
of a 1-rate network (G, f) is equivalent to that of the classical model (G, 1).

2. Strictly nonblocking for (G, f) implies the same for (G, 1). We first
prove the implication in one direction.

Theorem 1. If (G, f) is strictly nonblocking for some positive integer f , then
(G, 1) is strictly nonblocking.

Proof. It suffices to prove that if (G, 1) has a blocking state, then (G, f) has a
blocking state. Suppose S is a blocking state of (G, 1). Let S′ be the collection of
directed paths of G which is obtained by duplicating f times each directed path of
S. Then S′ is a state of (G, f) and for each edge e of G, S′(e) = f × S(e). As S is a
blocking state of (G, 1), there is an input i ∈ I and an output j ∈ O such that none
of i, j is contained in any directed path of S, and any directed i-j-path of G contains
an edge e with S(e) = 1. Then both of i and j are contained in no directed paths of
S′, and every directed i-j-path of G contains an edge e with S′(e) = f . Therefore S′

is a blocking state of (G, f).
In the remainder of this paper, we shall prove the other direction; i.e., if for some

integer f ≥ 1, (G, f) has a blocking state, then (G, 1) has a blocking state. Let S be
a blocking state of (G, f). Then there exist i ∈ I and j ∈ O such that both i, j are
contained in at most f − 1 directed path of S, and any directed i-j-path contains an
edge e with S(e) = f . We need to construct a blocking state S′ for (G, 1). One may
attempt to partition the directed paths in S into f classes such that

(i) directed paths which share an edge belong to different classes;
(ii) there exists a class C not containing any directed path with end vertex i or j.
If such a partition exists, then it is easy to verify that the class C is a blocking

state of (G, 1). However, such a partition may not exist. Consider the following
network: Figure 1 shows an example of (G, 2), where G is a simple digraph (a pair
of double links indicates a link carrying two paths). The collection of directed paths
S = {P1, P2, P3, P4} in Figure 1 is a blocking state for (G, 2), where input i and
output j each has generated one path, and hence a new request (i, j) is legitimate.
However, it is impossible to partition the paths into two classes in such a way that
directed paths sharing an edge belong to different classes, because every two directed
paths share an edge. Thus to construct the blocking state S′ for (G, 1), we need to
use directed paths not contained in the collection S.
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Fig. 1. An example.

3. Strictly nonblocking for (G, 1) implies the same for (G, 2). In this
section, we consider the case f = 2.

Theorem 2. Suppose G is acyclic. If (G, 1) is nonblocking, then (G, 2) is non-
blocking.

Proof. Let S be a blocking state for (G, 2). Thus there exist i ∈ I and j ∈ O
such that both i, j are contained in at most one directed path of S, and any directed
i-j-path contains an edge e with S(e) = 2.

We shall construct a blocking state for (G, 1). For each vertex v of G, denote by
E+(v) the outlinks of v and by E−(v) the inlinks of v. Let E(v) = E+(v) ∪ E−(v).
Let

s+(v) =
∑

e∈E+(v)

S(e) =
∑
P∈S
|P ∩ E+(v)|,

s−(v) =
∑

e∈E−(v)

S(e) =
∑
P∈S
|P ∩ E−(v)|,

and

s(v) = s+(v) + s−(v) =
∑
P∈S
|P ∩ E(v)|.

Since each directed path P ∈ S connects a vertex of I to a vertex of O, we conclude
that for each vertex v �∈ I ∪ O, |P ∩ E+(v)| = |P ∩ E−(v)|. Hence s+(v) = s−(v)
and s(v) = 2s+(v). Let E1 = {e ∈ E : S(e) = 1}, and let E2 = {e ∈ E : S(e) = 2}.
Then s(v) = |E1 ∩ E(v)|+ 2|E2 ∩ E(v)|. If v �∈ (I ∪O), then s(v) is even, and hence
|E1 ∩ E(v)| is even. Let G1 = (V,E1) be the subgraph of G induced by the edge set
E1. As each vertex of V − (I ∪O) has even degree in G1, we can decompose G1 into
an edge-disjoint union of (not necessarily directed) cycles and paths, say

E1 = (P1 ∪ P2 ∪ · · · ∪ Pl) ∪ (C1 ∪ C2 ∪ · · · ∪ Cm),

where each path Pk connects two vertices of I ∪O. We color the edges of each Pk and
Cl by two colors, a and b, as described below.

Given an undirected cycle (or a path), there are two choices for the positive
direction of the cycle (or path). If the cycle is drawn on the plane, then either the
clockwise direction or the counterclockwise direction can be chosen as the positive
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direction. For a path with end vertices i′ and j′, one can traverse the path from i′

to j′ or from j′ to i′. Once a positive direction is chosen, then those directed edges
that agree with the positive direction of the cycle (or path) are called forward edges,
and those directed edges that oppose the positive direction are called backward edges.
Arbitrarily choose a positive direction of Cl (or Pk) and color the forward edges of
Cl (or Pk) by color a and backward edges by color b, except that if there exist an
edge incident to i and an edge incident to j, then they should both be colored a.
Observe that if these two edges are contained in a same path, then it is easy to see
that they are in the same direction. Therefore whether the two edges are contained in
a same path or contained in two distinct paths, by appropriately choosing the positive
directions of the paths, they are both forward edges. So the required coloring exists.

Let Ea ⊂ E1 be the edges of color a and Eb ⊂ E1 be the edges of color b. Let
B1 = Ea ∪ E2 and B2 = Eb ∪ E2. Suppose v �∈ (I ∪ O). Let ia(v) (respectively,
oa(v)) be the number of inlinks (respectively, outlinks) of v of color a, and let ib(v)
(respectively, ob(v)) be the number of inlinks (respectively, outlinks) of v of color b.

If Pk (or Cl) contains v, then either Pk (or Cl) contains two inlinks or two outlinks
of v which are colored by distinct colors or it contains one outlink and one inlink of
v which are colored by the same color. Therefore

ia(v) + ob(v) = oa(v) + ib(v).

Let i2(v) = |E2 ∩ E−(v)| and o2(v) = |E2 ∩ E+(v)|. Then
s−(v) = ia(v) + ib(v) + 2i2(v)

and

s+(v) = oa(v) + ob(v) + 2o2(v).

As s+(v) = s−(v), we conclude that ia(v) + i2(v) = oa(v) + o2(v) and ib(v) + i2(v) =
ob(v) + o2(v).

Let H1 be the directed subgraph of G induced by the edge set Ea ∪ E2 and H2

be the directed subgraph of G induced by the edge set Eb ∪E2. Then for each vertex
v �∈ (I ∪ O), the number of inlinks of v in H1 is ia(v) + i2(v), and the number of
outlinks of v in H1 is oa(v) + o2(v). So the number of inlinks of v is equal to the
number of outlinks of v. As G is acyclic, H1 is acyclic. Therefore H1, and similarly
H2, can be decomposed into directed paths joining vertices of I to vertices of O. For
k = 1, 2, denote by Sk the collection of directed paths which form a decomposition
of Hk. For each edge e of G, 0 ≤ Sk(e) ≤ 1 and S(e) = S1(e) + S2(e). Moreover,
both i and j are not contained in any directed paths of S2. Any directed i-j-path of
G contains an edge e with S(e) = 2, and hence S2(e) = 1. Therefore S2 is a blocking
state of (G, 1).

4. Strictly nonblocking for (G, 1) implies the same for (G, f). In this
section, we prove that the strict nonblocking of the classical model implies the strict
nonblocking of the 1-rate(f) model for any f ≥ 1. Our proof needs a result concerning
integer flows of graphs.

Let G be a directed graph. An integer flow of G is a mapping φ : E → Z which
assigns to each edge e ∈ E an integer φ(e) such that for each vertex v of G,∑

e∈E+(v)

φ(e) =
∑

e∈E−(v)

φ(e).



450 W. R. CHEN, F. K. HWANG, AND X. ZHU

An integer flow φ is called a nonnegative k-flow if for each edge e, 0 ≤ φ(e) ≤ k − 1.
Lemma 1 is due to Little, Tutte, and Younger [9].

Lemma 1. For each nonnegative k-flow f of G, there exist k − 1 nonnegative
2-flows φt (t = 1, 2, . . . , k − 1) such that φ =

∑k−1
t=1 φt.

Lemma 2. Suppose G is acyclic. If S is a state of (G, f), then there are f states

S1, S2, . . . , Sf of (G, 1) such that for each edge e of G, S(e) =
∑f
i=1 Si(e).

Proof. Let S be a state of (G, f). Let G′ be the directed graph obtained from G
by identifying all the inputs and outputs, i.e., identifying all the vertices of I ∪O into
a single vertex v∗. We view S as a weight assignment to the edges of G′. It is easy to
see that for each vertex v of G′,∑

e∈E+(v)

S(e) =
∑

e∈E−(v)

S(e),

and for each edge of G′,

0 ≤ S(e) ≤ f.
Therefore S is a nonnegative (f + 1)-flow of G′. By Lemma 1, G′ has f nonnegative

2-flows St (t = 1, 2, . . . , f) such that S =
∑k−1
t=1 St. Each nonnegative 2-flow St

corresponds to a collection of edge disjoint directed cycles of G′. As G is acyclic,
each directed cycle C contains the vertex v∗. In other words, each directed cycle C
corresponds to a directed path of G joining a vertex of I to a vertex of O. Thus each
St is indeed a state of (G, 1).

Theorem 3. If (G, 1) is strictly nonblocking, then (G, f) is strictly nonblocking
for any f ≥ 1.

Proof. Assume (G, f) is not strictly nonblocking and S is a blocking state of
(G, f). Then there exist i ∈ I and j ∈ O such that both i and j are contained in
fewer than f directed paths in S, and every directed i-j-path of G contains an edge e
with S(e) = f . By Lemma 2, there exist f states, S1, S2, . . . , Sf , of (G, 1) such that
for every edge e,

S(e) =

f∑
k=1

Sk(e).

As both i and j are contained in fewer than f directed paths in S, there exists
1 ≤ a, b ≤ f such that i is not contained in any path of Sa, and j is not contained in
any path of Sb. If a = b, then Sa is a blocking state of (S, 1). Assume a �= b. Then
Sa ∪Sb is a blocking state of (G, 2). By Theorem 2, (G, 1) has a blocking state.

Corollary 1. Suppose G = (V,E,O, I) is an acyclic network. Then for any
positive integers f, f ′, (G, f) is strictly nonblocking if and only if (G, f ′) is strictly
nonblocking.

Proof. The strictly nonblocking of (G, f) is equivalent to the strictly nonblocking
of (G, 1) for any integer f . Hence strictly nonblocking of (G, f) is equivalent to strictly
nonblocking of (G, f ′).

5. Some concluding remarks. Some other implications between the classical
model and the multirate model are available from the literature. These involve some
other notions of nonblockingness. A network is wide-sense nonblocking if every request
can be routed, provided all routing follows a given algorithm. A network is rearrange-
ably nonblocking if all requests can be routed if they are given at once (instead of the
usual “sequential” model).
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Let C(n1, r1,m, n2, r2) denote the 3-stage Clos network whose nodes are parti-
tioned into three stages (parts):

The first stage consists of r1 nodes each with n1 inlinks and m outlinks; the
second stage consists of m nodes each with r1 inlinks and r2 outlinks; and the third
stage consists of r2 nodes each with m inlinks and n2 outlinks such that there exists
a link from each stage-i node to each stage-(i + 1) node but no other links between
two nodes.

Clos [4] proved the following lemma.
Lemma 3. C(n1, r1,m, n2, r2) is strictly nonblocking under the classical model if

and only if

m ≥ min{n1 + n2 − 1, n1r1, n2r2}.
Hwang and Yeh, as reported in [6], proved a similar result under a model slightly

more general than the 1-rate(f) model; suppose each input has capacity f0, each
output has capacity f

′
0, each link between stage 1 and stage 2 has capacity f1, and

each link between stage 2 and stage 3 has capacity f2.
Lemma 4. C(n1, r1,m, n2, r2; f0, f

′
0, f1, f2) is strictly nonblocking if and only if

m ≥
⌊
min{n1f1, n2r2f2} − 1

f0

⌋
+

⌊
min{n1r1f1, n2r2} − 1

f0

⌋
+ 1.

By setting f0 = f
′
0 = f1 = f2 = f , we obtain the following corollary.

Corollary 2. C(n1, r1,m, n2, r2) is strictly nonblocking under the 1-rate(f)
model if and only if

m ≥ min{n1 + n2 − 1, n1r1, n2r2}.
Note that the conditions in Lemmas 3 and Corollary 2 are the same. Hence we

obtain the following theorem.
Theorem 4. For C(n1, r1,m, n2, r2), strictly nonblocking under the classical

model implies the same for the 1-rate(f) model, and vice versa.
Benes [1] proved the following lemma.
Lemma 5. C(n, 2,m, n, 2) is wide-sense nonblocking under the classical model if

and only if m ≥ � 3n2 �.
On the other hand, Fishburn et al. [5] proved the following lemma.
Lemma 6. C(n, 2,m, n, 2) is wide-sense nonblocking under the 1-rate(f) model

if and only if m ≥ � 3n2 �.
By comparing Lemmas 5 and 6, we obtain the following theorem.
Theorem 5. For C(n, 2,m, n, 2), wide-sense nonblocking under the classical

model does not imply the same for the 1-rate model.
Finally, Chung and Ross [3] proved the following lemma.
Lemma 7. Rearrangeably nonblocking under the classical model implies the same

for the 1-rate(f) model.
For the other direction, only special cases have been proved. Slepian (see [1])

proved the following result (he ignored the terms n1r1 and n2r2, which reflect the
boundary effects).

Lemma 8. C(n1, r1,m, n2, r2) is rearrangeably nonblocking under the classical
model if and only if m ≥ max{min{n1, n2r2},min{n1r1, n2}}.

On the other hand, Hwang and Yeh, as reported in [6], proved the following
lemma.
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Lemma 9. C(n1, r1,m, n2, r2; f0, f
′
0, f1, f2) is rearrangeably nonblocking if and

only if

m ≥ max

{
min{n1f1, n2r2f2}

f0
,
min{n1r1f1, n2f2}

f
′
0

}
.

By setting f0 = f
′
0 = f1 = f2, we obtain the following corollary.

Corollary 3. C(n1, r1,m, n2, r2) is rearrangeably nonblocking under the 1-
rate(f) model if and only if m ≥ max{min{n1, n2r2},min{n1r1, n2}}.

By comparing Lemma 8 and Corollary 3, we obtain the following theorem.
Theorem 6. For the 3-stage Clos network, rearrangeably nonblocking under the

1-rate(f) model implies the same for the classical model.
Note that all these results deal with the very special 3-stage Clos networks. Chung

and Ross, and the authors, are the only exceptions to attack the much harder general
networks.

To summarize, we have

classical 1-rate(f) remark
strict =⇒ proved

⇐= proved
wide-sense =⇒ not true

⇐= possible
rearrangeable =⇒ proved

⇐= possible
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Abstract. We study interval-valued constraint satisfaction problems (CSPs), in which the
aim is to find an assignment of intervals to a given set of variables subject to constraints on the
relative positions of intervals. Many well-known problems such as Interval Graph Recognition
and Interval Satisfiability can be considered as examples of such CSPs. One interesting question
concerning such problems is to determine exactly how the complexity of an interval-valued CSP
depends on the set of constraints allowed in instances. For the framework known as Allen’s interval
algebra this question was completely answered earlier by the authors, by giving a complete description
of the tractable cases and showing that all remaining cases are NP-complete.

Here we extend the qualitative framework of Allen’s algebra with additional constraints on the
lengths of intervals. We allow these length constraints to be expressed as Horn disjunctive linear
relations, a well-known tractable and sufficiently expressive form of constraints. The class of problems
we consider contains, in particular, problems that are very closely related to the previously studied
Unit Interval Graph Sandwich problem. We completely characterize sets of qualitative relations
for which the CSP augmented with arbitrary length constraints of the above form is tractable. We
also show that, again, all the remaining cases are NP-complete.
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1. Introduction and summary of results. A wide range of combinatorial
search problems encountered in computer science and artificial intelligence can be
naturally expressed as “constraint satisfaction problems” [29], in which the aim is to
find an assignment of values to a given set of variables subject to specified constraints.
For example, the standard propositional Satisfiability problem [11] may be viewed
as a constraint satisfaction problem (CSP) where the variables must be assigned
Boolean values, and the constraints are specified by clauses. Further examples include
Graph Colorability, Clique, and Bandwidth problems, scheduling problems,
and many others (see [2, 19]).

Constraints are usually specified by means of relations. Hence the general CSP
can be parameterized according to the relations allowed in an instance. For any set of
relations F , the class of CSP instances where the constraint relations are all members
of F is denoted CSP (F). The most well-known examples of such parameterized
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Sweden (Peter.Jonsson@ida.liu.se). The work of this author was partially supported by the Swedish
Research Council for Engineering Sciences (TFR) under grant 2000-361.

453



454 ANDREI KROKHIN, PETER JEAVONS, AND PETER JONSSON

problems are Generalized Satisfiability [34], where the parameter is the set of
allowed logical relations, and Graph H-coloring [17], where the parameter is the
single graph H.

In studying CSPs over infinite sets of values, arguably the most important type of
problem is when the constraints are specified by binary relations and the set of possible
values for the variables is the set of intervals on the real line. Such problems arise,
for example, in many forms of temporal reasoning [1, 16, 25, 30], where an event is
identified with the interval during which it occurs. They also arise in computational
biology, where various problems connected with physical mapping of DNA lead to
interval-valued constraints [4, 12, 13, 21]. Interval-valued CSPs can be naturally
augmented with constraints on the lengths of the intervals, and the complexity of
such extended problems will be our main interest in this paper.

Before we describe our new results, we first discuss four closely related families
of problems involving intervals which have previously been studied.

The prototypical problem from the first family is the Interval Graph Recog-
nition problem [18]. An interval graph is an undirected graph such that there is
an assignment of intervals to the nodes with two nodes adjacent if and only if the
two corresponding intervals intersect. Given an arbitrary graph G, the question of
deciding whether G is an interval graph is rarely viewed as a CSP, but in fact it is
easily formulated as such a problem in the following way: every pair of adjacent nodes
is constrained by the relation r =“intersect” over pairs of intervals, and every pair
of nonadjacent nodes is constrained by the complementary relation r̄ =“disjoint.”
This fundamental Interval Graph Recognition problem is tractable, and it also
remains tractable if we impose additional constraints on the lengths of the intervals
which require all intervals to be of the same length (the Unit Interval Graph
Recognition problem [5]). In contrast, it was shown in [32] that if we allow bound-
aries to be specified for the lengths of intervals, or even exact lengths (which are
not necessarily all equal), then the corresponding problems (called Bounded In-
terval Graph Recognition and Measured Interval Graph Recognition,
respectively) are NP-complete.

A number of other problems are closely related to the Interval Graph Recog-
nition problem, including the Circle Graph Recognition problem and the Con-
tainment Graph Recognition problem [10, 15]. These problems can also be for-
mulated as CSPs in a similar way by simply using a different constraint relation.

A typical problem from the second family is the Interval Graph Sandwich
problem [13, 16]. Given two graphs G1 = (V,E1) and G2 = (V,E2) such that E1 ⊆ E2,
the question is whether there is an interval graph G = (V,E) with E1 ⊆ E ⊆ E2.
Clearly, this is a generalization of the corresponding recognition problem (the case
when E1 = E2). The Interval Graph Sandwich problem can be represented as
a CSP as follows: to any e ∈ E1 assign the constraint r =“intersect,” to any e �∈ E2

assign the constraint r̄ =“disjoint,” and leave all pairs of variables corresponding to
edges from E2 \E1 unrelated. This problem was shown to be NP-complete along with
the Unit Interval Graph Sandwich problem, where all intervals are required to
be of the same length [13].

Graph Sandwich problems for a variety of other graph properties have also
been considered [14]. For example, the Circle Graph Sandwich problem is ob-
tained from the Interval Graph Sandwich problem by changing “interval graph
G” to “circle graph G.” This problem was shown to be NP-complete in [14]; it
can be formulated as a CSP in the same way as above using the constraint relation
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r =“overlap.”

The third family of problems we mention is the so-called Interval Satisfiabil-
ity problems [16, 33, 35]. In these problems every pair of interval variables is again
constrained in some way, but the constraints this time are chosen from a given set F
of relations. In [16, 33, 35] only a small number of possibilities for F are considered.
It is shown there that for some choices of F the resulting problem is tractable, while
for others it is NP-complete. The complexity of Interval Satisfiability with all
intervals of the same length is also studied in [33].

The fourth type of problem we mention is the satisfiability problem for Allen’s
interval algebra [1], denoted A-sat. Allen’s algebra contains 13 basic relations (corre-
sponding to the 13 ways two given intervals can be related from a “qualitative” point
of view). The set A contains not just these basic relations but all 213 = 8192 possible
unions of them. The problems A-sat(F) are similar to problems of the third type
above, except that not every pair of pair of variables has to be constrained. They can
also be represented as Interval Satisfiability with F being an arbitrary subset of
A containing the total relation. The complexity of problems of the form A-sat(F) has
been intensively studied in the artificial intelligence community (see, e.g., [7, 8, 30]),
and a complete classification of the complexity of such problems was obtained in [25].
In that paper it is shown that there are exactly 18 maximal tractable fragments of A,
and for any subset F not entirely contained in one of those the problem A-sat(F) is
NP-complete.

Many variants of A-sat(F) where additional constraints are allowed have been
considered in the literature; cf. [3, 22, 28]. For instance, certain scheduling problems
can conveniently be expressed as A-sat(F) with additional constraints on the lengths
of the intervals. Moreover, in [2] it was suggested that many important forms of
constraints on lengths can be expressed in the form of Horn disjunctive linear relations.
This class of relations is known to be tractable [20] and at the same time allows us
to express all elementary constraints, such as fixing the length, bounding the length
of an interval by a given number, or comparing the lengths of two intervals. It
was proved in [2] that only three out of the 18 maximal tractable fragments for A-
sat(F) preserve tractability when extended with Horn disjunctive linear constraints
on lengths; the other 15 become NP-complete. In this paper we study how we need
to further restrict those 15 fragments to obtain tractable cases. The main result is
a complete classification of complexity for A-sat(F) with additional constraints on
lengths. We show that such problems are either tractable or strongly NP-complete.
Moreover, we give a complete description of the tractable cases, which allows one to
easily determine whether a given set F falls into one of the tractable cases.

As well as giving a complete classification, our result also establishes a new di-
chotomy theorem for complexity. Dichotomy theorems are results concerning a class
of related problems (with some parameter) which assert that, for some values of the
parameter, the problems in the class are tractable while for all other values they are
NP-complete. Such theorems are of interest because it is well known [26] that if
P�=NP, then, within NP, there are infinitely many pairwise inequivalent problems of
intermediate complexity. Dichotomy results rule out such a possibility within certain
classes of problems.

Dichotomy theorems have previously been established for theGeneralized Sat-
isfiability [34] and Graph H-coloring [17] problems mentioned above as well as
the Directed Subgraph Homeomorphism problem [9].

CSPs have been a fruitful source of dichotomy results (see, e.g., [6, 23]). For
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Table 1
The 13 basic relations of Allen’s interval algebra. (The endpoint relations x− < x+ and

y− < y+ that are valid for all relations have been omitted.)

Basic relation Example Endpoints

x precedes y p xxx x+ < y−
y preceded by x p−1 yyy
x meets y m xxxx x+ = y−
y met by x m−1 yyyy
x overlaps y o xxxx x− < y− < x+,
y overlapped by x o−1 yyyy x+ < y+

x during y d xxx x− > y−,
y includes x d−1 yyyyyyy x+ < y+

x starts y s xxx x− = y−,
y started by x s−1 yyyyyyy x+ < y+

x finishes y f xxx x+ = y+,
y finished by x f−1 yyyyyyy x− > y−
x equals y ≡ xxxx x− = y−,

yyyy x+ = y+

CSPs, the relevant parameter is usually the set of relations, F , specifying the allowed
constraints. This parameter usually runs over an infinite set of values. In the case of
Allen’s algebra, even though the number of different values for F is finite, it is astro-
nomical (28192 ≈ 102466), which excludes the possibility of computer-aided exhaustive
case analysis.

The usual tool for proving dichotomy theorems is reducibility via expressibility.
This is done by showing that one set of relations expresses another so that one problem
can be reduced to the other. This is the method used in [6, 25, 34], and a similar
method is used here. After identifying certain tractable fragments, we find some NP-
complete fragments and then show how any subset not entirely contained in one of
the tractable sets can express some already known NP-complete fragment.

2. Preliminaries and background. Allen’s interval algebra [1], denoted A, is
a formalism for expressing qualitative binary relations between intervals on the real
line. By “qualitative” we mean “invariant under all continuous injective monotone
transformations of the real line.” An interval x is represented as a pair [x−, x+] of
real numbers with x− < x+, denoting the left and right endpoints of the interval,
respectively. The qualitative relations between intervals are the 213 = 8192 possible
unions of the 13 basic interval relations, which are shown in Table 1. It is easy to
see that the basic relations are jointly exhaustive and pairwise disjoint in the sense
that any two given intervals are related by exactly one basic relation. For the sake
of brevity, relations between intervals will be written as collections of basic relations,
omitting the sign of union. So, for instance, we write (pmf−1) instead of p ∪ m ∪ f−1.

The problem of satisfiability (A-sat) in Allen’s algebra is defined as follows.
Definition 2.1. Let F ⊆ A be a set of interval relations. An instance I of

A-sat(F) over a set, V , of variables is a set of constraints of the form xry, where
x, y ∈ V and r ∈ F . The question is whether I is satisfiable, i.e., whether there exists
a function, f , from V to the set of all intervals such that f(x) r f(y) holds for every
constraint xry in I. Any such function f is called a model of I.

Example 2.1. The instance {x(m)y, y(m)z, x(m)z} is not satisfiable because the
first two constraints imply that interval x must precede interval z, which contradicts
the third constraint.

Example 2.2. The instance I = {x(mo)y, y(df−1)z, z(≡ pmod−1ss−1f−1)x} is
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Table 2
Composition table for the basic relations in Allen’s algebra.

◦ ≡ p p−1 m m−1 o o−1 d d−1 s s−1 f f−1

≡ ≡ p p−1 m m−1 o o−1 d d−1 s s−1 f f−1

p p p � p ρ p ρ ρ p p p ρ p

p−1 p−1 � p−1 λ−1 p−1 λ−1 p−1 λ−1 p−1 λ−1 p−1 p−1 p−1

m m p ρ−1 p θ p β β p m m β p

m−1 m−1 λ p−1 σ p−1 γ−1 p−1 γ−1 p−1 γ−1 p−1 m−1 m−1

o o p ρ−1 p β−1 α ν β λ o γ β α

o−1 o−1 λ p−1 γ p−1 ν α−1 γ−1 ρ−1 γ−1 α−1 o−1 β−1

d d p p−1 p p−1 ρ λ−1 d � d λ−1 d ρ

d−1 d−1 λ ρ−1 γ β−1 γ β−1 ν d−1 γ d−1 β−1 d−1

s s p p−1 p m−1 α γ−1 d λ s σ d α

s−1 s−1 λ p−1 γ m−1 γ o−1 γ−1 d−1 σ s−1 o−1 d−1

f f p p−1 m p−1 β α−1 d ρ−1 d α−1 f θ

f−1 f−1 p ρ−1 m β−1 o β−1 β d−1 o d−1 θ f−1

α = (pmo) β = (ods) γ = (od−1f−1) σ = (≡ ss−1) θ = (≡ ff−1)
ρ = (pmods) λ = (pmod−1f−1) ν = (≡ oo−1dd−1ss−1ff−1)

� = (≡ pp−1mm−1oo−1dd−1ss−1ff−1)

satisfiable. The function f given by f(x) = [0, 2], f(y) = [1, 3], and f(z) = [0, 4] is a
model of I.

An instance of A-sat(F) can also be represented, in an obvious way, as a labelled
digraph, where the nodes are the variables from V , and the labelled arcs correspond
to the constraints. This way of representing instances is sometimes more transparent.

Allen’s interval algebra A consists of the 8192 possible relations between intervals
together with three standard operations on binary relations: converse ·−1, intersection
∩, and composition ◦. It is easy to see that the converse of r = (b1 · · · bn) is equal to
(b−1

1 · · · b−1
n ). Using the definition of composition, it can be shown that

(b1 · · · bn) ◦ (b′1 · · · b′m) =
⋃

{bi ◦ b′j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Hence the composition of two relations r1, r2 ∈ A is determined by the compositions
of the basic relations they contain. The compositions of all possible pairs of basic
relations are given in Table 2.

Subsets of A that are closed under the operations of converse, intersection, and
composition are said to be subalgebras. For a given subset F of A, the smallest
subalgebra containing F is called the subalgebra generated by F and is denoted by
〈F〉. It is easy to see that 〈F〉 is obtained from F by adding all relations that can be
obtained from the relations in F by using the three operations of the algebra A.

It is known [30] and easy to prove that, for every F ⊆ A, the problem A-sat(〈F〉)
is polynomially equivalent to A-sat(F). Therefore, to classify the complexity of A-
sat(F) it is sufficient to consider subalgebras of A. Throughout the paper, S denotes
a subalgebra of A.

In the following we shall use the symbol ±, which should be interpreted as follows.
A condition involving ± means the conjunction of two conditions: one corresponding
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Table 3
The 18 maximal tractable subalgebras of Allen’s algebra.

Sp = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (p)±1 ⊆ r}
Sd = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (d−1)±1 ⊆ r}
So = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (o)±1 ⊆ r}
A1 = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (s−1)±1 ⊆ r}
A2 = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (s)±1 ⊆ r}
A3 = {r | r ∩ (pmodf)±1 �= ∅ ⇒ (s)±1 ⊆ r}
A4 = {r | r ∩ (pmodf−1)±1 �= ∅ ⇒ (s)±1 ⊆ r}

Ep = {r | r ∩ (pmods)±1 �= ∅ ⇒ (p)±1 ⊆ r}
Ed = {r | r ∩ (pmods)±1 �= ∅ ⇒ (d)±1 ⊆ r}
Eo = {r | r ∩ (pmods)±1 �= ∅ ⇒ (o)±1 ⊆ r}
B1 = {r | r ∩ (pmods)±1 �= ∅ ⇒ (f−1)±1 ⊆ r}
B2 = {r | r ∩ (pmods)±1 �= ∅ ⇒ (f)±1 ⊆ r}
B3 = {r | r ∩ (pmod−1s−1)±1 �= ∅ ⇒ (f−1)±1 ⊆ r}
B4 = {r | r ∩ (pmod−1s)±1 �= ∅ ⇒ (f−1)±1 ⊆ r}

E∗ =

{
r

∣∣∣∣ 1) r ∩ (pmods)±1 �= ∅ ⇒ (s)±1 ⊆ r, and

2) r ∩ (ff−1) �= ∅ ⇒ (≡) ⊆ r

}

S∗ =

{
r

∣∣∣∣ 1) r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (f−1)±1 ⊆ r, and

2) r ∩ (ss−1) �= ∅ ⇒ (≡) ⊆ r

}

H =


r

∣∣∣∣∣∣
1) r ∩ (os)±1 �= ∅ & r ∩ (o−1f)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (ds)±1 �= ∅ & r ∩ (d−1f−1)±1 �= ∅ ⇒ (o)±1 ⊆ r, and

3) r ∩ (pm)±1 �= ∅ & r �⊆ (pm)±1 ⇒ (o)±1 ⊆ r




A≡ = {r | r �= ∅ ⇒ (≡) ⊆ r}

to + and one corresponding to −. For example, the condition

r ∩ (dsf)±1 �= ∅ ⇒ (d)±1 ⊆ r

means that both of the following conditions hold:

r ∩ (dsf) �= ∅ ⇒ (d) ⊆ r,

r ∩ (d−1s−1f−1) �= ∅ ⇒ (d−1) ⊆ r.

The main advantage of using the ± symbol is conciseness: in any subalgebra of A,
the “+” and the “−” conditions are satisfied (or not satisfied) simultaneously, and
therefore only one of them needs to be verified.

A complete classification of the complexity of problems of the form A-sat(F) was
obtained in [25].

Theorem 2.2 (see [25]). For any subset F of A, either A-sat(F) is NP-complete
or F is included in S, where S is one of the 18 subalgebras listed in Table 3, for which
A-sat(S) is tractable.

In this paper we present a complete complexity classification for a more general
problem, namely, for A-sat(F) extended with constraints on the lengths of intervals.
Now we define the exact form of constraints on lengths we shall allow.
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Definition 2.3. Let V be a set of real-valued variables and α, β linear polyno-
mials over V with rational coefficients. A linear relation over V is an expression of
the form αRβ, where R ∈ {<,≤,=, �=,≥, >}.

A disjunctive linear relation (DLR) over V is a disjunction of a nonempty finite
set of linear relations. A DLR is said to be Horn if and only if at most one of its
disjuncts is not of the form α �= β.

Example 2.3. The expression

x + 2y ≤ 3z + 42.3

is a linear relation,

(x + 2y ≤ 3z + 42.3) ∨ (x + z < 4y − 8) ∨
(
x >

3

12

)

is a disjunctive linear relation, and

(x + 2y ≤ 3z + 42.3) ∨ (x + z �= 4y − 8) ∨
(
x �= 3

12

)

is a Horn disjunctive linear relation.
Definition 2.4. The problem of satisfiability for finite sets, D, of DLRs, denoted

DLRsat, is that of checking whether there exists an assignment f from variables in
V to real numbers such that all DLRs in D are satisfied. Such an f is said to be
a model of D. The satisfiability problem for finite sets of Horn DLRs is denoted
hornDLRsat.

Theorem 2.5 (see [20, 24]). The problem DLRsat is NP-complete, but the
problem hornDLRsat is solvable in polynomial time.

We are interested in how the complexity of a problem depends on the value of
the parameter F which, in our case, is a set of qualitative relations. Therefore we
shall allow only those constraints on lengths which can be expressed by Horn DLRs
and thus are tractable. This class of constraints subsumes all forms of constraints on
lengths which have been considered in [32, 33].

We can now define the general interval satisfiability problem with constraints on
lengths.

Definition 2.6. An instance of the problem of interval satisfiability with con-
straints on lengths for a set F ⊆ A, denoted Al-sat(F), is a pair Q = (I,D), where

(i) I is an instance of A-sat(F) over a set V of variables and
(ii) D is an instance of hornDLRsat over the set of variables {l(v) | v ∈ V }.
The question is whether Q is satisfiable, i.e., whether there exists a model f of

I such that the DLRs in D are satisfied with l(v) equal to the length of f(v) for all
v ∈ V .

Example 2.4. Consider the instance Q = (I,D), where I = {x(mo)y, y(df−1)z,
z(≡ pmod−1ss−1f−1)x}, as in Example 2.2, and D = {l(x) > l(y) + l(z)}. This
instance is not satisfiable: any set of intervals satisfying the constraints in I must
have z− ≤ x− < x+ < y+ and y ∩ z nonempty and thus cannot satisfy the length
constraint in D.

Proposition 2.7. Al-sat(F) ∈ NP for every F ⊆ A.
Proof. Every instance of Al-sat(F) over a set of variables V can be translated in

a straightforward way into an instance of DLRsat over the set of variables {v−, v+ |
v ∈ V }. Now the result follows from Theorem 2.5.
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Example 2.5. The instance Q = (I,D) defined in Example 2.4 corresponds to
the instance D′ of DLRsat containing the following constraints:

(x− < x+),

(y− < y+),

(z− < z+),

(x+ = y−) ∨ (x− < y−),

(x+ = y−) ∨ (y− < x+),

(x+ = y−) ∨ (x+ < y+),


 corresponding to x(mo)y

(y− > z−) ∨ (y+ = z+),

(y− > z−) ∨ (y− < z−),

(y+ ≤ z+),

(y+ < z+) ∨ (y− < z−),




corresponding to y(df−1)z

z− ≤ x−,
}

corresponding to z(≡ pmod−1ss−1f−1)x

(x+ − x−) > (y+ − y−) + (z+ − z−).

The complexity of Al-sat(S) has already been determined for each subalgebra S
identified in Theorem 2.2.

Proposition 2.8 (see [2]). The problem Al-sat(S) is tractable for S ∈ {Sp, Ep,H}
and is NP-complete for the other 15 subalgebras listed in Table 3.

In the next section, we determine the complexity of Al-sat(F) for every possible
subset F ⊆ A.

3. Main result.
Theorem 3.1. For any subset F of A, either Al-sat(F) is strongly NP-complete

or F is included in S, where S is one of the 10 subalgebras listed in Table 4, for which
Al-sat(S) is tractable.

In section 3.1, we discuss polynomial-time algorithms for the 10 subalgebras listed
in Table 4, and in section 3.2 we give the NP-completeness results we need. (Strong
NP-completeness of the NP-complete cases follows from the fact that the biggest
number used in these NP-completeness proofs is 5.) Finally, in section 3.3, we give
the classification proof.

The following notation is used throughout the proofs: if f is a model of an instance
over a set V of variables and v ∈ V , then we denote the left and right endpoints of
f(v) by f(v−) and f(v+), respectively.

We shall say that a relation is nontrivial if it is not equal to the empty relation
or the relation (≡). Given a relation r ∈ A, we write r∗ to denote the relation
r ∩ r−1. Evidently, every subalgebra of A is closed under the operation ·∗ (of taking
the symmetric part of a relation).

Now we introduce the notion of derivation with lengths which will be used fre-
quently in the proofs below. This notion is an extension of the notion of derivation
in Allen’s algebra used in [25].

Suppose F ⊆ A and Q = (I,D) is an instance of Al-sat(F). Let variables
x, y be involved in I. Suppose a relation r ∈ A satisfies the following condition: Q
is satisfiable if and only if xry. Then we say that r is derived (with lengths) from
F . It can easily be checked that the problems Al-sat(F) and Al-sat(F ∪ {r}) are
polynomially equivalent because, in any instance of the second problem, any constraint
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Table 4
The 10 tractable cases of Al-sat.

Sp = {r | r ∩ (pmod−1f−1)±1 �= ∅ ⇒ (p)±1 ⊆ r}

Ep = {r | r ∩ (pmods)±1 �= ∅ ⇒ (p)±1 ⊆ r}

H =


r

∣∣∣∣∣∣
1) r ∩ (os)±1 �= ∅ & r ∩ (o−1f)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (ds)±1 �= ∅ & r ∩ (d−1f−1)±1 �= ∅ ⇒ (o)±1 ⊆ r, and

3) r ∩ (pm)±1 �= ∅ & r �⊆ (pm)±1 ⇒ (o)±1 ⊆ r




Co = {r | r �= ∅ ⇒ (oo−1) ⊆ r}

Cm =

{
r

∣∣∣∣ 1) r �= ∅ ⇒ (mm−1ss−1ff−1) ⊆ r, and

2) r ∩ (pp−1oo−1) �= ∅ ⇒ (≡) ⊆ r

}

Ds =

{
r

∣∣∣∣ 1) r ∩ (dsf)±1 �= ∅ ⇒ (s)±1 ⊆ r, and

2) r ∩ (pp−1mm−1oo−1) �= ∅ ⇒ (≡ ss−1) ⊆ r

}

Df =

{
r

∣∣∣∣ 1) r ∩ (dsf)±1 �= ∅ ⇒ (f)±1 ⊆ r, and

2) r ∩ (pp−1mm−1oo−1) �= ∅ ⇒ (≡ ff−1) ⊆ r

}

Dd =

{
r

∣∣∣∣ 1) r ∩ (dsf)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (pp−1mm−1oo−1) �= ∅ ⇒ (≡ dd−1) ⊆ r

}

D′
d

=

{
r

∣∣∣∣ 1) r ∩ (dsf)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (pmo)±1 �= ∅ ⇒ (odd−1)±1 ⊆ r

}

D′′
d

=


r

∣∣∣∣∣∣
1) r ∩ (dsf)±1 �= ∅ ⇒ (d)±1 ⊆ r, and

2) r ∩ (pp−1oo−1) �= ∅ ⇒ (oo−1dd−1) ⊆ r, and

3) r ∩ (pp−1mm−1) �= ∅ ⇒ (≡ dd−1) ⊆ r




involving r can be replaced by the set of constraints in Q (introducing fresh variables
as needed), and this can be done in polynomial time. It follows that it is sufficient to
classify the complexity of problems Al-sat(S), where S is a subalgebra of A closed
under derivations with lengths.

Note that if we prove that the 10 sets shown in Table 4 are the only maximal sets
F for which Al-sat(F) is tractable, then it will follow that they are all subalgebras
closed under derivation with lengths; that is, we do not have to give a separate proof
of this fact.

We will also use the following principle of duality to reduce the number of cases
to be considered in the forthcoming proofs. We make use of a function reverse which
is defined on the basic relations of A by the following table:

b ≡ p p−1 m m−1 o o−1 d d−1 s s−1 f f−1

reverse(b) ≡ p−1 p m−1 m o−1 o d d−1 f f−1 s s−1

It is also defined for all other elements of A by setting reverse(r) =
⋃
b⊆r reverse(b).

Let Q = (I,D) be any instance of Al-sat with set of variables V , and let Q′ =
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(I ′, D) be the instance obtained from Q by replacing every r in I with reverse(r). It
is easy to check that Q has a model f if and only if Q′ has a model f ′ given by

f ′(v) = [−f(v+),−f(v−)] for all v ∈ V.

In other words, f ′ is obtained from f by redirecting the real line and leaving all
intervals (as geometric objects) in their places. This observation leads to the following
lemma.

Lemma 3.2. Let F = {r1, . . . , rn} ⊆ A and F ′ = {r′1, . . . , r′n} ⊆ A be such that,
for all 1 ≤ k ≤ n, r′k = reverse(rk). Then Al-sat(F) is tractable (NP-complete) if
and only if Al-sat(F ′) is tractable (NP-complete).

3.1. Tractability results.
Proposition 3.3. The problem Al-sat(S) is tractable whenever S is one of Sp,

Ep, H, Co, Cm, Ds, Df, Dd, D′
d, or D′′

d.

Polynomial-time algorithms solving Al-sat(S) for S ∈ {Sp, Ep,H} are given
in [2]. The remaining cases are dealt with below.

Lemma 3.4. Let Q = (I,D) be an instance of Al-sat(Co). Then Q is satisfiable
if and only if D is satisfiable.

Proof. Let V = {x1, . . . , xn}. If D is not satisfiable, then, obviously, the whole
instance Q is not satisfiable. Suppose D is satisfiable, and l(x1) = a1, . . . , l(xn) = an
is a solution of D. Then reorder variables in V so that a1 ≤ · · · ≤ an. Let ε = a1/n,
and let, for 1 ≤ i ≤ n, f(xi) = [ε · i, ε · i + ai]. It is easy to check that this f satisfies
all constraints in Q.

It follows that the problem Al-sat(Co) has exactly the same complexity as the
problem hornDLRsat, and hence is tractable (see Theorem 2.5).

Algorithms for the remaining 6 subalgebras are given in Figure 1, and in the
remainder of this subsection we prove that these algorithms are correct. (Checking
that they are polynomial-time is straightforward and is left to the reader.)

Algorithms Ai, 1 ≤ i ≤ 4, and Procedure P take an instance Q = (I,D) over a
set of variables V as input. We shall assume that D always contains all constraints
of the form l(v) > 0, v ∈ V . We will also assume that I does not contain a constraint
vrw, where r = ∅. This trivial necessary condition for satisfiability can obviously be
checked in polynomial time.

The following lemma from [7] is crucial in our proofs of correctness.
Lemma 3.5 (see [7]). Let D be a satisfiable set of Horn DLRs, and let x1, . . . , xn

be the variables used in D. If D̃ = {xi �= xj | D∪{xi �= xj} is satisfiable}, then D∪D̃
is satisfiable.

Using this lemma we can always divide the set of variables V into classes such
that, in every model of an instance, variables from the same class must be assigned
intervals of the same length while any variables from different classes can be assigned
intervals of different lengths all at the same time.

Lemma 3.6. Algorithm A1 correctly solves Al-sat(Cm).
Proof. Obviously, if A1 rejects in line 1, then Q is not satisfiable.
Suppose A1 rejects in line 3. Then G contains a simple cycle of odd length,

x1, . . . , x2t+1, x1. Then, in any model f of Q, all of the intervals f(x1), . . . , f(x2t+1)
must have the same length, and hence, by definition of Cm, for all 1 ≤ i ≤ 2t we
have f(xi) (mm−1) f(xi+1). These conditions imply that f(x1) (≡ pp−1) f(x2t+1).
Therefore, it is impossible that f(x1) (mm−1) f(x2t+1), so Q is not satisfiable.

Suppose now that the algorithm accepts. We will show how to construct a
model of Q. Note that in this case D is satisfiable. Let V = {x1, . . . , xn}, and let
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Input: Instance Q = (I,D) of Al-sat(S) with set of variables V

Algorithm A1 for S = Cm
(1) If D is not satisfiable, then reject;
(2) Construct a graph G = (V,E), where (v, w) ∈ E if and only if

– D ∪ {l(v) �= l(w)} is not satisfiable, and
– vrw ∈ I for some r such that (≡) �⊆ r;

(3) If G is 2-colorable, then accept; else reject.

Procedure P
(1) Let D′ = D;
(2) For each vrw ∈ I such that r ⊆ (dsf) or r ⊆ (d−1s−1f−1),

add the constraint l(v) < l(w) or l(v) > l(w), respectively, to D′;
(3) For each vrw ∈ I such that (≡) ⊆ r ⊆ (≡ dsf) or (≡) ⊆ r ⊆ (≡ d−1s−1f−1),

add the constraint l(v) ≤ l(w) or l(v) ≥ l(w), respectively, to D′;
(4) If D′ is not satisfiable, then reject.

Algorithm A2 for S ∈ {Ds,Df,Dd}
(1) Call procedure P ;
(2) Accept.

Algorithm A3 for S = D′
d

(1) Call procedure P ;
(2) Construct a graph G = (V,E), where (v, w) ∈ E if and only if

D′ ∪ {l(v) �= l(w)} is not satisfiable;
(3) Identify the connected components S1, . . . , Sk of G;
(4) For each Sj , let Ij = I|Sj = {vrw ∈ I | v, w ∈ Sj}

and I ′j = {v r ∩ (≡ oo−1) w | vrw ∈ Ij};
(5) Solve I ′j , 1 ≤ j ≤ k, as instances of A-sat(So);
(6) If every I ′j is satisfiable, then accept; else reject.

Algorithm A4 for S = D′′
d

(1) Call procedure P ;
(2) Construct a graph G = (V,E), where (v, w) ∈ E if and only if

– D′ ∪ {l(v) �= l(w)} is not satisfiable, and
– vrw ∈ I for some r such that (≡) ⊆ r ∩ (≡ pp−1oo−1mm−1) ⊆ (≡ mm−1);

(3) Identify the connected components S1, . . . , Sk of G;
(4) For each Sj , let Ij = I|Sj = {vrw ∈ I | v, w ∈ Sj}

and I ′j = {v r w | vrw ∈ Ij and (≡) �⊆ r};
(5) If every I ′j is empty, then accept; else reject.

Fig. 1. Polynomial-time algorithms for the tractable cases of Al-sat.

D̃ = {l(xi) �= l(xj) | D ∪ {l(xi) �= l(xj)} is satisfiable}. Then, by Lemma 3.5, D∪D̃ is

satisfiable. Let l(x1) = a1, . . . , l(xn) = an be a solution of D∪D̃. We know that G can
be colored with two colors, say black and white. Now if xi is black let f(xi) = [0, ai];
otherwise let f(xi) = [−ai, 0]. Obviously, this satisfies all constraints containing (≡)
because all constraints in I already allow (mm−1ss−1ff−1). Suppose that xirxj ∈ I for
some r such that (≡) �⊆ r. If (xi, xj) ∈ E then xi and xj are of different colors, and
we have f(xi) (mm−1) f(xj). Otherwise we know, by Lemma 3.5, that the lengths
of f(xi) and f(xj) are different, which means that f(xi) (mm−1ss−1ff−1) f(xj), as
required.

The next three algorithms use preprocessing Procedure P (see Figure 1). This
procedure can obviously be performed in polynomial time. It is also easy to see that
P does not change the set of solutions to an input.
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Lemma 3.7. Algorithm A2 correctly solves problems Al-sat(S), where S ∈
{Ds,Df,Dd}.

Proof. Obviously, if the algorithm rejects (in P ), then the instance is not satisfi-
able.

Suppose now the algorithm accepts. Let l(x1) = a1, . . . , l(xn) = an be a solution
of D′ and order the variables in V so that a1 ≤ · · · ≤ an.

If F = Ds, then let f(xi) = [0, ai] for all i. The constraints added to D during
preprocessing P ensure that this f is a model of Q. Similarly, if F = Df, then the
mapping given by f(xi) = [−ai, 0] for all i satisfies all constraints in Q. Finally, if
F = Dd, then the mapping f(xi) = [−ai/2, ai/2] for all i satisfies all constraints in
Q.

Lemma 3.8. Algorithm A3 correctly solves Al-sat(D′
d).

Proof. Suppose first that A3 accepts on an input Q. We construct a model
of Q as follows. Let vj,l, 1 ≤ l ≤ |Sj |, be the members of Sj , 1 ≤ j ≤ k. Let

D̃ = {l(v) �= l(w) | D′ ∪ {l(v) �= l(w)} is satisfiable}. By Lemma 3.5, D′ ∪ D̃ is
satisfiable.

Let l(vj,l) = aj,l, where 1 ≤ j ≤ k and 1 ≤ l ≤ |Sj |, be a solution of D′ ∪ D̃. Note
that, for every 1 ≤ j ≤ |Sj |, we have aj,1 = · · · = aj,|Sj |. Reorder the Sj ’s so that
a1,1 < a2,1 < · · · < ak,1 holds. Let

ε =

{
min{ai+1,1−ai,1

3 | 1 ≤ i < k} if k > 1,

1 if k = 1.

For all 1 ≤ j ≤ k, let fj be a model of I ′j (and then of Ij as well) and assume without

loss of generality that the variables in Ij are ordered so that fj(v
−
j,1) ≤ fj(v

−
j,2) ≤

· · · ≤ fj(v
−
j,|Sj |). By applying an appropriate translation and scaling, all models fj

can be chosen so that 0 < fj(v
−
j,1) ≤ · · · ≤ fj(v

−
j,|Sj |) < ε.

Now we combine the models fj of Ij into one model f of Q = (I,D): let f(v−j,l) =

−j · ε + fj(v
−
j,l) and f(v+

j,l) = f(v−j,l) + aj,l (see Figure 2).
We immediately see that f satisfies all length constraints and all constraints within

each Ij . It is also easy to check that we have f(vi,l) (d) f(vi′,l′) whenever i < i′. Due
to the check in Procedure P , this satisfies all constraints between variables from
different Ij ’s.

Assume now that algorithm A3 rejects. We will show that Q is not satisfiable.
The result holds trivially if A3 rejects on line 1 (that is, in P ). Assume to the contrary
that some I ′j is not satisfiable but Q is satisfiable. Clearly, if Q is satisfiable, then the
instance Ij has a model f with all intervals of the same length a. Then f is also a
model of I ′′j = {v r ∩ (≡ pp−1mm−1oo−1) w |vrw ∈ Ij}.

Reorder the variables in Ij so that f(v−j,1) ≤ f(v−j,2) ≤ · · · ≤ f(v−j,|Sj |), and suppose

that {f(v−j,l) | 1 ≤ l ≤ |Sj |} = {b1, . . . , bt}, where 1 ≤ t ≤ |Sj | and b1 < · · · < bt.
By definition of D′

d, every constraint allowing (pm) allows (o) as well. Therefore
the function g defined by

g(vj,l) = [a · s/|Sj |, a · s/|Sj | + a] when f(v−j,l) = bs

is a model of Ij . Moreover, it is also a model of I ′j , a contradiction.

Lemma 3.9. Algorithm A4 correctly solves Al-sat(D′′
d).

Proof. If A4 rejects in line 1 (that is, in P ), then Q is obviously not satisfiable.



CONSTRAINTS ON INTERVALS AND LENGTHS 465

0 ε 2ε 3ε 4ε−4ε −3ε −2ε −ε

f(v1,1)

f(v1,2)

f(v1,3)

f(v1,4)

f(v2,1)

f(v2,2)

f(v3,1)

f(v3,2)

f(v3,3)

0 ε 2ε 3ε 4ε−4ε −3ε −2ε −ε

Fig. 2. A combined model for an instance of Al-sat(D′
d
) (Lemma 3.8).

Suppose A4 rejects in line 6. It follows that there are variables x1, . . . , xq ∈ V
such that, in any model f of Q,

(i) intervals f(x1), . . . , f(xq) have the same length, and
(ii) f(xi) (≡ mm−1) f(xi+1) for all 1 ≤ i ≤ q − 1, and
(iii) (by definition I ′j and D′′

d) the intervals f(x1) and f(xq) are related by

(oo−1dd−1ss−1ff−1).
It is clear that these three conditions cannot be satisfied simultaneously. Therefore Q
is not satisfiable.

Suppose that the algorithm accepts. We will show how to construct a model of
Q. Let vj,l, 1 ≤ l ≤ |Sj |, be the members of Sj , 1 ≤ j ≤ k. Let D̃ = {l(v) �=
l(w) | D′ ∪ {l(v) �= l(w)} is satisfiable}. By Lemma 3.5, D′ ∪ D̃ is satisfiable.

Let l(vj,l) = aj,l, where 1 ≤ j ≤ k and 1 ≤ l ≤ |Sj |, be a solution of D̃. Note
that, for every 1 ≤ j ≤ |Sj |, we have aj,1 = · · · = aj,|Sj |. Reorder the Sj ’s so that
a1,1 ≤ a2,1 ≤ · · · ≤ ak,1 holds (note that some of the aj,1’s may coincide). Let
{a1,1, . . . , ak,1} = {b1, . . . , bt}, where b1 < · · · < bt, and let

ε =

{
min{b1, bi+1−bi

3 | 1 ≤ i < t} if t > 1,

1 if t = 1.

Further, let f(v−j,l) = −s · ε + j
|V | · ε, where s is such that bs = aj,l, and let

f(v+
j,l) = f(v−j,l) + aj,l (see Figure 3). We will show that f is a model of Q. By the

choice of aj,l, f satisfies all length constraints.
Suppose vj,l r vj′,l′ ∈ I and check that f(vj,l) r f(vj′,l′).
Case 1. j = j′.
If the variables are from the same connected component of G, then we have that

(≡) ⊆ r. Indeed, we have f(vj,l) (≡) f(vj′,l′) by the definition of f .
Case 2. j �= j′, but aj,l = aj′,l′ .



466 ANDREI KROKHIN, PETER JEAVONS, AND PETER JONSSON

0 ε 2ε 3ε 4ε−4ε −3ε −2ε −ε

f(v1,1)
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f(v1,2)

f(v1,3)
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f(v2,2)
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Fig. 3. A combined model for an instance of Al-sat(D′′
d
) (Lemma 3.9).

By definition of G, we have either r ∩ (pp−1oo−1) �= ∅ or (≡) �⊆ r. In the former
case we immediately get (oo−1) ⊆ r by the definition of D′′

d. Suppose that (≡) �⊆ r.

Then r∩(pp−1mm−1) = ∅. Due to the check in P , the equality aj,l = aj′,l′ is necessary.
It follows from this fact and from the definition of D′′

d that we have (oo−1) ⊆ r again.

Indeed, it is easy to check that f(vj,l) (o) f(vj′,l′) if j < j′, by the definition of f .

Case 3. aj,l �= aj′,l′ .

Assume without loss of generality that aj,l < aj′,l′ . It follows from the definition
of D′′

d that either we have (dd−1) ⊆ r or (due to the check in P ) (d) ⊆ r ⊆ (dsf). It

is not hard to verify that, indeed, f(vj,l) (d) f(vj′,l′), by the definition of f .

3.2. NP-completeness results. First let us mention the obvious fact that, for
any F ⊆ A, NP-completeness of A-sat(F) implies NP-completeness of Al-sat(F).

Lemma 3.10. Suppose that r1, . . . , rn ∈ A are relations such that the problem
A-sat({r1, . . . , rn}) is NP-complete.

1. If, for every 1 ≤ i ≤ n, r′i ∈ {ri, ri ∪ (≡)}, then Al-sat({r′1, . . . , r′n}) is
NP-complete.

2. If ∅ �= r1 ⊆ (pmo) and r′1 satisfies r1 ⊆ r′1 ⊆ r1 ∪ (≡ dsf), then the problem
Al-sat({r′1, r2, . . . , rn}) is NP-complete.
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Proof.
1. The proof is by polynomial-time reduction from A-sat({r1, . . . , rn}) to Al-

sat({r′1, . . . , r′n}). Let I be an instance of A-sat({r1, . . . , rn}) over a set V of vari-
ables. Construct an instance (I ′, D′) of Al-sat({r′1, . . . , r′n}) as follows:

(i) for every constraint urv in I such that (≡) ⊆ r add urv to I ′;
(ii) for every constraint urv in I such that (≡) �⊆ r add urv to I ′ and l(u) �= l(v)

to D′.
Obviously, every solution to (I ′, D′) is also a solution to I. Let f be a model of I,
and let {x1, . . . , xm} be the set of all endpoints of intervals f(x), x ∈ V . We may
without loss of generality assume that 0 < x1 < · · · < xm. Set x′

1 = x1, x
′
2 = x2, and,

for every i > 2, set x′
i = 2x′

i−1 + 1. It is easy to check that the function f ′ such that
f ′(v) = [x′

i, x
′
j ] if f(v) = [xi, xj ] is a model of (I ′, D′).

2. Modify the previous construction as follows:
(i) for every constraint ur1v in I add constraints ur′1v to I ′ and l(u) > l(v) to

D′;
(ii) for every constraint uriv, i > 1, in I add uriv to I ′.

Every solution to (I ′, D′) is also a solution to I because ur′1v and l(u) > l(v) imply
ur1v. Let f be a model of I, and let {x1, . . . , xm} be the set of all endpoints of
intervals f(x) for some x ∈ V . We may without loss of generality assume that
x1 < · · · < xm < 0. Set x′

m = xm, x′
m−1 = xm−1, and, for every 1 ≤ i < m − 1, set

x′
i = 2x′

i+1 − 1. It is easy to check that the function f ′ such that f ′(v) = [x′
i, x

′
j ] if

f(v) = [xi, xj ] is a model of (I ′, D′).
Example 3.1. It follows from Theorem 2.2 that A-sat({(mm−1)}) is NP-complete.

Using Lemma 3.10(1) we conclude that Al-sat({(≡ mm−1)}) is also NP-complete.
Lemma 3.11. Al-sat(F) is NP-complete if F is {(oo−1), (s)}, {(oss−1ff−1)}, or

{(sf), (oo−1ss−1ff−1)}.
Proof. First let F = {(oo−1), (s)}. The constraints

{x(oo−1)y, x(oo−1)z, y(s)z; l(z) > l(x) + l(y)}
are satisfiable if and only if x(o)y. Further, the constraints {x(o)z, z(o)y; l(z) >
l(x) + l(y)} are satisfiable if and only if x(p)y. It follows from Theorem 2.2 that
A-sat({(oo−1), (p)}) is NP-complete. The above constructions show how to reduce
A-sat({(oo−1), (p)}) to Al-sat({(oo−1), (s)}) in polynomial time.

Now let F = {(oss−1ff−1)}. Note that in this case we can also make use of the
relation (ss−1ff−1), which is equal to (oss−1ff−1)∗.

We give a polynomial-time reduction from the NP-complete problemUnnegated
One-in-Three 3SAT (Problem [LO4] in [11]) to Al-sat({(oss−1ff−1)}); let (X,C) be
an arbitrary instance of Unnegated One-in-Three 3SAT. Consider the following
set of constraints over the variables a, b, c, c′:

a(oss−1ff−1)b, l(a) = l(b) = 2,

c(ss−1ff−1)a, c(ss−1ff−1)b, l(c) = 1,

c′(ss−1ff−1)a, c′(ss−1ff−1)b, l(c′) = 3.

We impose the constraints x(ss−1ff−1)a, x(ss−1ff−1)b on every x ∈ X and note that
this implies l(x) ∈ {1, 3}. To complete the reduction, we add the constraint l(x) +
l(y) + l(z) = 5 for each {x, y, z} ∈ C. It is easy to show that the resulting set of
constraints is satisfiable if and only if (X,C) has a solution.

Finally, let F = {(sf), (oo−1ss−1ff−1)}. The constraints {x(sf)z, y(sf)z; l(z) >
l(x)+ l(y)} are satisfiable if and only if x(≡ pp−1ss−1ff−1)y. Hence, we can obtain the
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relation (ss−1ff−1) = (oo−1ss−1ff−1) ∩ (≡ pp−1ss−1ff−1). To show NP-completeness,
use the same construction as above but replace (oss−1ff−1) with (oo−1ss−1ff−1).

Lemma 3.12. Al-sat({r}) is NP-complete whenever

(mm−1) ⊆ r ⊆ (mm−1dd−1ss−1) or (mm−1) ⊆ r ⊆ (mm−1dd−1ff−1).

Proof. We consider only r with (mm−1) ⊆ r ⊆ (mm−1dd−1ss−1); the other case
is dual. We may without loss of generality assume that r = r∗.

Case 1. r = (mm−1).
It follows from Theorem 2.2 that A-sat({(mm−1)}) is NP-complete.
Case 2. r = (mm−1dd−1).
The constraints

x(dd−1mm−1)y, l(x) < l(y),

a(dd−1mm−1)x, l(a) < l(x),

a(dd−1mm−1)y, l(a) < l(y),

are satisfiable if and only if x(d)y. Furthermore, the constraints

u(mm−1dd−1)v, x(d)u, y(d)v, l(u) = l(v),

are satisfiable if and only if x(pp−1)y. It follows from Theorem 2.2 that the prob-
lem A-sat({(d), (pp−1)}) is NP-complete. We have derived (d) and (pp−1) from
(mm−1dd−1), and hence Al-sat({(mm−1dd−1)}) is also NP-complete.

Case 3. r = (mm−1ss−1).
The constraints

a(mm−1ss−1)x, a(mm−1ss−1)y, l(x) > l(a),

b(mm−1ss−1)x, b(mm−1ss−1)y, l(y) > l(b),

x(mm−1ss−1)y, l(x) = l(y),

are satisfiable if and only if a(≡ ss−1)b, so we can derive the relation (≡ ss−1).
Furthermore, the constraints

a(≡ ss−1)x, b(≡ ss−1)x, l(x) > l(a),

a(≡ ss−1)y, b(≡ ss−1)y, l(y) > l(b),

x(mm−1ss−1)y, l(x) = l(y),

are satisfiable if and only if a(pp−1)b. Now NP-completeness follows from Theo-
rem 2.2.

Case 4. r = (mm−1dd−1ss−1).
Replace (mm−1ss−1) with (mm−1dd−1ss−1) in the previous case.
Lemma 3.13. Al-sat({r1, r2}) is NP-complete whenever (≡) �⊆ r2 and

r1 ∩ (≡ pp−1oo−1mm−1) = (mm−1) � r2 ∩ (≡ pp−1oo−1mm−1).

Proof. Let us assume that all intervals have length one and prove that the problem
Al-sat({r1, r2}) is NP-complete even under this assumption. This assumption reduces
the number of cases to be considered because, in this case, we have r1 = (mm−1) and
(mm−1) ⊂ r2 ⊆ (pp−1mm−1oo−1). Moreover, we may without loss of generality
assume that either r∗2 = (mm−1) or r∗2 = r2.
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Case 1. {(mm−1), (pmm−1)}.

Let G = (V,E) and H = (V ′, E′) denote two directed graphs. A homomorphism
from G to H is a function h : V → V ′ such that (v, w) ∈ E implies (f(v), f(w)) ∈ E′.

Let H be the graph (V ′, E′) = ({0, 1, 2}, {(0, 1)(0, 2), (1, 0), (1, 2), (2, 1)}). De-
ciding whether there exists a homomorphism from an arbitrary graph to H is NP-
complete, as follows from Theorem 4.4 in [27]. We denote this problem Graph
Homomorphism(H).

We prove that {(mm−1), (pmm−1)} is NP-complete by a polynomial-time reduc-
tion from Graph Homomorphism(H). Arbitrarily choose a directed graph G =
(V,E).

The relations (pm) and (m) can be derived as follows. The constraints

{x(mm−1)x′, y(pmm−1)x, y(pmm−1)x′}

are satisfiable if and only if y(pm)x, and we have (m) = (pm) ∩ (mm−1).

Introduce five fresh variables and the constraints a(m)b(m)c(m)d(m)e. For each
node v ∈ V , add the constraints a(pm)v(pm)e. For each edge (v, w) ∈ E, add the
constraint v(pmm−1)w.

We show that the resulting set I of constraints are satisfiable if and only if there
exists a homomorphism from G to H.

Only-if: Assume without loss of generality that f is a model of I such that
f(a) = [−1, 0]. Construct a function h : V → V ′ as follows: h(v) =  f(v−)!. To see
that h is a homomorphism from G to H, arbitrarily choose an edge (v, w) ∈ E. We
consider three cases:

(i) h(v) = 0. This implies that 0 ≤ f(v−) < 1. Since v(pmm−1)w ∈ I and
f(w+) ≤ 3, we know that 1 ≤ f(w−) ≤ 2 and h(w) ∈ {1, 2}. Hence, (h(v), h(w)) ∈ E′.

(ii) h(v) = 1. Either 0 ≤ f(w−) < 1 (corresponding to v(m−1)w) or f(w−) = 2
(corresponding to v(m)w), so h(w) ∈ {0, 2} and (h(v), h(w)) ∈ E′.

(iii) h(v) = 2. Then f(w−) = 1 (corresponding to v(m−1)w), h(w) = 1, and
(h(v), h(w)) ∈ E′.

If: Assume h : V → V ′ is a homomorphism from G to H. Then f (as defined
below) is a model of I:

f(a) = [−1, 0], f(b) = [0, 1], f(c) = [1, 2], f(d) = [2, 3], f(e) = [3, 4],

and for every v ∈ V let f(v) = [h(v), h(v) + 1].

Case 2. {(mm−1), (pp−1mm−1)}.

The proof is by polynomial-time reduction from the NP-complete problemGraph
3-colorability (Problem [GT4] in [11]). Let G = (V,E) be an arbitrary instance.
Fix a fresh interval variable x. Introduce two interval variables v, v′ for each v ∈
V together with the constraints v(mm−1)v′(mm−1)x. Finally, add the constraint
v(pp−1mm−1)w for every (v, w) ∈ E. It is easy to check that the resulting set of
constraints is satisfiable if and only if G is 3-colorable. For example, if f(x) = [3, 4],
then constraints of the first type imply that f(v) ∈ {[1, 2], [3, 4], [5, 6]} for any v ∈ V ,
while the constraints of the second type ensure that the values for “adjacent” variables
are distinct.

Case 3. {(mm−1), (pp−1mm−1oo−1)}.

Use (pp−1mm−1oo−1) instead of (pp−1mm−1) in Case 2.

Case 4. {(mm−1), (mm−1oo−1)}.
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The proof is by polynomial-time reduction from the NP-complete problem Be-
tweenness1 (Problem [MS1] in [11]), which is defined as follows:

Instance: A finite set A, a collection T of ordered triples (a, b, c) of distinct
elements from A.

Question: Is there a total ordering < on A such that for each (a, b, c) ∈ T we
have either a < b < c or c < b < a?

Let (A, T ) be an arbitrary instance of Betweenness and note that the con-
straints {x(mm−1)x′, y(mm−1oo−1)x, y(mm−1oo−1)x′} are satisfiable if and only if
x(oo−1)y. We construct an instance I over {(mm−1), (oo−1)} as follows:

(i) for each pair of distinct elements a, b ∈ A, add the constraint a(oo−1)b to I;
(ii) for each triple (a, b, c) ∈ T , introduce two fresh variables x, y and add the

constraints {x(mm−1)a, x(oo−1)b, x(oo−1)c, y(oo−1)a, y(oo−1)b, y(mm−1)c}.
We will henceforth refer to the variables in I that correspond to the set A as

“basic” variables and the other variables as “auxiliary” variables.
Assume that I has a model f . Then, due to the constraints added in step (i), the

intervals f(a), a ∈ A, are pairwise distinct. Moreover, the relation (o) induces a total
order on the set {f(a) | a ∈ A}. Suppose that there is a triple (a, b, c) ∈ T such that
the model f satisfies f(b) (o) f(a) (o) f(c) and consider the constraints over the auxil-
iary variables x and y introduced in step (ii) for the triple (a, b, c). The variable x has
to satisfy x(mm−1)a, which implies that either x(p)c or x(p−1)b, a contradiction. We
can analogously rule out all orderings of f(a), f(b), f(c) except f(a) (o) f(b) (o) f(c)
and f(c) (o) f(b) (o) f(a). Hence there is a solution to the instance (A, T ): for all
a, b ∈ A, set a < b if and only if f(a) (o) f(b).

Conversely, assume that there exists a total order < on A that is a solution to the
instance (A, T ). We will show how to construct a model f of I. For all a, b ∈ A, set
f(a) (o) f(b) if and only if a < b. Clearly, this satisfies all constraints added in step (i).
To show that there exists consistent values for all auxiliary variables, arbitrarily pick
one triple (a, b, c) ∈ T (corresponding to the auxiliary variables x and y) and assume
without loss of generality that a < b < c. Let a(m)x, i.e., f(x) = [f(a−), f(a−) + 1]
and y(m)c; i.e., f(y) = [f(c−) − 1, f(c−)]. It is straightforward to verify that this
construction satisfies all constraints.

Case 5. {(mm−1), (mm−1o)}.
The constraints x(mm−1)x′, y(omm−1)x, y(o−1mm−1)x′ are satisfiable if and

only if x(o−1)y. The constraints x(o)x′, y(o)x′ are satisfiable if and only if x(≡ oo−1)y.
The constraints x(≡ oo−1)y, x′(≡ oo−1)x, x′(mm−1)y are satisfiable if and only if
x(oo−1)y. Consequently, we can derive (mm−1) and (oo−1); continue as in Case 4.

Case 6. {(mm−1), (pmm−1o)}.
The constraints x(mm−1)x′, y(pmm−1o)x, y(p−1mm−1o−1)x′ are satisfiable if

and only if x(o−1)y. Continue as in Case 5.
Case 7. {(mm−1), (pmm−1o−1)}.
The constraints x(mm−1)x′, y(pmm−1o−1)x, y(pmm−1o−1)x′ are satisfiable if

and only if y(pm)x. The relation (m) = (pm) ∩ (p−1mm−1o).
The constraints a(m)b(m)c(m)d, a(pm)x, y(pm)d are satisfiable if and only if

x(≡ mm−1oo−1)y. Hence, we can derive the relation (pmm−1o−1)∩ (≡ mm−1oo−1) =
(mm−1o−1), and NP-completeness follows from Case 5.

3.3. Classification of complexity. The classification proof splits into 8 lem-
mas. In each lemma, it is proved that if a subalgebra S which is closed under deriva-

1This problem is also known as the Total ordering problem [31].
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tions with lengths satisfies a certain condition, then either S is contained in one of
the 10 tractable subalgebras, or some lemma from section 3.2 can be applied to some
subset of S, or S satisfies the conditions of one of the previous lemmas. It is easy
to verify that the assumptions of these 8 lemmas are exhaustive (note that, due to
closedness under derivations with lengths, a subalgebra containing r ∪ (≡), where
r ⊆ (dsf), also contains r itself).

We can assume without loss of generality that each subalgebra S contains the total
relation (the union of all basic relations), since we always allow pairs of variables to
be unrelated. For each basic relation b of A, we will write rb to denote the least
relation r ∈ S such that (b) ⊆ r, i.e., the intersection of all r ∈ S with this property.
(Obviously, the relations rb depend on S; however, S will always be clear from the
context.)

We use the relations of the form rb in the algebraic proofs below to show that S
is contained in one or another subalgebra. For example, suppose we know that the
relation (p) is contained in ro. Then any relation r ∈ S such that (o) ⊆ r satisfies also
(p) ⊆ r. To see this, note that if there is r1 ∈ S such that (o) ⊆ r, but (p) �⊆ r, then
(o) ⊆ r1 ∩ro and r1 ∩ro is strictly contained in ro, which contradicts the definition of
ro. By a similar argument, if we know that (p) is contained in all of rm, ro, rd, and
rs, then we can conclude that, for every r ∈ S, (p) ⊆ r whenever r ∩ (pmods) �= ∅,
which means that S ⊆ Ep.

Lemma 3.14. Suppose S contains a nontrivial relation r ⊆ (≡ pp−1mm−1oo−1).
Then either S is contained in one of Co, Sp, Ep, and H or else Al-sat(S) is NP-
complete.

Proof.

Case 1. r ⊆ (≡ pp−1mm−1).

If S is contained in one of Sp, Ep, and H, then Al-sat(S) is tractable by Propo-
sition 3.3. Otherwise let S = {r1, . . . , rn−1} and rn = r \ (≡) and apply Theorem 2.2
and Lemma 3.10(1) with r1, . . . , rn to obtain NP-completeness of Al-sat(S).

Case 2. r ∩ (oo−1) = (o).

If r∗ �⊆ (≡), then the previous case applies. Assume that r∗ ⊆ (≡). If r �⊆
(≡ pmo), then using Lemma 3.10(1) one can show that Al-sat({r}) is NP-complete.
If (o) ⊆ r ⊆ (≡ pmo), then the constraints {xrz, zry; l(x)+ l(y) < l(z)} are satisfiable
if and only if x(p)y. Therefore (p) ∈ S, and we go back to the first case.

Case 3. (oo−1) ⊆ r.

We may now assume that r is symmetric. We shall prove that either S is contained
in one of Co, Sp, and Ep or else Al-sat(S) is NP-complete. Assume that S �⊆ Co; that
is, there is r′ ∈ S such that (oo−1) �⊆ r′. If r ∩ r′ �⊆ (≡), then we obtain the required
result by Cases 1 and 2. Therefore we may assume that r ∩ r′ is either ∅ or (≡) for
every r′ ∈ S such that (oo−1) �⊆ r′.

It now follows from Theorem 2.2 and Lemma 3.10(1) that if S is not contained in
one of So, Eo, Sp, and Ep, then Al-sat(S) is NP-complete. If S is contained in Sp or
in Ep, then, by Proposition 3.3, Al-sat(S) is tractable. Suppose S is contained in So
or in Eo but neither in Sp nor in Ep. Then S contains a nontrivial symmetric relation
r′′ such that (oo−1) ⊆ r′′ ⊆ (≡ mm−1oo−1). Also, r′ must be a nontrivial subrelation
of (≡ ss−1) or of (≡ ff−1). We consider only the first case; the second is dual. Assume
without loss of generality that (s) ⊆ r′. Then the constraints {xr′y; l(x) < l(y)} are
satisfiable if and only if x(s)y. Therefore (s) ∈ S. Since (r′′ ◦ (s))∗ = (oo−1) ∈ S, the
problem Al-sat(S) is NP-complete by Lemma 3.11.

Lemma 3.15. Suppose S contains a nontrivial relation r such that r∗ ⊆ (≡) and
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neither r nor r−1 is contained in (≡ dsf). Then either S is contained in one of Co,
Sp, Ep, and H or else Al-sat(S) is NP-complete.

Proof. If neither r \ (≡) nor r−1 \ (≡) is contained in one of (pmod−1sf−1),
(pmod−1s−1f−1), (pmodsf), or (pmodsf−1), then A-sat({r \ (≡)}) is NP-complete by
Theorem 2.2, and we get the required result by Lemma 3.10(1).

Suppose now that r \ (≡) is contained in one of the four relations above. Then
(taking r ◦ r ◦ r instead of r if needed) r can be chosen so that it satisfies one of the
following conditions:

1. r ⊆ (≡ pmos);
2. r ⊆ (≡ pmof−1);
3. (pmosf−1) ⊆ r ⊆ (≡ pmosf−1);
4. (pmods) ⊆ r;
5. (pmod−1f−1) ⊆ r.

Note that conditions 1 and 2 and conditions 4 and 5 are dual. Therefore it is
sufficient to consider only conditions 1, 3, and 4.

Suppose condition 1 holds. Then, by assumption, r �⊆ (≡ s). Now it can be
checked that the constraints {xrz, zry; l(x) > l(z)} are satisfiable if and only if xr′y
for some nontrivial r′ ∈ A such that r′ ⊆ (pmo). Then we apply Lemma 3.14.

Suppose condition 3 holds. Then the constraints {xrz, zry; l(x) < l(z), l(z) >
l(y)} are satisfiable if and only if x(pmo)y. Therefore we again apply Lemma 3.14.

Suppose condition 4 holds. If (≡) ⊆ r, then the constraints {xrz, zry; l(x) > l(z)}
are satisfiable if and only if x(≡ pmods)y. Similarly, if (≡) �⊆ r, then the constraints
{xrz, zry; l(x) > l(z)} are satisfiable if and only if x(pmods)y. Therefore a relation
r1 ∈ A with (pmods) ⊆ r1 ⊆ (≡ pmods) belongs to S.

If S contains a nontrivial relation r2 ⊆ r1 such that (d) �⊆ r2, then either r2
satisfies condition 1 (and then we get the required result) or r2 is one of (s), (≡ s). In
the latter case the constraints {xr2y; l(x) < l(y)} are satisfiable if and only if x(s)y. So
we have (s) ∈ S. Then the constraints {x(s)z, zr1y; l(x) + l(y) = l(z)} are satisfiable
if and only if x(p)y. So we have (p) ∈ S, and we can apply Lemma 3.14.

From now on in this proof we assume that every nontrivial r2 ∈ S such that
r2 ⊆ r1 satisfies (d) ⊆ r2. It now follows that, for every r ∈ S, r ∩ (pmods)±1 �= ∅
implies (d)±1 ⊆ r. In other words, we have S ⊆ Ed.

If (p) ⊆ rd, then, for every r ∈ S, r ∩ (pmods)±1 �= ∅ also implies (pd)±1 ⊆ r,
which means that S ⊆ Ep, and we get the required result. If (o) ⊆ rd, then, for every
r ∈ S, r ∩ (pmods)±1 �= ∅ also implies (od)±1 ⊆ r, and then it is easy to check that
S ⊆ H.

Assume that rd ⊆ (≡ mds). If (m) ⊆ rd, then it can be checked that the
constraints {zrdx, zrdy; l(z) > l(y) > l(x)} are satisfiable if and only if x(s)y. It is
proved above that, in the presence of r1 and (s), the required result holds.

Now we may assume that (d) ⊆ rd ⊆ (≡ ds). Then rd is either (d) or (ds) because
(≡) can be removed by adding the constraint l(x) < l(y).

Assume now that S �⊆ H. It is easy to see that every relation in S satisfies
condition 1 of H. If there is r3 ∈ S failing to satisfy condition 3 of H, then r4 = r3∩r1
satisfies r4 ⊆ (pmds) and r4 ∩ (pm) �= ∅. Then the constraints {xrdz, zr4y; l(z) >
l(y)} are satisfiable if and only if x(p)y. Hence we have (p) ∈ S, and we can apply
Lemma 3.14.

Finally, assume that every r ∈ S satisfies conditions 1 and 3 of H, but some
r5 ∈ S fails to satisfy condition 2 of H. We can assume that r5 ∩ (ds) �= ∅ and
r5 ∩ (d−1f−1) �= ∅, but (o) �⊆ r5. Let ν = (≡ oo−1dd−1ss−1ff−1). Since ν = r−1

d
◦ rd
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belongs to S, we may assume that r5 ⊆ ν; otherwise replace r5 by r5 ∩ ν. Note that
(d) ⊆ r5.

If (o−1) ⊆ r5, then (d−1) ⊆ r5 because (d) ⊆ ro. Then the constraints in the set
{xr∗5y; l(x) �= l(y)} are satisfiable if and only if xr6y, where r6 ∈ A is a symmetric
relation such that (dd−1) ⊆ r6 ⊆ (dd−1ss−1ff−1). We have (pmods) = r1 ◦ rd ∈ S. It
follows from Theorem 2.2 that A-sat({r6, (pmo)}) is NP-complete. Then Al-sat(S)
is NP-complete by Lemma 3.10(2).

Let (o−1) �⊆ r5. If (d−1) ⊆ r5, then the argument is as above. Otherwise we
have (df−1) ⊆ r5 ⊆ (≡ dsff−1) (note that (s−1) �⊆ r5 because S ⊆ Ed). Then the
constraints in the set {xr5y; l(x) > l(y)} are satisfiable if and only if x(f−1)y. We
may then assume that (f) ∈ S. It follows that the relations (ods) = (f−1) ◦ rd and
(≡ dff−1) = (f) ◦ r5 both belong to S, and therefore (d) = rd ∩ (≡ dff−1) ∈ S. It
follows from Theorem 2.2 that A-sat({(o), (d), (f), (≡ dff−1)}) is NP-complete. Since
(ods) ∈ S, we conclude that Al-sat(S) is NP-complete by Lemma 3.10(2).

Lemma 3.16. If S contains two nontrivial relations r1 and r2 such that r1 ∩ r2 ⊆
(≡) and r1, r2 ⊆ (≡ dsf), then either S ⊆ H or else Al-sat(S) is NP-complete.

Proof. We may assume that (≡) �⊆ r1, r2 because it can be removed by adding the
constraint l(x) < l(y). If r1 = (d) and r2 = (sf), then A-sat({r1, r2}) is NP-complete
by Theorem 2.2.

In all other cases r1◦r−1
2 (or its converse) satisfies the assumptions of Lemma 3.15

or Lemma 3.16. It remains to notice that {r1, r2} is not contained in one of Co, Sp,
Ep.

Lemma 3.17. If S contains two nontrivial symmetric relations r1 and r2 such
that r1 ∩ r2 ⊆ (≡), then either S is contained in one of Sp, Ep, H or else Al-sat(S)
is NP-complete.

Proof. We may assume that r1 and r2 are minimal (with respect to inclusion)
among nontrivial symmetric relations.

It follows from Theorem 2.2 that if none of r1, r2 is contained in one of (≡ ss−1),
(≡ ff−1), then A-sat(S) (and, consequently, Al-sat(S)) is NP-complete.

We shall consider only the case r1 ⊆ (≡ ss−1); the case r1 ⊆ (≡ ff−1) is dual.
Then we may assume that (ss−1) ∈ S and (s) ∈ S because these constraints are
equivalent to {xr1y; l(x) �= l(y)} and {xr1y; l(x) < l(y)}, respectively. If r2 ⊆ (≡
dd−1ff−1), then, by imposing the constraint l(x) < l(y), we can obtain a nonempty
subrelation of (df), and we can apply Lemma 3.16. We therefore may assume that
r2∩(pp−1mm−1oo−1) �= ∅. Now it follows from minimality of r2 and from Theorem 2.2
that if A-sat(S) is not NP-complete, then either S ⊆ H or every relation r ∈ S such
that r∗ �⊆ (≡ ss−1) satisfies r2 ⊆ r.

It can be easily checked that if (dd−1) �⊆ r2, then either r2 ⊆ (≡ mm−1) or
r3 = ((s) ◦ r2)

∗ is nonempty and satisfies r3 ⊆ (pp−1mm−1oo−1). In the former
case Al-sat({r2}) is NP-complete by Lemma 3.10(1). In the latter case we apply
Lemma 3.14.

Further, let (dd−1) ⊆ r2. Suppose some nontrivial relation r3 ∈ S is strictly
contained in r2. Then, by the choice of r2, we have r∗3 ⊆ (≡), and, since S �⊆ Co, we
can apply Lemma 3.15 or Lemma 3.16.

Now we may assume that, for every r ∈ S such that r∩ r2 �= ∅, we have (dd−1) ⊆
r2 ⊆ r.

It can now be checked using Theorem 2.2 that if A-sat(S) is not NP-complete,
then S is contained in one of Sp, Sd, and H. Suppose that S �⊆ Sp and S �⊆ H, since
otherwise there is nothing to prove. Then S ⊆ Sd, and for every relation r ∈ S such
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that r �⊆ (≡ ss−1), we have (dd−1) ⊆ r2 ⊆ r. If r2 contains (pp−1) or (oo−1), then S
is contained in Sp or H, which contradicts the assumptions just made. Otherwise we
have (mm−1dd−1) ⊆ r2 ⊆ (≡ mm−1dd−1ff−1). Hence ((s) ◦ r2)∗ = (mm−1dd−1) ∈ S.
By minimality, it follows that r2 = (mm−1dd−1). Then Al-sat(S) is NP-complete by
Lemma 3.12.

Lemma 3.18. If (s) ∈ S or (f) ∈ S then either S is contained in one of the 10
subalgebras listed in Theorem 3.1 or else Al-sat(S) is NP-complete.

Proof. We consider only the case (s) ∈ S; the other case is dual.

By Lemmas 3.15 and 3.16, we may assume that, for every nontrivial r ∈ S such
that r∗ ⊆ (≡), we have either (s) ⊆ r ⊆ (dsf) or (s) ⊆ r−1 ⊆ (dsf). We may
also assume that (ss−1) ∈ S because the constraints {x(s)z, z(s)y; l(x) �= l(y)} are
satisfiable if and only if x(ss−1)y.

Suppose that S �⊆ Ds. Then there exists a relation r1 ∈ S such that r1 ∩
(pp−1mm−1oo−1) �= ∅, but (≡ ss−1) �⊆ r1. If (≡) ⊆ r1, then we can apply ei-
ther Lemma 3.15 with r1 or Lemma 3.17 with {r∗1 , (ss−1)}. So we may now as-
sume that (≡) �⊆ r1. It can be checked that there is a nontrivial r2 ∈ A such that
{ur1v, u(s)x, v(s)y; l(u) = l(v)} is satisfiable if and only if xr2y. Then r2 ∈ S. More-
over, we have (≡ ss−1) ∩ r2 = ∅. If r2 satisfies r∗2 ⊆ (≡), then we apply Lemma 3.15
or Lemma 3.16. Otherwise {r∗2 , (ss−1)} ⊆ S, and we get the required result by
Lemma 3.17.

Lemma 3.19. If (sf) ∈ S, then either S ⊆ Ds or S ⊆ Df or else Al-sat(S) is
NP-complete.

Proof. We have (dsf) = (sf) ◦ (sf) ∈ S. We may assume that neither (s) nor
(f) belong to S; otherwise we obtain the result by Lemma 3.18, since, out of the 10
subalgebras, (sf) is contained only in Ds and in Df. It now follows that (dsf)±1∩r �= ∅
implies (sf)±1 ⊆ r for any r ∈ S.

Suppose that S is not contained in Ds. Then there is r1 ∈ S such that (≡ ss−1) �⊆
r1 and r1 ∩ (pp−1mm−1oo−1) �= ∅. Assume that (≡) ⊆ r1. If (ss−1)∩ r1 = ∅, then, by
the previous paragraph, we have r1 ⊆ (≡ pp−1mm−1oo−1), and we apply Lemma 3.14.
Assume now that (ss−1)∩ r1 = (s). Then r1 ⊆ (≡ pp−1mm−1oo−1dsf). Now we apply
Lemma 3.14 if r∗1 �⊆ (≡) and Lemma 3.15 otherwise.

Now assume that (≡) �⊆ r1 and r1 ∩ (pp−1mm−1oo−1) �= ∅. If there is such
an r1 with the additional property that r1 ∩ (oo−1) = ∅, then the set of constraints
{x(sf)u, ur1v, y(sf)v; l(u) = l(v)} is satisfiable if and only if xr′y, where r′ ∈ A is some
nontrivial relation such that r′ ⊆ (pp−1mm−1). Then we can apply Lemma 3.14.

Suppose r1 ∩ (oo−1) �= ∅. We have (≡ oo−1ss−1ff−1) = (s−1f−1) ◦ (sf) ∈ S.
Consider r2 = r1 ∩ (≡ oo−1ss−1ff−1). If r2 ⊆ (oo−1), then A-sat({(sf), r2}) is NP-
complete by Theorem 2.2. Otherwise (ss−1ff−1) ⊆ r2, and we have either r2 =
(oss−1ff−1) or r2 = (oo−1ss−1ff−1). In both cases Al-sat({(sf), r2}) is NP-complete
by Lemma 3.11.

Lemma 3.20. If there is r ∈ S such that (d) ⊆ r ⊆ (dsf), then either S is
contained in one of the 10 subalgebras listed in Theorem 3.1 or else Al-sat(S) is
NP-complete.

Proof. Note that ν = (≡ oo−1dd−1ss−1ff−1) = r−1 ◦ r ∈ S.

We may assume that every r ∈ S such that r∗ ⊆ (≡) satisfies (d) ⊆ r ⊆ (≡ dsf)
or (d) ⊆ r−1 ⊆ (≡ dsf); otherwise we apply Lemmas 3.15, 3.18, or 3.19. It follows, in
particular, that no nontrivial subrelation of (≡ ss−1ff−1) belongs to S.

Suppose that there exists r1 ∈ S such that r1 ∩ (pp−1mm−1oo−1) �= ∅, but
(dd−1) �⊆ r1. If r∗1 ⊆ (≡), then we can apply Lemma 3.15 with r1. Otherwise r∗1 is
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a symmetric nontrivial relation satisfying (dd−1) ∩ r∗1 = ∅. If r1 ⊆ (≡ pp−1mm−1),
then we can apply Lemma 3.14. Otherwise the relation r2 = ν ∩ r∗1 ∈ S is nontrivial
and satisfies r2 ⊆ (≡ oo−1ss−1ff−1). We have (oo−1) ⊆ r2 and r2 ∩ r = ∅, since
no subrelation of (sf) belongs to S. Now it is easy to verify that A-sat({r2, r}) is
NP-complete, by Theorem 2.2.

From now on (in this proof) we may assume that, for every r ∈ S, whenever
r ∩ (pp−1mm−1oo−1) �= ∅ we have (dd−1) ⊆ r. It now follows that condition 1 of Dd
and D′

d is satisfied in S.

Suppose there is r2 ∈ S such that r2∩(pp−1mm−1) �= ∅, but r2∩(≡ oo−1) = ∅. It
is easy to check that there exists a nontrivial r3 ∈ A with r3 ⊆ (pp−1mm−1) such that
{ur2v, xru, yrv; l(u) = l(v)} is satisfiable if and only if xr3y (the relation r3 depends
on r and r2). Then r3 ∈ S, and we can apply Lemma 3.14.

From now on (in this proof) we may also assume that, for every r ∈ S, r ∩
(pp−1mm−1) �= ∅ implies r ∩ (≡ oo−1) �= ∅.

We know that ro ⊆ ν. If (≡) ⊆ ro, then it is easy to check that S ⊆ Dd.
Suppose ro ∩ (≡ oo−1) = (o) and S �⊆ D′

d. Then there is r4 ∈ S such that

r4 ∩ (pm) �= ∅, but (o) �⊆ r4. Then there exists a nontrivial r5 ∈ A with r5 ⊆ (pm)
such that the constraints

{uroz, zrov, ur4v, xru, yrv; l(u) = l(z) = l(v)}
are satisfiable if and only if xr5y. Then r5 ∈ S, and we can apply Lemma 3.14.

It remains to consider the case ro ∩ (≡ oo−1) = (oo−1). Then every r6 ∈ S such
that r6 ∩ (oo−1) = ∅, but r6 ∩ (pp−1mm−1) �= ∅ satisfies (≡) ⊆ r6.

If there is such r6 with r6 ∩ (pp−1) �= ∅, then there exists a nontrivial r7 ∈ A with
r7 ⊆ (pp−1mm−1) such that the constraints

{uroz, zr6v, ur6v, xru, yrv; l(u) = l(z) = l(v)}
are satisfiable if and only if xr7y. Then r7 ∈ S, and we can apply Lemma 3.14.

Now we may assume that every r ∈ S with r∩(pp−1) �= ∅ also satisfies (oo−1) ⊆ r.
Suppose S �⊆ D′

d. Then there is r8 ∈ S such that (m) ⊆ r8 and r8 ∩ (≡ pp−1oo−1) =

(≡). Moreover, every r ∈ S such that r∩(mm−1) �= ∅ satisfies (≡) ⊆ r, since otherwise
we can obtain a relation r9(= r ∩ r8) such that r9 ∩ (≡ pp−1mm−1oo−1) is nonempty
and is contained in (mm−1), a contradiction.

Now either S ⊆ D′′
d or else there is r10 ∈ S such that (poo−1) ⊆ r10 and (≡) �⊆ r10.

In the latter case, again, there exists a relation r11 ∈ A with r11 ⊆ (pp−1mm−1) such
that the constraints

{ur10z, zr−1
8 v, ur8v, xru, yrv; l(u) = l(z) = l(v)}

are satisfiable if and only if xr11y. Then r11 ∈ S and we can apply Lemma 3.14.
Lemma 3.21. If there is a symmetric nontrivial relation r′ ∈ S such that every

nontrivial r ∈ S satisfies r′ ⊆ r, then either S is contained in one of the 10 subalgebras
listed in Theorem 3.1 or else Al-sat(S) is NP-complete.

Proof. If r′ contains (pp−1), or (oo−1), or (≡ dd−1), or (≡ ss−1), or (≡ ff−1), then
S is contained in Sp, or Co, or Dd, or Ds, or Df, respectively. If r′ ⊆ (dd−1ss−1ff−1),
then we can obtain an asymmetric relation in S which contradicts the assumption of
this step. If r′ = (≡ mm−1), then Al-sat({r′}) is NP-complete by Example 3.1.

From now on (in this proof) we assume that all nontrivial r ∈ S satisfy the
condition that (mm−1ss−1ff−1) ⊆ r; otherwise one of the earlier cases applies. If every
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nontrivial r ∈ S satisfies (≡ mm−1ss−1ff−1) ⊆ r, then S ⊆ Ds. Suppose that there
is r1 ∈ S such that (≡) �⊆ r1. Then r1 ∩ (≡ pp−1mm−1oo−1) ⊆ (pp−1mm−1oo−1).
If, for all r ∈ S, (pp−1) ⊆ r or, for all r ∈ S, (oo−1) ⊆ r, then S ⊆ Sp or S ⊆ Co,
respectively. Else, we can choose r1 so that r1 ∩ (≡ pp−1mm−1oo−1) = (mm−1). Now
it is not hard to check that either S ⊆ Cm or else there is r2 ∈ S such that the system
{r1, r2} satisfies the conditions of Lemma 3.13.

Classification is complete. Theorem 3.1 is proved.

4. Conclusion. In this paper we have given a complete classification of the
complexity of interval satisfiability problems with very general length restrictions.
Our main result, Theorem 3.1, determines the complexity of Al-sat(F) for every
possible subset F ⊆ A.

To conclude, we note that our NP-completeness proofs use only a very restricted
subset of the allowable length constraints. In fact, we use constraints on lengths only
of the following forms:

(i) comparing l(x) + l(y) with l(z),
(ii) comparing l(x) and l(y),
(iii) comparing l(x) with a given number.

It follows that the NP-complete fragments of Al-sat remain NP-complete even if we
allow only these very limited forms of Horn DLRs to specify length constraints. This
prompts us to make the following conjecture.

Conjecture 4.1. All NP-complete cases of Al-sat remain NP-complete if we
allow fixing individual interval lengths as the only form of constraints on lengths.

In fact, we suggest that an even stronger result may be true: it may be that in
all cases where imposing restrictions on interval lengths causes intractability, simply
requiring all intervals to have the same length will already be intractable.

Problem 4.1. Do all NP-complete cases of Al-sat remain NP-complete if we
search only for models with all intervals of the same length?
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Abstract. We consider the degree-diameter problem for Cayley graphs of Abelian groups
(Abelian graphs) for both directed graphs and undirected graphs. The problem is closely related to
that of finding efficient lattice coverings of Euclidean space by shapes such as octahedra and tetrahe-
dra; we exploit this relationship in both directions. For two generators (dimensions), these methods
yield optimal Abelian graphs with a given diameter k. (The results in two dimensions are not new;
they are given in the literature of distributed loop networks.) We find an undirected Abelian graph
with three generators and a given diameter k, which we conjecture to be as large as possible; for
the directed case, we obtain partial results. These results are connected to efficient lattice coverings
of R3 by octahedra or by tetrahedra; computations on Cayley graphs lead us to such lattice cov-
erings, which we conjecture to be optimal. (The problem of finding such optimal coverings can be
reduced to a finite number of nonlinear optimization problems.) We discuss the asymptotic behavior
of the Abelian degree-diameter problem for large numbers of generators. The graphs obtained here
are substantially better than traditional toroidal meshes, but, in the simpler undirected cases, retain
certain desirable features such as good routing algorithms, easy constructibility, and the ability to
host mesh-connected numerical algorithms without any increase in communication times.
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1. Introduction. The degree-diameter problem for graphs can be stated as the
following question: What is the largest number of vertices that a graph (undirected
or directed) can have if one is given upper bounds on the degree of each vertex and on
the diameter of the graph (the maximum path-distance from any vertex to any other)?
One application of such graphs is in the design of interconnection networks for parallel
processors, where one wants to have a large number of processors without requiring a
large number of wires at a single processor or incurring long delays in communication
from one processor to another. For more information on the (undirected) degree-
diameter problem, see Dinneen and Hafner [10]; up-to-date results can be found online
at http://www-mat.upc.es/grup de grafs/grafs/taula delta d.html.

A desirable extra property of such networks is that they appear identical from
any processor. This means that the graphs one uses should be vertex-transitive; i.e.,
for any two vertices x and y, there is an automorphism of the graph which maps
x to y. Here we will restrict ourselves to a special class of vertex-transitive graphs
called Cayley graphs. A Cayley graph is specified by a group and a set of generators
for this group; the vertices of the graph are the elements of the group, and the graph
has an edge from x to y if and only if there is a generator g such that y = xg. (It
can be shown that every vertex-transitive graph is isomorphic to a generalized form of
Cayley graph called a Cayley coset graph [20]. In this paper, though, we will look only
at Cayley graphs. For Abelian groups, this is no loss of generality since every Cayley
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coset graph of an Abelian group is isomorphic to a Cayley graph of an Abelian group.)
In a directed Cayley graph from a group on d generators, every vertex has in-degree
and out-degree d; if d generators are used to form an undirected Cayley graph, then
the degree of each vertex is the number of generators of order 2 plus twice the number
of generators of order greater than 2 (unless there are redundant generators). Thus
we will usually discuss Cayley graphs on a given number of generators rather than of
a given degree; the cases where some generators have order 2, and hence contribute
only 1 rather than 2 to the degree of an undirected Cayley graph, will be handled
separately.

The most straightforward approach to finding large Cayley graphs of small diam-
eter on a given number d of generators is to examine various groups, look at some
or all possible sets of d generators for such a group, and check whether each such set
in fact generates the group and, if so, determine the diameter of the graph. But this
can be a very large task even for relatively small groups and generating sets. In this
paper, we will use a different approach which facilitates studying many groups and
generating sets at once; it yields provably optimal results for some families of groups
and good lower and upper bounds for others.

In its most general form, the idea is as follows. Let F be the free (universal)
group on d generators. Then, for any group G and any set of d generators for G,
there is a homomorphism π : F → G which maps the canonical generators for F to
the given generators for G; clearly, π is surjective. Let N be the kernel of π. Then N
is a normal subgroup of F , and |F : N | = |G|; in fact, G is isomorphic to F/N , and
the Cayley graph of G with the given generators is isomorphic to the Cayley graph
of F/N with the canonical generators for F . Let S be the set of elements of F which
can be expressed as a word of length at most k in the generators. (In undirected
Cayley graphs, such words may use inverse generators g−1 as well as generators; for
the directed case, only words using generators, not inverse generators, are allowed.)

Proposition 1.1. The Cayley graph for G on the given generators has diameter
at most k if and only if SN = F .

Proof. First, suppose SN = F . Let a be an arbitrary element of G; then a = π(x)
for some x, and x can be written in the form wy with w ∈ S and y ∈ N . Hence,
a = π(wy) = π(w)π(y) = π(w). Now w can be written as a word of length at
most k in the generators of F , so a = π(w) can be written as the same word in the
corresponding generators of G. Since a was arbitrary, the Cayley graph has diameter
at most k.

Now suppose that the Cayley graph has diameter at most k. Let x be any element
of F ; then π(x) can be written as a word w′ of length at most k in the generators
of G. Let w be the corresponding word in the generators of F ; then π(w) = w′ = π(x),
so π(w−1x) is the identity of G, and we have w−1x ∈ N . Hence, x = w(w−1x) ∈ SN ,
as desired.

So finding a Cayley graph on d generators with diameter k whose size is as large
as possible is equivalent to finding a normal subgroup N of F such that SN = F
and |F : N | is as large as possible. Of course, we immediately get the upper bound
|F : N | ≤ |S|, but this is probably not attainable.

Unfortunately, the collection of normal subgroups of F is so large and varied
as to be unmanageable. So what we will do instead is restrict ourselves to certain
families (usually varieties) of groups; this allows us to replace F with a free group for
the family in question, which may be much easier to work with. For instance, if we
consider only the Cayley graphs of Abelian groups, then we can replace F with the
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free Abelian group on d generators, which is simply Zd; the normal subgroups of Zd

are well understood and relatively easy to work with. It turns out that this reduces
the degree-diameter problem for Abelian Cayley graphs to interesting problems about
lattice coverings of Euclidean space by various shapes. Some of these problems can
be solved completely, giving optimal Abelian Cayley graphs; others are still open.

A simple path-counting argument gives upper bounds for the size n of a Cayley
graph with d generators and diameter limit k: in the directed case,

n ≤ 1 + d+ d2 + · · ·+ dk =
dk+1 − 1

d− 1
,

and in the undirected case,

n ≤ 1 + 2d+ 2d(2d− 1) + · · ·+ 2d(2d− 1)k−1 =
d(2d− 1)k − 1

d− 1
.

(The formulas for d = 1 are k + 1 and 2k + 1.) These limits are well known and
actually apply to the degree-diameter problem for arbitrary graphs; they are known
as the Moore bounds. For d = 1, these limits are attained by simple cycle graphs,
which are Cayley graphs of cyclic groups.

In most cases, we will find that the attainable values for n using Cayley graphs in
the families we consider do not approach these upper bounds; the equations defining
the families force many paths to be redundant. But the extra structure provided by
the groups may provide compensating advantages in parallel computers, such as good
routing algorithms, easy constructibility, and the ability to map common problems
onto the architecture. In particular, many of the Cayley graphs of Abelian groups
that we discuss in this paper are multidimensional rectangular meshes with additional
connections at the boundary. Thus, mesh calculations with natural boundary condi-
tions are trivially mapped into these graphs, while the extra connections are utilized
only when global communications are being carried out. In addition, the mesh nature
of these graphs allows the physical construction of the network to be carried out with
relatively short wires. This will be discussed further below.

In a separate paper, we will examine other varieties of groups for which similar
analyses of Cayley graphs are feasible.

2. Abelian groups. In the rest of this paper, we will examine the Cayley graphs
arising from Abelian groups. Toroidal meshes and hypercubes are examples of such
graphs.

The degree-diameter problem for Abelian Cayley graphs has been considered
by others. In particular, Annexstein and Baumslag [2] show that the number of
generators d, diameter k, and size n of a directed Abelian Cayley graph satisfy

k ≥ Ω(n1/d);

in fact, if d ≤ n1/d, then

k ≥ Ω(dn1/d).

They also discuss similar results for Cayley graphs of nilpotent groups.
In addition, Chung [6] has constructed directed Abelian Cayley graphs G with

n = pt − 1, d = p, and

k ≤
⌈
2t+

4t log t

log p− 2 log(t− 1)

⌉
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for any positive integer t <
√
p+ 1, where p is a prime. (Note that Chung’s examples

have diameters which are small compared to the number of generators; in contrast,
we will concentrate here on graphs with a small fixed number of generators and rela-
tively large diameters.) Chung’s methods involve estimates of the second eigenvalue
of the Laplacian of the adjacency matrix of G. For more about estimating the di-
ameter of general graphs from knowledge of this eigenvalue, see Chung, Faber, and
Manteuffel [7]. This eigenvalue is also connected to the sphere packing problem for
real lattices; see Urakawa [23].

The more specific case of Cayley graphs of cyclic groups has been studied more
extensively; such graphs are usually referred to by some variant of the phrase “loop
networks.” The survey paper of Bernard, Comellas, and Hsu [3] is an excellent guide
to the literature in this area.

We start by taking care of some generalities and notational matters. We will use
the symbol + for the group operation(s). Let Zm be the cyclic group of
order m (for definiteness, the set {0, 1, . . . ,m − 1} with the operation of addition
modulo m). Each of the groups Zm (m = 1, 2, 3, . . . ) and Z (the infinite cyclic group)
has a canonical generator 1, but each also has other sets of generators, some of which
will be important later.

When one has groups G1, G2, . . . , Gl and a set of generators for each, then one
can get a set of generators for the product G1 × G2 × · · · × Gl by putting together
the given generator sets. More precisely, for each i ≤ l and each generator g of Gi,
let ei(g) be the element of the product group which has the identity element of Gj
as its jth coordinate for all j ≤ l except i; the ith coordinate is g. Then the set of
all elements ei(g) is a natural generating set for the product group. (The resulting
diameter for the product group is the sum of the diameters of the groups Gi.) In the
case where the groups Gi are cyclic groups with canonical single generators, we write
simply ei for the l-tuple with 1 at the ith coordinate and 0 elsewhere.

A two-dimensional toroidal mesh is simply the Cayley graph of the group Zm×Zn
with the canonical generators e1 = (1, 0) and e2 = (0, 1); higher-dimensional meshes
are obtained from longer products. For the two-dimensional case, the number of ver-
tices is mn, the degree is 2 in the directed case and 4 in the undirected case (assuming
m,n ≥ 3), and the diameter is m+ n− 2 in the directed case and �m/2�+ �n/2� in
the undirected case. The calculations in three or more dimensions are analogous.

The d-dimensional hypercube is the Cayley graph of the group Zd2 with the canon-
ical generators; since we get bidirectional links in any case, we may as well discuss the
undirected version. In this case, the size of the graph is exponential in the diameter,
but only because the degree also grows with d: the size is 2d, the degree is d (not 2d,
because the generators have order 2), and the diameter is also d.

We will see that, with a fixed small number d of generators, one can obtain nearly
optimal results for undirected Abelian Cayley graphs by using a twisted toroidal mesh;
the twist allows one to multiply the number of nodes in the ordinary toroidal mesh by
2d−1 without increasing the diameter. For two dimensions, we can get exactly optimal
results by slightly adjusting this graph; for higher dimensions, the optimal size is still
open. For the directed case, we can again get optimal results in two dimensions,
but the higher-dimensional case is again unsolved (and rather strange even in three
dimensions).

To get these results, we argue as in Proposition 1.1 but focus our argument
specifically on the case of Abelian groups. Hence, instead of the free group on
d generators, we can use the free Abelian group on d generators, which is simply
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Zd with the canonical generators ei, 1 ≤ i ≤ d. For any Abelian group G generated
by g1, . . . , gd, there is a unique homomorphism from Zd onto G which sends ei to gi
for all i. Let N be the kernel of this homomorphism; then G is isomorphic to Zd/N ,
and the Cayley graph of G with the given generators is isomorphic to the Cayley
graph of Zd/N with the canonical generators for Zd.

Given a diameter limit k, let Sk be the set of elements of Zd which can be
expressed as a word of length at most k in the generators ei, which are allowed to
occur positively or negatively. (The dimension d will be clear from the context.) Then
Sk can also be described as the set of points in Zd at a distance of at most k from
the origin under the l1 (Manhattan) metric:

Sk = {(x1, . . . , xd) ∈ Zd : |x1|+ · · ·+ |xd| ≤ k}.
Let S′

k be the subset of Sk consisting of those elements whose coordinates are all
nonnegative; these are the elements which can be expressed as words of length at
most k in the generators ei, where only positive occurrences of the generators are
allowed. Then Sk looks like a regular dual d-cube (a square for d = 2, an octahedron
for d = 3), while S′

k looks like a right d-simplex (a triangle for d = 2, a tetrahedron
for d = 3).

Now, by the proof of Proposition 1.1 we get the following.
Proposition 2.1. Let G, N , and g1, . . . , gd be as above. Then the undirected

Cayley graph for G and g1, . . . , gd has diameter at most k if and only if Sk+N = Zd,
and the directed Cayley graph for G and g1, . . . , gd has diameter at most k if and only
if S′

k +N = Zd.
So |Sk| and |S′

k| give upper bounds for the undirected and directed versions of
this case of the degree-diameter problem. It is not hard to show that

|S′
k| =

(
k + d

d

)
,

so |S′
k| = kd/d! + O(kd−1) for fixed d. For |Sk|, we easily get the asymptotic form

|Sk| = kd2d/d! + O(kd−1) for fixed d, but exact formulas are harder; Stanton and
Cowan [22] give several, such as

|Sk| =
d∑
i=0

2i
(
d

i

)(
k

i

)
.

In particular, when d is 1, 2, or 3, the formula for |Sk| is 2k + 1, 2k2 + 2k + 1, or
(4k3 + 6k2 + 8k + 3)/3, respectively.

3. Lattice coverings and tilings. Proposition 2.1 tells us that, to find an
optimal undirected (directed) Cayley graph of diameter k on d generators, we should
look for a subgroup N of Zd such that Sk + N (S′

k + N) is all of Zd and the index
|Zd : N | is as large as possible; the largest index we can hope for is |Sk| (|S′

k|). But
the structure of subgroups of Zd of finite index (which are all normal, of course) is
well known; they are precisely the d-dimensional lattices in Zd. Because of this, in
the rest of the paper we will use the letter L instead of N for such subgroups of Zd.

A d-dimensional lattice L in Zd is specified by d linearly independent vectors
v1, . . . ,vd in Zd; L is the set of all integral linear combinations of these vectors.
We have |Zd : L| = |detM |, where M is the d × d matrix whose ith row is vi for
i = 1, . . . , d.
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Note that any bounded set contains only finitely many members of L. It follows
that, if S is a bounded subset of Zd and x is a point in Zd, then there are only finitely
many v ∈ L such that x ∈ S + v.

Also note that L, or indeed the entire group Zd, has a linear ordering ≺ which is
compatible with addition: x ≺ y implies x + z ≺ y + z. To define ≺, first choose a
direction (a nonzero vector v in Rd), and put x ≺ y if y is farther in this direction
than x is (x ·v < y ·v). If two vectors are at the same distance in this direction, then
compare them in a second direction; repeat until all ties are broken. One example of
this is lexicographic order: compare according to the first coordinates, then according
to the second coordinates if the first coordinates are equal, and so on. Or, in this
discrete case, one can choose the initial direction so that it distinguishes all points
and no tie-breaking is necessary; for instance, if v = (1, π, π2, . . . , πd−1), then we
never have x · v = y · v for distinct x,y in Zd, so we can just define x ≺ y to mean
x · v < y · v.

A lattice covering of Zd by a set S ⊆ Zd is a collection of translates of S by
members of a lattice L (i.e., {S + v : v ∈ L}) which covers Zd. If the translates are
disjoint, so that each point of Zd is covered exactly once, then we have a lattice tiling
of Zd by S.

If we have a lattice covering as above, then |S| ≥ |Zd : L|; if it is a tiling, then
|S| = |Zd : L|. So we can measure the extent to which a covering is “almost” a tiling
by one of two numbers: the density of the covering, which is |Zd : L| /|S| ≥ 1 (this is
the average number of sets in the covering to which a random point of Zd belongs),
or the efficiency of the covering, which is |S|/ |Zd : L| ≤ 1. So Proposition 2.1 tells
us that, in order to get the best possible Abelian Cayley graph on d generators with
diameter k, we must find a lattice covering of Zd by Sk or S′

k whose density (efficiency)
is as small (large) as possible. We now give one more reformulation of the question.

Lemma 3.1. Suppose we have a lattice covering of Zd using a bounded set S and
the lattice L. Then there is a set T ⊆ S such that the translates of T by L form a
lattice tiling of Zd.

Proof. Let ≺ be a linear order of L compatible with addition. Now let T be the
set of all points in S which are not in any of the sets S + v for v ∈ L, v 
 0. We will
see that every point x is in exactly one of the sets T + v for v ∈ L.

Fix x. As noted before, x is in only finitely many of the translates S + v, so
let w be the ≺-greatest member of L such that x ∈ S + w. Let y = x − w ∈ S.
Then y cannot be in S + v for v 
 0 in L, because, if it were, we would have
x = y+w ∈ S+v+w and v+w 
 w, contradicting the maximality of w. So y ∈ T
and x ∈ T + w.

Now suppose x = y + w = y′ + w′, where w and w′ are distinct members of L
and y and y′ are in T (and hence in S). Then v = y − y′ = w′ − w is a nonzero
member of L, so either v 
 0 or v ≺ 0. In the former case, y = y′ + v ∈ S + v
contradicts y ∈ T ; in the latter case, y′ = y−v ∈ S+(−v) contradicts y′ ∈ T .

Note that such a set T must be of cardinality |Zd : L|, which is the size of the
Cayley graph of Zd/L. So the size of the largest undirected (directed) Abelian Cayley
graph on d generators with diameter k is equal to the size of the largest subset T of
Sk (S′

k) such that there is a lattice tiling of Zd using T .

4. Approximation by lattice coverings of real space. The study of lattice
coverings and lattice tilings is more familiar for Rd than for Zd. We will show that
real coverings can be approximated to some extent by integer coverings, and vice
versa, so that known results from the real context can be transferred to the integer
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lattices we are interested in.
The definitions of lattice, lattice covering, and lattice tiling are the same in Rd

as in Zd, except that we allow boundaries to be shared in the definition of a tiling.
This lets us work throughout with closed sets (usually polyhedra with their interiors)
instead of having to keep some of the boundary points and discard others. Most of
the results above for integer lattices go through verbatim for real lattices, including
Lemma 3.1 and its proof (although in practice we will probably use the closure of T
rather than T itself). The main difference is that the absolute determinant |detM |
of the matrix formed from the generators of a lattice L is not |Rd : L| (which is
infinite). Instead, this determinant is the measure of the parallelepiped determined
by the generating vectors; this parallelepiped gives a lattice tiling of Rd using the
lattice L. It follows easily that any other set S which gives a lattice tiling using the
lattice L must have measure |detM | (barring pathological cases of nonmeasurable
sets or positive-measure boundaries). Such a set S is called a fundamental region for
the lattice L. One can now define the density or efficiency of a covering by dividing
the measure of the covering set by this determinant or vice versa.

One can transform a lattice covering of Zd using S into a lattice covering of Rd

by replacing each point of S with a unit cube (i.e., replace S with S + U , where U is
a fixed unit d-cube with edges parallel to the coordinate axes); the two coverings will
have the same density. However, transforming results in the other direction is harder
because the real results usually involve actual triangles, octahedra, etc., rather than
polycube approximations, and the lattices used often will not be integer lattices. We
will now present results that allow us to get around these difficulties.

In Rd, let S̄k be the closed l1-ball of radius k at the origin:

S̄k = {(x1, . . . , xd) : |x1|+ · · ·+ |xd| ≤ k}.
Let S̄′

k be the set of nonnegative points in S̄k:

S̄′
k = {(x1, . . . , xd) : x1, . . . , xd ≥ 0, x1 + · · ·+ xd ≤ k}.

Let L be any lattice in Rd.
Proposition 4.1.

(a) If Sk + L covers Zd, then S̄k+d/2 + L covers Rd.

(b) If S′
k + L covers Zd, then S̄′

k+d + L covers Rd.
Proof. (a) By the triangle inequality for l1 distance, we have S̄k + S̄d/2 ⊆ S̄k+d/2,

so Sk + L + S̄d/2 ⊆ S̄k+d/2 + L; therefore, it suffices to show that Zd + S̄d/2 = Rd.

For any x ∈ Rd, let y be the element of Zd nearest to x (i.e., round each coordinate
of x to the nearest integer); then x− y is in S̄d/2, so x is in Zd + S̄d/2.

(b) Similarly, this follows from the fact that Zd+ S̄′
d = Rd, which is proved in the

same way as above (round each coordinate of x downward instead of to the nearest
integer).

One can argue in the same way within Zd to get the following.
Proposition 4.2. If L is a lattice in Zd and m is a positive integer, then the

following hold:
(a) If Sk + L covers Zd, then Smk+�m/2�d +mL covers Zd.

(b) If S′
k + L covers Zd, then S′

mk+(m−1)d +mL covers Zd.

Proof. For (a), clearly Smk+mL coversmZd, so, as in the preceding proposition, it
suffices to note thatmZd+S�m/2�d covers Zd because we can simply round any member

of Zd to the nearest member of mZd. Similarly, (b) holds because mZd + S′
(m−1)d

covers Zd.
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Of course, one can get similar results for sets other than Sk and S′
k.

Using Proposition 4.1, it is easy to move from a covering of Zd using an integer
lattice to a covering of Rd using a real lattice (and using the real shape S̄k or S̄′

k);
if k is large relative to d, then the two coverings have about the same efficiency. We
will now show that one can move in the other direction as well.

First, we give a useful criterion for deciding whether one has a lattice covering
of Rd.

Proposition 4.3. Suppose S is a nonempty subset of Rd and L is a lattice in
Rd. If there is an ε > 0 such that S+L covers all points within distance ε of S, then
S + L covers Rd.

Proof. Clearly, there is some point x0 in S + L. We will show that, if x ∈ S + L
and the distance δ(x,y) is less than ε, then y ∈ S + L. Applying this once shows
that all points within distance ε of x0 are in S + L; applying it again shows that all
points within distance 2ε of x0 are in S +L; since this can be repeated ad infinitum,
we find that all points of Rd are in S + L.

Let x and y be as above. Find v ∈ L such that x ∈ S + v. Then y − v is
within distance ε of x − v ∈ S, so there is v′ ∈ L such that y − v ∈ S + v′. Hence,
y ∈ S + v′ + v, so y ∈ S + L, as desired.

Using this, we can now show that, if one has a lattice covering using a bounded
subset of Rd, then one can perturb the lattice slightly and still get a lattice covering
using a slightly larger subset of Rd.

Proposition 4.4. Let S be a bounded subset of Rd, and let L be a lattice in
Rd such that S + L = Rd; let v1, . . . ,vd be a list of generators for L. Then there
are positive numbers η and ρ such that, for all r ∈ (0, 1), if the distance δ(vi,v

′
i) is

less than rη for all i ≤ d, then S+ + L′ = Rd, where L′ is the lattice generated by
v′

1, . . . ,v
′
d and S+ is the set of points within distance rρ of S.

Proof. The number of members of L within any bounded part of Rd is finite, so it
only takes finitely many translates of S by members of L to cover any bounded part
of Rd. In particular, there is a number M > 0 such that the sets S+a1v1 + · · ·+advd
for (a1, . . . , ad) ∈ Zd with |a1| + · · · + |ad| ≤ M cover all points within distance ρ
of S, for some ρ > 0. Let η = ρ/M .

Let r be any positive number less than 1; we must see that, if S+ and L′ are
defined as above, then S+ + L′ = Rd. By the preceding proposition, it will suffice
to show that S+ + L′ covers all points within distance (1 − r)ρ of S+. Suppose y is
within distance (1 − r)ρ of S+; then y is within distance (1 − r)ρ + rρ = ρ of S, so
there exist integers a1, . . . , ad with |a1|+ · · ·+ |ad| ≤M and a point x ∈ S such that

y = x + a1v1 + · · ·+ advd. Let x′ = x +
∑d
i=1 ai(vi − v′

i); then

δ(x,x′) ≤
d∑
i=1

|ai|δ(vi,v′
i) <

d∑
i=1

|ai|rη ≤Mrη = rρ,

so x′ ∈ S+. Since y = x′ + a1v
′
1 + · · ·+ adv

′
d, we have y ∈ S+ +L′, as desired.

Note that, in the above propositions, “distance” need not be Euclidean distance;
it can be any metric arising from a norm on Rd. For our present purposes, it will be
most convenient (but not essential) to use l∞-distance: δ(x,y) = maxi |xi − yi|.

Theorem 4.5. Suppose one has a lattice L in Rd such that S̄k + L covers
Rd; let v1, . . . ,vd be generators for L. Then there is a constant c such that, for all
sufficiently large real numbers t, if wi is obtained from tvi by rounding all coordinates
to the nearest integer, and L̄ is the lattice generated by w1, . . . ,wd, then S̄tk+c + L̄
covers Rd. The same statement holds for S̄′

k and S̄′
tk+c instead of S̄k and S̄tk+c.
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Proof. For the S̄k case, let S = S̄k and find η and ρ as in the preceding proposition,
letting the distance δ be the l∞ metric. Let c be any fixed number greater than dρ/2η.
Then, for any t > c/dρ, if we let r = c/dρt, then r < 1 and 1/2t < rη. If we define
wi and L̄ as above, and let v′

i = wi/t and L′ = L̄/t, then δ(vi,v
′
i) ≤ 1/2t for each

i, so we can conclude that S+ + L′ covers Rd, where S+ is the set of points within
distance rρ of S̄k. It is easy to see that S+ ⊆ S̄k+drρ, so S̄k+drρ + L′ covers Rd.
Hence, S̄tk+tdrρ + tL′ covers Rd; but tdrρ = c and tL′ = L̄, so we are done.

The proof for S̄′
k is almost the same. Let S = S̄′

k and apply the preceding
proposition (using the l∞ metric again) to get η and ρ. Fix c > dρ/η. For any
t > c/2dρ, if we let r = c/2dρt, then r < 1 and 1/2t < rη. Now define wi, L̄, v′

i, L
′,

and S+ as above, and conclude again that S+ + L′ covers Rd. One can easily check
that S+ ⊆ S̄′

k+2drρ − rρu, where u = (1, . . . , 1). Hence, S̄′
k+2drρ − rρu + L′ covers

Rd, so S̄′
k+2drρ + L′ covers Rd + rρu = Rd. Now multiply by t to see that S̄′

tk+c + L̄

covers Rd.
Again it is easy to modify this proof for other sets in place of S̄k or S̄′

k. Also, the
proof is quite effective, allowing one to compute specific values of c and t which work
for a given lattice L (assuming it is feasible to compute M and ρ).

The covering S̄tk+tL has the same efficiency as the covering S̄k+L; since S̄tk+c+L̄
is a relatively slight perturbation of S̄tk + tL when t is large, it has almost the same
efficiency. Since L̄ is an integer lattice, the fact that S̄tk+c+ L̄ covers Rd implies that
S�tk+c� + L̄ covers Zd; again the efficiency is almost the same if t is large. Therefore,
we can construct integer lattice coverings which are as nearly efficient as desired to a
given real lattice covering, thus giving asymptotic results for the present case of the
degree-diameter problem. The precise result is as follows.

Theorem 4.6. Let εR be the best possible efficiency for a lattice covering of Rd

by S̄1, and let εZ(k) be the best possible efficiency for a lattice covering of Zd by Sk.
Then εZ(k) = εR +O(k−1). The same applies to S̄′

1 and S′
k.

Proof. Let L be a lattice giving a lattice covering of Rd by S̄1 with efficiency εR.
Let v1, . . . ,vd and c be as in Theorem 4.5. Given a large integer k, let t = k−c, and let
L̄ be the integer lattice approximating tL as in Theorem 4.5, generated by w1, . . . ,wd.
Since L̄ is an integer lattice and S̄t+c+ L̄ = Rd, we have Sk + L̄ = Zd. Let M and M̄
be the d×d matrices whose rows are vi and wi, respectively; then detM = (2d/d!)εR
and det M̄ ≤ |Sk|εZ(k), which implies det(k−1M̄) ≤ (2d/d! + O(k−1))εZ(k). But
M̄ = tM + O(1) = kM + O(1), so k−1M̄ = M + O(k−1), and thus det(k−1M̄) =
detM +O(k−1); this implies εZ(k) ≥ εR +O(k−1).

On the other hand, Proposition 4.1(a) states that any lattice that gives a covering
of Zd by Sk also gives a covering of Rd by S̄k+d/2. If the efficiency of the former is
εZ(k), then the efficiency of the latter is (|Sk|/ vol(S̄k+d/2))εZ(k) = (1+O(k−1))εZ(k);
hence, (1 +O(k−1))εZ(k) ≤ εR, so εZ(k) ≤ εR +O(k−1).

The same argument works for S̄′
1 and S′

k.
Again the same applies to other shapes as well. Combining this with the known

sizes of the sets Sk and S′
k gives the following.

Corollary 4.7. Let d be a fixed positive integer.
(a) If εR is the best possible efficiency for a lattice covering of Rd by S̄1, then the

size of the largest possible undirected Cayley graph of an Abelian group on d generators
with diameter at most k is (2dεR/d!)k

d +O(kd−1).
(b) If ε′R is the best possible efficiency for a lattice covering of Rd by S̄′

1, then the
size of the largest possible directed Cayley graph of an Abelian group on d generators
with diameter at most k is (ε′R/d!)k

d +O(kd−1).
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The above assumes that the upper limit εR on the efficiency of a lattice cover-
ing of Rd by S̄1 is actually attained. To see that this is the case, first note that
there is certainly a lattice covering with positive efficiency, say ε0. Now consider
the possible sets of generating vectors v1, . . . ,vd for a lattice L giving a covering of
efficiency at least ε0. We may assume that, if vi is one of the generators and w is
an integral linear combination of the other generators, then |vi| ≤ |vi + w|; other-
wise, just replace vi with vi + w to get a smaller set of generating vectors for L, and
iterate until no more such reductions are possible. It follows that, if, say v1 is the
longest of the vectors vi, then the angle between v1 and the hyperplane P spanned by
v2, . . . ,vd is bounded below by a positive number (π/3 for d = 2, somewhat less for
higher d). But the distance from v1 to P is at most the diameter of S̄1 (i.e., 2)
since otherwise S̄1 + L would consist of “hyperplanes” of copies of S̄1 with gaps in
between. Putting these together, we get a fixed upper bound B on the length |v1|,
and hence on all of the lengths vi. But we also have a positive lower bound b on
the determinant det(v1, . . . ,vd), namely ε0 vol(S̄1). One can now show that there is
a fixed number M such that, if m1, . . . ,md ∈ Z and |m1| + · · · + |md| > M , then
|m1v1 + · · ·+mdvd| > 3. Hence, the finitely many translates S̄1 +m1v1 + · · ·+mdvd
with |m1| + · · · + |md| ≤ M will have to cover all points at distance ≤ 2 from the
origin. Now, the set of sequences v1, . . . ,vd with all |vi| ≤ B such that the trans-
lates S̄1 +m1v1 + · · ·+mdvd for |m1|+ · · ·+ |md| ≤ M cover all points at distance
≤ 2 from 0 is a compact set, so there is a sequence v1, . . . ,vd in this set for which
det(v1, . . . ,vd) is maximal; this sequence of vectors generates a lattice covering of
Rd by S̄1 (by Proposition 4.3) with maximal possible efficiency. The same argu-
ment works for any compact shape of positive volume, such as S̄′

1. (Presumably this
argument is well known, but the authors were not able to find a reference for it.)

As we will see in a later section (for the specific case d = 3, but by a gen-
eral argument), the determination of actual values for εR and ε′R for a particular
dimension d can, in principle, be reduced to the solution of a finite number of nonlin-
ear optimization problems (each of which requires maximizing a degree-d polynomial

function over a region which is a convex polytope in Rd2). Unfortunately, this finite
number is extremely large, so the actual values are not known for d > 2. (For d = 1 we
trivially have εR = ε′R = 1. For d = 2 we will see below that εR = 1 and ε′R = 2/3.)
The computations described in later sections lead us to conjecture that, for d = 3,
εR = 8/9 and ε′R = 63/125.

5. Undirected Cayley graphs on two generators. We now begin to consider
the results that can be obtained for specific values of d. As noted previously, the case
d = 1 is trivial, so we will start with the case of undirected Abelian Cayley graphs on
two generators and a given bound k on the diameter. The results in this subsection
are not new.

As noted earlier, the diameter of the ordinary toroidal mesh Zm×Zn is �m/2�+
�n/2�. Hence, the largest such mesh with diameter ≤ k is the one in which m is
k rounded up to the nearest odd integer and n is k + 1 rounded up to the nearest
odd integer. This corresponds to the lattice covering of Z2 by Sk using the lattice
L = mZ × nZ; the efficiency of this covering is mn/(2k2 + 2k + 1), which tends to
1/2 as k becomes large. So one can hope for better results.

To get such results, consider the real rotated square S̄k. There is, obviously, a
lattice tiling using this square; it is just a rotated orthogonal grid with spacing

√
2k

between lines. The lattice L1 for this tiling is generated by the vectors (k, k) and
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(−k, k); as expected, the corresponding determinant is 2k2, which is equal to the area
of S̄k.

It now follows from the approximation results that we can get lattice coverings of
Z2 using Sk with efficiencies that approach 1 for large k. However, we do not need
the general results here; since L1 is already an integer lattice, we can simply note that
S̄k + L1 = R2 implies Sk + L1 = Zd. So this gives a lattice covering using Sk whose
index is |Z2 : L1| = 2k2, which is better than that from the best toroidal mesh for all
k ≥ 3; for large k, the efficiency approaches 1.

The corresponding Cayley graph Z2/L1 turns out to be quite simple to describe.
The 2k×k rectangle {1, . . . , 2k}×{1, . . . , k} contains exactly one point from each coset
of L1, so it can serve as a set of vertices for the graph. Adjacent points in the rectangle
(horizontally and vertically) are connected as in the usual mesh. Horizontally, one
has the usual toroidal connections at the ends: (1, j) is connected to (2k, j). But
vertically, there is an offset of k: (i, 1) is connected to (i+k, k) if i ≤ k, or to (i−k, k)
if i > k. This is just like a 2k × k toroidal mesh, except that the torus is twisted
halfway around before the long edges are glued together. This twist allows one to
double the number of vertices in a k × k toroidal mesh while increasing the diameter
by at most 1 (there is no increase if k is even).

A number of the useful properties of ordinary toroidal meshes apply with very
little change to twisted toroidal meshes. For instance, since the new mesh is still just
a rectangular mesh with extra connections at the boundary, it is easy to map a simple
rectangular grid into the mesh by simply ignoring the boundary connections.

Another nice property of toroidal meshes is that it is easy to find a shortest route
from one node to another: just check each coordinate separately to find which of the
two possible directions gives a shorter path and put the results together. Finding
optimal routes is only slightly more complicated for the twisted toroidal mesh. To
see this, consider the given 2k× k rectangle as half of a 2k× 2k rectangle: each node
(i, j) in the first half has a copy (i±k, j±k) in the other half. This larger rectangle is
then copied periodically without further twists to cover Z2; in other words, the 2k×k
twisted toroidal mesh is just a 2k×2k toroidal mesh where (i, j) and (i±k, j±k) are
identified as a single node. Therefore, to find an optimal route from (i, j) to (i′, j′)
in the twisted mesh, apply the ordinary 2k × 2k toroidal mesh routing algorithm to
find optimal routes from (i, j) to (i′, j′) and to (i′ ± k, j′ ± k), and choose the shorter
of the two.

In the real case, the lattice L1 gave a perfect tiling of R2 using S̄k, since boundary
overlap did not count; but in the integer case, the boundary overlap reduces the
efficiency slightly from 1 to 2k2/(2k2 + 2k + 1). It turns out that if one uses a
slightly modified lattice, namely the lattice L2 with generating vectors (k, k+ 1) and
(−k − 1, k), then one gets a covering of Z2 by copies of Sk with efficiency 1 (i.e., a
tiling). See Figure 5.1. We therefore get the following.

Theorem 5.1 (multiple authors; see below). The largest possible size for the
undirected Cayley graph of an Abelian group on two generators with diameter k is
2k2 + 2k + 1.

This result has appeared in various forms in a number of places (usually stated
so as to apply only to cyclic Cayley graphs, but since the optimal Abelian Cayley
graphs turn out to be cyclic, the results are basically equivalent). See, for instance,
Boesch and Wang [4] or Yebra el al. [25]; the Bermond–Comellas–Hsu survey [3] also
has many additional references.

The tiling in Figure 5.1 appears in Yebra et al. [25], among other places; it
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Fig. 5.1. Lattice tiling of Z2 using Sk (shown for k = 3).

even appears in Native American artwork of the southwestern United States and may
date back to the ancient Aztecs, who used the stepped diamond shape in temple
ornamentation. (This shape is now commonly known as the Aztec diamond, a term
coined by J. Propp.) However, it is unlikely that the Aztecs were motivated by the
desire to construct efficient parallel computation networks.

It is easy to see that the lattice tiling of Z2 by Sk, or of R2 by the Aztec diamond,
is unique except for a possible reflection in the line x = y; this just corresponds to
interchanging the two generators for the Cayley graph. Therefore, the Cayley graph
attaining the bound in Theorem 5.1 is unique up to isomorphism.

Since the point (2k + 1, 1) is in L2, we have e2 + L2 = (−2k − 1)(e1 + L2) in
Z2/L2. Hence, Z2/L2 is a cyclic group generated by e1 + L2 alone. It is isomorphic
(not only as a group but as a Cayley graph) to Z2k2+2k+1 with the generating set
{1, 2k2}. One may choose to replace the second generator with its inverse, making
the generating set {1, 2k + 1}; other generating sets can be used as well.

For layout purposes, one may just arrange the nodes in the form of the diamond Sk
and connect the boundary nodes as specified by L2, but it is probably more convenient
to use the almost-rectangular shape outlined in Figure 5.1 (a (2k + 1) × k rectangle
with an extra partial row of length k + 1). The boundary connections are similar to
those for the twisted toroidal mesh given earlier, but now there is also a slight twist
when connecting the short sides: there is a drop of one row when wrapping around
from right to left. This layout shows that one can embed a rectangular grid into this
graph so as to use almost all of the nodes.



490 RANDALL DOUGHERTY AND VANCE FABER

6. Directed Cayley graphs on two generators. We now describe the largest
possible directed Cayley graph of an Abelian group on two generators with diameter
bounded by k. As in the preceding subsection, the two-generator results here are
already known.

The best toroidal mesh in this case is Zm × Zm′ , where m = �k/2� + 1 and
n = �k/2�+ 1; this gives size mm′ = �(k + 2)2/4�, which is about 1/2 of |S′

k|, so one
can hope to do better.

However, one is not going to get perfect efficiency in this case. One can easily tile
the plane with triangles such as S̄′

k if one is allowed to rotate them, but this is not
possible using only a lattice of translated copies of a triangle. The exact minimum
density for a lattice covering of the plane by triangles was computed by Fáry in 1950;
we will give a different proof of his result here and then give the analogue for Z2.

Theorem 6.1 (Fáry [13]). The minimum density for a lattice covering of R2 by
triangles is 3/2. Equivalently, the maximum efficiency is 2/3.

Proof. Since the density and efficiency of a lattice covering are invariant under
affine transformations, it does not matter which triangle we work with, so, for slight
convenience, let us work with the isosceles right triangle S̄′

1.
One can attain the efficiency 2/3 by using the lattice with generating vectors

(1/3, 1/3) and (2/3,−1/3). This corresponds to a tiling of the plane using an L-
tromino that takes up 2/3 of S̄′

1, as shown in Figure 6.1. Or one can cut off all three
corners of the triangle to get a hexagon that tiles the plane.

Now suppose that we have a lattice covering of R2 using S̄′
1 and the lattice L;

we must show that the efficiency of the covering is at most 2/3. Let ≺ be a linear
ordering of L compatible with addition which is defined by primarily ordering points
(x, y) according to the sum x + y (so points that are farther out in the direction
(1, 1) come later in the ordering) and breaking ties (if any) by distance in some other
direction.

Let AB be the hypotenuse of S̄′
1. Only finitely many of the L-translates of S̄′

1 lie
near S̄′

1; of these, those of form S̄′
1 + v for v 
 0 must cover the points which are

near AB on the side facing away from S̄′
1. Since the union of finitely many translates

of S̄′
1 is closed, AB itself is covered by finitely many translates S̄′

1+v with v 
 0. Find
such a covering of AB with as few translates as possible, say S̄′

1 + v1, . . . , S̄
′
1 + vm,

where vi 
 0.
Note that, since S̄′

1 + vi must intersect AB, it contains one of the endpoints A
and B if and only if the coordinates of vi are not both positive. We may assume that
at most one of the vectors vi has both coordinates positive. If there are two such
vectors, let them be vi and vj , where vi ≺ vj . Then vj − vi 
 0; since vi has both

Fig. 6.1. A subset of the triangle S̄′
1 which tiles the plane.
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coordinates positive, we have

(S̄′
1 + vj) ∩AB ⊆ (S̄′

1 + vj − vi) ∩AB.
Furthermore, vj − vi cannot have both coordinates positive because, if it did, we
would have

(S̄′
1 + vj) ∩AB ⊆ (S̄′

1 + vi) ∩AB,
so S̄′

1 + vj would not have been needed in the covering of AB, contradicting the
minimality of m. So we can replace S̄′

1 +vj with S̄′
1 +vj −vi to get another covering

of AB using fewer vectors with both coordinates positive. Repeat this until only one
such vector is left.

Since each translate S̄′
1 + vi is convex, its intersection with AB is a segment or a

point. Therefore, at most one of these translates can contain A, since otherwise one of
the intersections (S̄′

1 + vi)∩AB would include another such intersection, making the
latter translate superfluous and contradicting the minimality of m. Similarly, at most
one of the translates S̄′

1 + vi contains B. Putting these facts together, we conclude
that we need at most three of the translates S̄′

1 + v with v 
 0 to cover the segment
AB.

In other words, there are points P and Q on AB such that each of the three
segments AP , PQ, and QB is covered by one of the translates S̄′

1 + v with v 
 0.
Let l1, l2, l3 be the lengths of these three segments; then l1 + l2 + l3 =

√
2. Note that,

if S̄′
1 + v covers AP , then S̄′

1 + v covers the entire isosceles right triangle below AP
whose hypotenuse is AP ; the area of this triangle is l21/4. Similar statements hold for
PQ and QB. So we have three disjoint triangles included in S̄′

1 which are covered by
translates S̄′

1 + v with v 
 0, and the total area of these triangles is (l21 + l22 + l23)/4.
By the proof of (the real version of) Lemma 3.1, if we let T be the part of S̄′

1

which is not covered by any translate S̄′
1+v with v 
 0, then T gives a lattice tiling of

R2 using L, so the efficiency of the covering using S̄′
1 and L is Area(T )/Area(S̄′

1). We
have Area(S̄′

1) = 1/2 and Area(T ) ≤ 1/2− (l21 + l22 + l23)/4. A standard minimization
shows that, if l1 + l2 + l3 =

√
2, then l21 + l22 + l23 ≥ 2/3 (with equality only when

l1 = l2 = l3 =
√

2/3). Therefore, Area(T ) ≤ 1/3, so the efficiency of the covering by
S̄′

1 and L is at most 2/3.
It now follows from Theorem 4.6 that the largest possible index |Z2 : L| for an

integer lattice L giving a lattice covering of Z2 by S′
k is approximately (2/3)|S′

k|, or
about k2/3, for large k. However, we can actually get an exact answer rather than an
approximation.

Theorem 6.2 (due mainly to Wong and Coppersmith [24]). The largest possible
index |Z2 : L| for a lattice L giving a lattice covering of Z2 by S′

k is �(k + 2)2/3�.
Proof. We will give a discrete form of the proof of Theorem 6.1. Let a be (k+2)/3

rounded to the nearest integer, and let b = k + 2− 2a (so b is also about (k + 2)/3).
Let Tk be the set of (i, j) in Z2 such that i, j ≥ 0, min(i, j) < a, and max(i, j) < a+b.
Then Tk ⊆ S′

k, since any (i, j) in Tk satisfies i + j ≤ a − 1 + a + b − 1 = k. The
set Tk looks like the L-tromino from Figure 6.1, and it tiles Z2 using the lattice with
generating vectors (a, a) and (a+ b,−b). Therefore, this lattice gives a covering of Z2

using S′
k, and its index is a(a+ 2b), which works out to be �(k + 2)2/3�.

Now, suppose we have a lattice covering of Z2 using S′
k and a lattice L; we must

show that |Z2 : L| ≤ �(k + 2)2/3�. Define the linear order ≺ of L as before. Let A
and B be the points (0, k + 1) and (k + 1, 0); then the segment AB contains k + 2
integral points, which must be covered by translates S′

k + v where v ∈ L and v 
 0.
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Let v1, . . . ,vm be a list of as few vectors as possible in L such that vi 
 0 and
the translates S′

k+1 +vi of S′
k+1 cover all of the integral points on AB. Then the same

argument as for Theorem 6.1 shows that m is at most 3. Hence, AB can be broken
up into three segments AP , P ′Q, and Q′B (where P and P ′ are adjacent integral
points on AB, as are Q and Q′), each of whose integral points is covered by one of
the translates S′

k+1 + v with v 
 0. Let l1, l2, l3 be the numbers of integral points
on these segments; then l1 + l2 + l3 = k + 2.

If S′
k+1 + v covers the integral points on AP , then it covers all of the integral

points in the isosceles right triangle that lies below AP and has AP as its hypotenuse.
In fact, all of these points other than those on AP itself are covered by S′

k + v; there
are (l21 − l1)/2 such points and all are in S′

k. Similarly, the segments P ′Q and Q′B
give (l22 − l2)/2 + (l23 − l3)/2 more points of S′

k which are covered by translates S′
k +v

with v 
 0.
As in the proof of Lemma 3.1, let T be the set of points in S′

k that are not in
S′
k + v for any v 
 0; then |T | = |Z2 : L|. The calculations above show that

|T | ≤ |S′
k|+

l1 + l2 + l3
2

− l21 + l22 + l23
2

.

Here |S′
k| = (k + 1)(k + 2)/2, and l1 + l2 + l3 is just k + 2. Given l1 + l2 + l3, we

minimize l21 + l22 + l23 by making the numbers l1, l2, l3 as close to equal as possible; in
this case, this means that the minimum occurs when two of them are a and the third
is b. Therefore,

|T | ≤ (k + 1)(k + 2)

2
+
k + 2

2
− 2a2 + b2

2
,

which simplifies to |T | ≤ �(k + 2)2/3�, as desired.
Corollary 6.3 (due mainly to Wong and Coppersmith [24]). The largest pos-

sible size for the directed Cayley graph of an Abelian group on two generators having
diameter k is �(k + 2)2/3�.

Again it is hard to be historically accurate here because different authors have
presented results in quite different ways; see the Bermond–Comellas–Hsu survey [3]
for more information and references.

Let a, b, and Tk be as in the proof of Theorem 6.2; then the set Tk gives a suitable
layout for a network realizing this Cayley graph. In addition to the mesh connections
from (i, j) to (i+1, j) and (i, j+1) within Tk, one will also need wraparound connec-
tions from (a+ b− 1, j) to (0, j + b) for j < a, from (a− 1, j + a) to (0, j) for j < b,
from (i, a+ b− 1) to (i+ b, 0) for i < a, and from (i+ a, a− 1) to (i, 0) for i < b.

In the case a = b, one can use an alternate layout in the form of a 3a×a rectangle,
with wraparound connections from (3a, j) to (1, j) and from (i, a) to ((i+a) mod a, 1).
This is just a variant of the twisted toroidal mesh, where the long dimension is twisted
by a factor of 1/3 rather than 1/2; it is convenient for construction and for embedding
a rectangular grid without boundary connections into the network (although this is
not particularly useful in the directed case). If a �= b, then one gets a rectangle with
some missing nodes or extra nodes along part of one edge, and the cross-connections
are slightly messier.

If k ≡ 1 (mod 3), so that a = b = (k + 2)/3, then one can see from the proof
of Theorem 6.2 that the lattice L with generating vectors (a, a) and (a + b,−b) is
the unique lattice attaining the bound in the theorem, and hence the Cayley graph
attaining the bound in Corollary 6.3 is also unique. However, if k �≡ 1 (mod 3),
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so that a and b differ by 1, then there are two more lattices attaining the bound:
the lattice L̃ with generating vectors (a, b) and (2a,−a), and the mirror image with
generating vectors (b, a) and (−a, 2a). The latter two give Cayley graphs that are
isomorphic to each other, but not to the Cayley graph of Z2/L (if k > 1), because the
Cayley graph of Z2/L has cycles of length 2a while that of Z2/L̃ does not. Therefore,
if k > 0 and k �≡ 1 (mod 3), then there are exactly two Cayley graphs meeting the
bound of Corollary 6.3.

If k > 1 and k ≡ 1 (mod 3), then the optimal group Z2/L is not cyclic; it is
isomorphic to Z3a×Za by an isomorphism sending e1 and e2 to (1, 0) and (3a−1, 1).
On the other hand, if k �≡ 1 (mod 3), then (2a+ b, a− b) is in L and a− b = ±1, so
e2 is a multiple of e1 in Z2/L, and hence Z2/L is cyclic. Similarly, Z2/L̃ is cyclic
since (3a, b − a) ∈ L̃. One can get the corresponding Cayley graphs directly from
the cyclic group Z�(k+2)2/3� by using the generator pairs {1, (2a + b)/(b − a)} and
{1, 3a/(a− b)}, respectively.

7. Undirected Cayley graphs on three generators. For d = 3, we must
consider three-dimensional lattice tilings by the regular octahedron S̄k and its discrete
approximation Sk. These shapes do not tile space perfectly, and the best possible
efficiency for a lattice covering of R3 by S̄k appears to be still open (although there is
a good guess, as we shall see). So we will apply our results in reverse, using computed
results about the degree-diameter problem to obtain information about lattice tilings
by octahedra.

The best three-dimensional toroidal mesh with diameter k is Z2b0+1 × Z2b1+1 ×
Z2b2+1, where bi = �(k + i)/3�; this has about (8/27)k3 vertices for large k. This
corresponds to the covering of R3 by S̄1 using the cubic lattice (2/3)Z3; this covering
has efficiency 2/9.

It turns out that a good lattice to use for coverings with regular octahedra is the
body-centered cubic lattice, defined most simply as the set Lbcc of points in Z3 whose
coordinates are all odd or all even. If x is an arbitrary point of R3, then x lies in
or on one of the unit cubes with vertices in Z3; two opposite corners of this cube
will be in Lbcc, say v and w. Then each coordinate of x lies between (inclusively)
the corresponding coordinates of v and w, so, letting δ be the l1 metric on R3, we
have δ(v,x) + δ(x,w) = δ(v,w) = 3. Hence, either δ(v,x) ≤ 3/2 or δ(w,x) ≤ 3/2.
This shows that |S̄3/2|+ Lbcc = R3. Now, Lbcc has generators (2, 0, 0), (0, 2, 0), and
(1, 1, 1), giving a matrix with determinant 4, while the volume of S̄3/2 is 9/2, so this
lattice covering of R3 has efficiency 8/9. A fundamental region for the lattice can be
obtained by truncating each of the corners of the octahedron, giving an Archimedean
solid whose faces are eight regular hexagons and six squares.

The same reasoning shows that, for k ≥ 1, one can get a lattice covering of Z3

by Sk using the slightly distorted body-centered cubic lattice Lbcc(a1, a2, a3) with
generating vectors (2a1, 0, 0), (0, 2a2, 0), and (a1, a2, a3), where ai = �(2k + i)/3�.
This gives a Cayley graph of size 4a1a2a3, or approximately (32/27)k3 for large k.
This is an improvement over the best toroidal mesh of diameter k; it is about four
times as good for large k.

One can lay out the Cayley graph for Z3/Lbcc(a1, a2, a3) in the form of a 2a1 ×
2a2 × a3 mesh. Opposite 2ai × a3 sides are connected to each other as in the usual
toroidal mesh, but the toroidal connections between the top and bottom 2a1×2a2 sides
are twisted in two directions: node (j1, j2, a3) is connected to node (j1±a1, j2±a2, 1),
where the signs are chosen to give numbers between 1 and 2ai, inclusive. Routing
algorithms and embeddings of rectangular grids work here just as they did in the
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two-dimensional version.
Two questions now arise. First, can one improve the efficiency by making small

adjustments to the discrete lattice, as we did in the two-generator cases? Second, can
one get better results by using a completely different lattice? The answers to these
questions are not immediately clear, so we will approach the problem from another
direction.

One can write computer programs to examine various groups, choose all (or at
least many) possible sets of a certain number of generators for the group, and compute
the resulting diameters. Dinneen has performed many such computations, some using
exhaustive search of generator sets and others using random sampling, on a number of
different kinds of groups, resulting in new best-known graphs for the degree-diameter
problem; see, for instance, Dinneen and Hafner [10]. Some of Dinneen’s earlier un-
published computations were for Abelian (usually cyclic) groups of diameter up to 10
on various numbers of generators.

The authors have written a program to extend these calculations. The program
does an exhaustive search of generating sets for each Abelian group but avoids ex-
amining many generating sets which give Cayley graphs that are isomorphic to ones
already examined; for instance, in the case of a cyclic group Zn, one may assume
that the first generator is a divisor of n. Here “exhaustive search” means that all
Abelian groups of size up to |Sk| = (4k3 + 6k2 + 8k + 3)/3 were examined, so the
results definitely give the largest possible Cayley graph of an Abelian group with di-
ameter k. The program uses bit manipulations adapted from (but simpler than) those
of Dougherty and Janwa [11], which gave algorithms for diameter computations for
Cayley graphs of Abelian groups of exponent 2.

It turns out that, for each k for which the calculation has been done so far (up
to 18), the best Abelian Cayley graph has been obtained from a cyclic group. The
results of the computation are shown in Table 7.1. This extends (and corrects an
erroneous final entry in) a similar table given by Chen and Jia [5].

The first column is the desired diameter k. The second column gives the largest
size one could hope for of an undirected Cayley graph of an Abelian group on three
generators. The next two columns give the sizes attained by the best possible ordinary
toroidal mesh and the twisted toroidal mesh described above. Next comes nc, the
computed largest n such that Zn has three generators giving it an undirected diameter
of k. Then comes a triple of generators of Znc attaining this diameter (this is not
always unique, but only one generator set is given here). The final two columns give
the efficiencies of the corresponding lattice coverings of Z3 by Sk and of R3 by S̄k+3/2

(see Proposition 4.1).
Some interesting observations can be made from Table 7.1. First, note that the

twisted toroidal meshes do almost as well as the optimal cyclic groups. Also note
that the numbers in the second-to-last column do seem to be getting close to 8/9 for
larger k; this provides evidence that the body-centered cubic lattice gives the best
lattice covering of R3 by S1.

One can confirm this more strongly by reconstructing the lattices L for which
Z3/L gives these optimal cyclic groups. For instance, look at k = 10, for which
we have the cyclic group Z1393 with generating set {1, 92, 106}. There is a unique
homomorphism from Z3 to Z1393 which sends e1, e2, e3 to 1, 92, 106, and the desired
lattice L is just the kernel of this homomorphism; this means that

L = {(x1, x2, x3) ∈ Z3 : x1 + 92x2 + 106x3 ≡ 0 (mod 1393)}.
One can easily find three vectors in L, namely (1393, 0, 0), (92,−1, 0), and (106, 0,−1);
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Table 7.1

Best undirected Cayley graphs of cyclic groups, three generators.

k |Sk| Toroidal Twisted nc Generators nc/|Sk| nc/ vol(S̄k+3/2)

0 1 1 1 1 .222222

1 7 3 4 7 1,2,3 1 .336000

2 25 9 16 21 1,2,8 .840000 .367347

3 63 27 48 55 1,5,21 .873016 .452675

4 129 45 108 117 1,16,22 .906977 .527423

5 231 75 192 203 1,7,57 .878788 .554392

6 377 125 320 333 1,9,73 .883289 .592000

7 575 175 500 515 1,46,56 .895652 .628944

8 833 245 720 737 1,11,133 .884754 .644700

9 1159 343 1008 1027 1,13,157 .886109 .665371

10 1561 441 1372 1393 1,92,106 .892377 .686940

11 2047 567 1792 1815 1,15,241 .886663 .696960

12 2625 729 2304 2329 1,17,273 .887238 .709953

13 3303 891 2916 2943 1,154,172 .891008 .724015

14 4089 1089 3600 3629 1,19,381 .887503 .730892

15 4991 1331 4400 4431 1,21,421 .887798 .739795

16 6017 1573 5324 5357 1,232,254 .890311 .749668

17 7175 1859 6336 6371 1,23,553 .887944 .754664

18 8473 2197 7488 7525 1,25,601 .888115 .761139

the matrix with these three vectors as rows has determinant 1393 = |Z3 : L|, so these
vectors generate L. Now one can perform elementary operations to reduce these
vectors to a smaller set of generators for L, such as (7, 7, 7), (8,−7, 6), and (6, 8,−7).
These vectors are quite close to the vectors (7, 7, 7), (7,−7, 7), and (7, 7,−7), which
generate a scaled-up body-centered cubic lattice (in fact, the latter lattice gives the
twisted toroidal mesh of size 1372 mentioned in the table). Similarly, one finds that the
other lattices corresponding to the generators in Table 7.1 are almost body-centered
cubic.

There are definite patterns in Table 7.1: every third k gives groups and generators
of the same form. These patterns can be generalized, giving the following result.

Theorem 7.1. For all k ≥ 0, there is an undirected Cayley graph on three
generators of an Abelian (in fact, cyclic) group which has diameter k and size n,
where

n =

⎧⎪⎨
⎪⎩

(32k3 + 48k2 + 54k + 27)/27 if k ≡ 0 (mod 3),

(32k3 + 48k2 + 78k + 31)/27 if k ≡ 1 (mod 3),

(32k3 + 48k2 + 54k + 11)/27 if k ≡ 2 (mod 3).

Proof. We will show the existence of lattices Lk ⊆ Z3 such that Z3/Lk is cyclic,
Sk + Lk = Z3, and |Z3 : L| is the n specified in the theorem.

Let a = �2k/3�. For each k, we define Lk by specifying three generating vectors
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v1, v2, v3 for it, as follows:

v1,v2,v3 =

⎧⎪⎨
⎪⎩

(a+1, a, a), (a,−a, a+1), (a+1, a−1,−a−1) if k ≡ 0 (mod 3),

(a, a, a), (a+1,−a, a−1), (a−1, a+1,−a) if k ≡ 1 (mod 3),

(a, a, a−1), (a−1,−a, a), (a, a−1,−a) if k ≡ 2 (mod 3).

A simple determinant computation shows that |Z3 : Lk| is (2a2 + a+ 1)(2a+ 1),
4a3+3a, or (2a2−a+1)(2a−1) in the respective case k ≡ 0, k ≡ 1, or k ≡ 2 (mod 3).
Since a is, respectively, 2k/3, (2k+ 1)/3, or (2k+ 2)/3, the index |Z3 : Lk| works out
to be the desired value n.

For k ≡ 0 (mod 3), the following vectors are in Lk:

v2 + v3 = (2a+1,−1, 0),

v1 + (2a−1)v2 + 2av3 = (4a2+2a+1, 0,−1).

Hence, we have e2 = (2a+1)e1 and e3 = (4a2+2a+1)e1 in Z3/Lk, so e1 generates
Z3/Lk. Thus Z3/Lk is isomorphic to Zn via an isomorphism taking e1, e2, e3 to
1, 2a+1, 4a2+2a+1. Similarly, for k ≡ 1 (mod 3) we have

av2 + (a−1)v3 = (2a2−a+1,−1, 0),

(a+1)v2 + av3 = (2a2+a+1, 0,−1),

so Z3/Lk is isomorphic to Zn with generators 1, 2a2−a+1, 2a2+a+1, and for k ≡ 2
(mod 3) we have

v2 + v3 = (2a−1,−1, 0),

v1 + (2a−1)v2 + 2av3 = (4a2−2a+1, 0,−1),

so Z3/Lk is isomorphic to Zn with generators 1, 2a−1, 4a2−2a+1.
It remains to show that Sk + Lk = Z3. We will do only the case k ≡ 1 (mod 3)

here; the other two cases are handled by the same method, but with a few more
subcases because of less symmetry.

For k = 1 one just has to show that Z7 with generators 1, 2, 4 has diameter 1;
this is trivial to do directly, so we may assume k > 1 and hence a > 1.

Let v4 = v1 − v2 − v3 = (−a, a−1, a+1). Then the vectors ±vi for i = 1, 2, 3, 4
give one member of Lk strictly within each of the eight octants of Z3, and all of the
coordinates of these vectors have absolute value at most a+1.

We must show that each x ∈ Z3 is in Sk + Lk. This is equivalent to showing
that there is a member w of Lk such that x − w ∈ Sk, which in turn is equivalent
to δ(x,w) ≤ k, where δ is the l1 (Manhattan) metric on Z3. Note that if x,y, z are
such that each coordinate of y is between (inclusively) the corresponding coordinates
of x and z, then δ(x,y) + δ(y, z) = δ(x, z). From now on, we will state this situation
more briefly as “y lies between x and z.”

Suppose we are given x ∈ Z3. The idea is to repeatedly reduce x by adding
members of Lk to it until one reaches a vector which is within l1-distance k of 0 or
some other known member of Lk.

First we will reduce x to a vector whose coordinates all have absolute value at
most a+1. Suppose x does not already have this property. Let v be one of the
vectors ±vi (i = 1, 2, 3, 4) such that the coordinates of v have the same signs as the
corresponding coordinates of x; if a coordinate of x is 0, then either sign is allowed
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for the corresponding coordinate of v. Now look at x′ = x − v. If a coordinate
of x has absolute value ≤ a+1, then the corresponding coordinate of x′ will also have
absolute value ≤ a+1 because of the sign matching and the fact that the coordinates
of v have absolute value ≤ a+1. If a coordinate of x has absolute value > a+1,
then the corresponding coordinate of x′ will be strictly smaller in absolute value.
Therefore, repeating this procedure will lead, after finitely many steps, to a vector
whose coordinates all have absolute value at most a+1.

If this new x lies between 0 and one of the vectors ±vi, then we have δ(0,x) +
δ(x,±vi) = δ(0,±vi). But all of the vectors ±vi satisfy δ(0,±vi) = 2k + 1; since
δ(0,x) and δ(x,±vi) are both integers, one of them must be at most k, so we are
done with this x.

We now break into cases depending on which octant the new x lies in. Since Lk
is centrosymmetric, we need only handle the octants containing v1, v2, v3, and v4.
Also, Lk is invariant under cyclic permutations of the three coordinates since these
permutations leave v1 fixed and permute v2, v3, v4; hence, we may assume that the
new x is in the octant of v1 or the octant of v2.

First, suppose that x is now in the octant of v1 (where all three coordinates are
nonnegative). If x is between 0 and v1, we are done. If two or more of the coordinates
of x are equal to a+1, say (by cyclic symmetry of Lk) x = (a+1, a+1, r), then we
have δ(x,v1) ≤ k, unless k = 4 and r = 0, in which case δ(x,v1 + v3) = k.

If x has exactly one coordinate equal to a+1, say x = (a+1, r, s) with
0 ≤ r,s ≤ a, then we can subtract v1 from x to get x′ = (1, r−a, s−a), which is
in the octant containing −v4. If x′ lies between 0 and −v4, we are done. If not, then
r = 0. Now let x′′ = x′ +v4 = (−a+1,−1, s+1), which lies between 0 and −v3 unless
s = a, in which case x = (a+1, 0, a) and δ(x,v2) = a+1 ≤ k.

The procedure in the case where x is in the octant of v2 is similar. Either
x = (r, s, t) lies between 0 and v2, or s = −a−1, or t ≥ a. In the latter cases, let
x′ = x − v2. When s = −a−1, we have x′ = (r−a−1,−1, t−a+1); either this lies
between 0 and one of the vectors ±vi, or x + v3 does. When s ≥ −a but t ≥ a,
try x′ − v4; it either lies between 0 and some ±vi or is (−1, 1,−a), (a, 1,−a), or
(a, 1,−a+1). These last three lie within δ-distance k of v3 − v1, v3, and either
v3 + v2 − v1 or v3 + v2, respectively.

The authors conjecture that the graphs given by this theorem are actually the
largest undirected Cayley graphs of Abelian groups on three generators for each di-
ameter k.

This conjecture would imply that the lattice covering of R3 by S̄3/2 using the lat-
tice Lbcc is optimal; that is, 8/9 is the best possible efficiency for a lattice covering by
regular octahedra. The latter statement seems quite plausible but remains unproved
at this point. However, we can prove the partial result that a “small” adjustment to
Lbcc cannot improve the covering. See the following theorem.

Theorem 7.2. Among those lattices L for which S̄3/2 +L = R3, the lattice Lbcc

is locally optimal; that is, for any other lattice L sufficiently near Lbcc such that
S̄3/2 + L = R3, the efficiency of the covering using L is less than 8/9.

Proof. Let us use the vectors v1 = (1, 1, 1), v2 = (1,−1, 1), and v3 = (1, 1,−1)
as generating vectors for Lbcc; then a nearby lattice L will be generated by nearby
vectors v′

1 = (a1, b1, c1), v′
2 = (a2, b2, c2), and v′

3 = (a3, b3, c3). We can concatenate
the three vectors v′

1, v′
2, v′

3 to get a single vector v′ in R9; similarly, let v be the
concatenation v1,v2,v3. Let F (v′) be the determinant of the matrix with rows v′

1,
v′

2, v′
3. Note that F (v) = 4; we must see that this point is a strict local maximum of
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F (v′) for those points v′ satisfying the constraint that S̄3/2 + L = R3. We compute
the gradient of F at the point v to be g = (0, 2, 2, 2,−2, 0, 2, 0,−2).

Using the lattice Lbcc, the point (1/2, 1/2, 1/2), in the center of a face of S̄3/2, is
covered by only two copies of S̄3/2, namely S̄3/2 itself and S̄3/2 + v1, and it is on the
boundary (a face) of each of these copies. If the lattice is altered slightly so that these
two copies no longer touch, then the points in between will not be covered by any copy.
In particular, if L is near Lbcc but a1 + b1 + c1 > 3, then the point (1/2, 1/2, 1/2 + ε)
for small positive ε will not be in S̄3/2 +L. So the constraint S̄3/2 +L = R3 gives us
the linear inequality a1 + b1 + c1 ≤ 3. We will rewrite this as

u1 · v′ ≤ 3, where u1 = (1, 1, 1, 0, 0, 0, 0, 0, 0).

The same argument for points on the other faces of the octahedron gives inequalities

u2 · v′ ≤ 3, where u2 = (0, 0, 0, 1,−1, 1, 0, 0, 0),

u3 · v′ ≤ 3, where u3 = (0, 0, 0, 0, 0, 0, 1, 1,−1),

u4 · v′ ≤ 3, where u4 = (−1, 1, 1, 1,−1,−1, 1,−1,−1).

Next, consider the point (1, 0, 1/2). This is in S̄3/2+y for four members y of Lbcc,
namely 0, v1, v2, and v2 + v3, and it is an edge point of each of these four copies. If
the lattice is altered slightly, then a gap can open up near this point even if there are
no gaps between octahedra adjacent at a face as above.

Specifically, if v′ is near v, ε is a very small positive number, and we define the
point x by the linear equations

x · (1,−1,−1) = v′
1 · (1,−1,−1) + 3/2 + ε,

x · (−1,−1, 1) = (v′
2 + v′

3) · (−1,−1, 1) + 3/2 + ε,

x · (−1, 1,−1) = v′
2 · (−1, 1,−1) + 3/2 + ε,

then x will be a point near (1, 0, 1/2) which is not in S̄3/2+y for y ∈ {v′
1,v

′
2,v

′
2+v′

3}.
Adding up the three given equations yields

x · (−1,−1,−1) = v′
1 · (1,−1,−1) + v′

2 · (−2, 0, 0) + v′
3 · (−1,−1, 1) + 9/2 + 3ε.

If the right-hand side of this equation is less than −3/2, then x will not be in S̄3/2

either, and hence will not be in S̄3/2 +L. Since ε can be arbitrarily small, in order to
have S̄3/2 + L = R3, it is necessary to have

v′
1 · (1,−1,−1) + v′

2 · (−2, 0, 0) + v′
3 · (−1,−1, 1) ≥ −6.

This can be rewritten as

u5 · v′ ≤ 6, where u5 = (−1, 1, 1, 2, 0, 0, 1, 1,−1).

The same argument can be performed using the octahedra around (1, 0, 1/2) in the
opposite order, and there are 23 other points on the edges of S̄3/2 where the same
configuration occurs. But one only gets six distinct inequalities from this; the other
five are

u6 · v′ ≤ 6, where u6 = (0, 2, 0, 1,−1, 1, 1,−1,−1),

u7 · v′ ≤ 6, where u7 = (−1, 1, 1, 1,−1, 1, 2, 0, 0),

u8 · v′ ≤ 6, where u8 = (1, 1, 1, 0,−2, 0, 1,−1,−1),

u9 · v′ ≤ 6, where u9 = (0, 0, 2, 1,−1,−1, 1, 1,−1),

u10 · v′ ≤ 6, where u10 = (1, 1, 1, 1,−1,−1, 0, 0,−2).
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Note that all 10 of these inequalities are satisfied with equality when v′ = v.
Hence, they can be rewritten as ui · (v′ − v) ≤ 0 for i = 1, 2, . . . , 10.

One can easily check that the vectors u1, . . . ,u7 are linearly independent; their
common null space (i.e., the set of w such that ui ·w = 0 for all i ≤ 7) is generated by
the independent vectors w1 = (1, 0,−1, 1, 0,−1, 1, 0, 1) and w2 = (−1, 1, 0,−1,−1, 0,
−1, 1, 0). Also, we have

g = u1 + u2 + u3 + u4 = u5 + u8 = u6 + u9 = u7 + u10.

Let C be the closed cone consisting of all vectors t in the subspace spanned by
u1, . . . ,u7 such that ui · t ≤ 0 for all i ≤ 10. Then the above equations imply that
g · t ≤ 0 for all t in C, and equality can hold only when t = 0. In particular, we
have g · t0 < 0 for any unit vector t0 in C. The set of such t0 is closed and bounded,
hence compact, so there is a positive number ε such that g · t0 < −ε for all such t0.
It follows that there is a neighborhood U of g such that, for any g′ in U and any unit
vector t0 in C, g′ · t0 < 0. Since C is a cone, we have g′ · t < 0 for all g′ ∈ U and all
nonzero t ∈ C.

We can compute that, for any real numbers r and s, the determinant for the
lattice given by v + rw1 + sw2 is

F (v + rw1 + sw2) = 4(1− r)(1 + s)(1 + r − s).
If |r|+ |s| < 1, then 1− r, 1 + s, and 1 + r − s are positive numbers with arithmetic
mean 1, so their geometric mean is at most 1; this means that F (v+ rw1 + sw2) ≤ 4.
Equality holds only when the above three numbers are equal, which is when r = s = 0.

Let U ′ be a convex neighborhood of v so small that (gradF )(v′) ∈ U for all
v′ ∈ U ′. Now, any vector v′ sufficiently close to v can be expressed as v + t1 + t2,
so t1 is a (small) linear combination of w1 and w2, t2 is a linear combination of
u1, . . . ,u7, and both v + t1 and v + t1 + t2 are in U ′. If v′ satisfies the condition
S̄3/2 + L = R3 and is near v, then we must have ui · (v′ − v) ≤ 0 for all i ≤ 10, so
ui · t2 ≤ 0 for all i ≤ 10 (since ui · t1 = 0), so t2 ∈ C. We have F (v + t1) ≤ 4, with
equality holding only when t1 = 0. If t2 is nonzero, then for any t on the segment
from v + t1 to v + t1 + t2 we have t ∈ U ′, so (gradF )(t) ∈ U , so (gradF )(t) · t2 < 0;
it follows that F (v + t1 + t2) < F (v + t1). Therefore, F (v′) ≤ F (v), with equality
holding only when v′ = v. So v gives a local maximum of F , as desired.

It is still possible (though very unlikely) that a lattice quite different from Lbcc

gives a more efficient covering. Theoretically, the search for an optimal lattice can be
set up as a large optimization problem and solved once and for all, but this appears
to be a formidable task.

One could begin this task by considering an arbitrary lattice L such that S̄3/2 +L
covers R3, and this covering is reasonably efficient (at least as efficient as the covering
from Lbcc). Such a lattice is generated by vectors v1, v2, v3, and we can carefully
choose these generators so as to limit their lengths. In particular, we can choose v1 to
be a nonzero member of L with minimal length. We can then choose v2 in L whose
distance from the subspace of R3 spanned by v1 is as small as possible (but nonzero),
and adjust v2 by subtracting an integer multiple of v1 so as to ensure that the closest
integer multiple of v1 to v2 is 0. One can similarly choose v3 to be as close as possible
to (but not in) the subspace spanned by v1 and v2. These three chosen vectors will be
a set of generating vectors for L. In order to have S̄3/2 +L = R3, it is necessary that
the length of v1 be no more than the diameter of S̄3/2; there are similar but slightly
larger bounds on the lengths of v2 and v3. This limits our search for v1, v2, v3 to
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a compact subset of nine-dimensional space. We must find the point in this subset
which maximizes det(v1,v2,v3) subject to the constraint that S̄3/2 + L = R3.

This constraint looks infinitary, but it can actually be reduced to finitely many
sets of linear inequalities. To see this, note that, using the above upper bounds
on the lengths of the vectors vi along with the assumed lower bound on the lattice
determinant (the covering must be at least as efficient as that from Lbcc), we can get
lower bounds on the lengths of the vectors vi, the angles between them, and associated
quantities such as the distance from v3 to the plane spanned by v1 and v2. These
will allow us to get upper bounds on the absolute values of integers a1, a2, a3 such
that S̄3/2 + a1v1 + a2v2 + a3v3 overlaps or almost touches S̄3/2. (In other words, we
get an upper bound on the number M from the proof of Proposition 4.4.) So we only
have to consider finitely many of the lattice translates of S̄3/2 when trying to cover
the space near S̄3/2 (which is all that is needed, by Proposition 4.3).

There are only finitely many configurations (specifications of arrangements and
overlaps) for these finitely many translates of S̄3/2. For each such configuration, the
assertion that there are no “gaps” in the coverage of the space near S̄3/2 becomes a
list of linear inequalities like the inequalities ui ·v′ ≤ b from the proof of Theorem 7.2.
So we need to optimize a cubic function (the lattice determinant) subject to a list of
linear inequalities in order to find the optimal version of each configuration, and then
compare the resulting values to find the best configuration.

Unfortunately, there is a very large number of possible configurations (for an
example of the possibilities for complicated configurations, see Figure 8.2 later in
this paper), so this finite computation appears to be beyond our reach at present. Of
course, a different approach to the problem might lead to a more feasible computation.

One might hope to be able to use the arguments of Proposition 4.4 and Theorem
4.5 in reverse to get an upper bound on the efficiency of lattice coverings of R3 by
the octahedron S̄1 by showing that any extremely efficient real lattice covering would
lead to integer lattice coverings more efficient than what the computation actually
found. To do this, one would fix a value for the distance ρ from Proposition 4.4 and
then use the method described above to get an upper bound on the number M from
that proposition. If there is actually a lattice covering of R3 by S̄1 using the lattice L
generated by v1, v2, v3 having a specified large determinant (equivalently, a specified
large efficiency), then we can round the coordinates of these vectors to the nearest
multiples of 1/k to get vectors v′

1, v
′
2, v

′
3 generating a lattice L′. By Proposition 4.4, if

1/(2k) is less than η = ρ/M , then we will have S̄1+3ρ+L
′ = R3, so S̄k+3kρ+kL

′ = R3.
But kL′ is an integer lattice; if n is its determinant, then this lattice covering will
yield an Abelian Cayley graph on three generators with size n and diameter at most
k + 3kρ. The fact that L′ is close to L means that we can get a lower bound on n
from the determinant of L. If the actual computational search showed that there is no
Abelian Cayley graph of such a size for this diameter, then our original assumption
that there was a lattice L giving a covering of that efficiency must have been false.

Unfortunately, the constants involved are such that even the large computation
done so far does not suffice to get a bound less than 1 for the efficiency of L (even
if we are optimistic enough to assume that M is as small as 3 or 4). It probably
requires searches for values of k larger than 500 in order to get actual results from
this method; such searches are completely out of range at the moment.

8. Directed Cayley graphs on three generators. For the directed case of
three generators, we want to study lattice coverings of R3 by the trirectangular tetra-
hedron S̄′

k. (Since lattice covering efficiency is affine invariant, it makes no difference
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Fig. 8.1. Two subsets of the tetrahedron S̄′
1 which tile space.

which particular tetrahedron we consider.) One hopes that one can discretize these
coverings to get good lattice coverings of Z3 by S′

k, and hence good directed Cayley
graphs.

The best three-dimensional directed toroidal mesh with diameter k is Zb0+1 ×
Zb1+1 × Zb2+1, where bi = �(k + i)/3�; this has about (1/27)k3 vertices for large k
and corresponds to the covering of R3 by S̄′

1 using the cubic lattice (1/3)Z3. This
covering has efficiency 2/9.

It is more difficult to find a candidate for a good covering lattice (or, equivalently,
a large subset which gives a lattice tiling) for the tetrahedron than it was for the
octahedron. One possible method is to try to find the three-dimensional analogue of
the L-tromino used for the triangle; this leads one to consider the tetracube shown
on the left of Figure 8.1. In order for the shape to fit into S̄′

1, the edge-length of
the subcubes should be 1/4. It is easy to see that this shape does indeed tile space,
using the lattice generated by (1/2, 0, 0), (0, 1/2, 0), and (1/4, 1/4,−1/4) (this is just
(1/4)Lbcc); since the shape has volume 1/16, while S̄′

1 has volume 1/6, we get a lattice
covering of R3 by S̄′

1 with efficiency 3/8.
The discrete form of this shape, scaled by a factor si in the ith dimension, is a

subset of Z3 of size 4s1s2s3 which gives a lattice tiling of Z3; this subset is included
in S′

k, where k = s1 + s2 + s3 + max(s1, s2, s3)− 3. Optimizing this for a given k ≥ 1
gives a subset of S′

k which tiles and has size 4a3a4a5, where ai = �(k + i)/4�.
One can obtain another lattice covering of R3 by tetrahedra as follows. If one cuts

off the four corners of a regular tetrahedron at planes passing through the midpoints
of the edges (so one removes four half-size regular tetrahedra), then what is left
is a regular octahedron with a volume of 1/2 that of the tetrahedron. We have a
lattice giving a covering of R3 by this octahedron with efficiency 8/9; the same lattice
therefore gives a covering of R3 by the original tetrahedron with efficiency 4/9.

If one uses an affine transformation to change the regular tetrahedron to the
tetrahedron S̄′

1, then the corresponding lattice will be generated by (1/6, 1/6, 1/6),
(1/6,−1/2, 1/6), and (1/6, 1/6,−1/2). One fundamental region for this lattice is an
affinely distorted truncated octahedron. Another can be obtained by the method of
Lemma 3.1, using an ordering ≺ which orders vectors primarily by the sum of their
coordinates; the resulting region is shown on the right side of Figure 8.1. This shape
consists of 16 cubes of edge-length 1/6 for a total volume of 2/27, which, as expected,
is 4/9 of vol(S̄′

1) = 1/6.
Discretizing this new shape with scale factors s1 ≤ s2 ≤ s3 gives a subset of Z3

of size 16s1s2s3 which gives a lattice tiling of Z3; this subset is included in S′
k, where
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k = s1 + 2s2 + 3s3 − 3. Another simple optimization shows that, for any given k ≥ 3,
we get a subset of S′

k which tiles and has size 16â3â4â6, where âi = �(k + i)/6�.
For large k (in fact, for all k ≥ 30), this new lattice gives a better covering of Z3

by S′
k than the preceding one did, but the preceding one sometimes does better for

smaller k.
Aguiló, Fiol, and Garcia [1] also work with this shape but discretize it in a rota-

tionally symmetric way rather than separately in each dimension; the Cayley graphs
they obtain are slightly larger than the graphs of size 16â3â4â6 given above but are
still of the form (2/27)k3 +O(k2).

In order to see whether these lattice coverings give close-to-optimal Cayley graphs,
the authors performed a computer search for the best (smallest-diameter) directed
Abelian Cayley graphs on three generators. This extends similar computations per-
formed by Aguiló, Fiol, and Garcia [1] and by Fiduccia, Forcade, and Zito [14]. The
latter paper also contains a useful upper bound: an Abelian Cayley digraph on three
generators with diameter k must have size at most 3(k + 3)3/25. This improves the
obvious upper bound |Sk| when k > 7.

Comparing the above figures with the output from the authors’ computations
gives a slight surprise: the best cyclic groups do substantially better than the groups
from the above coverings. The data are shown in Table 8.1; here “FFZ” is the
Fiduccia–Forcade–Zito upper bound, “Tor.” is the size of the best toroidal mesh,
“Impr.” refers to the larger of the sizes obtained from the two improved construc-
tions above, “AFG” is the size attained by the Aguiló–Fiol–Garcia construction, and
the remaining columns are analogous to those of Table 7.1. The computations were
run on Abelian groups of sizes up to and including 8184; this means that the entries
marked with an asterisk in the n′c column (for which the FFZ bound is greater than
8184) have not been completely proven optimal, but it is extremely likely that they are.

Note that in three cases, k = 7, 31, 33, the best cyclic Cayley graph was not
achieved using 1 as one of the generators. If we are required to use 1 as a genera-
tor (which may be useful when actually building the corresponding loop network),
then the best we can do is size 78 for k = 7 (with generators 1, 6, 49), size 3178
for k = 31 (with generators 1, 386, 1295), and size 3794 for k = 33 (with generators
1, 469, 2094).

There is one other difference between this case and the undirected case: here
there are values of k for which one can do better with general Abelian groups than
with cyclic groups. The improved values obtained from noncyclic groups are shown
in Table 8.2. A number of these optimal graphs are actually obtained by applying
Proposition 4.2(b) to smaller Cayley graphs; for instance, the Abelian graph for k = 17
is obtained this way from the cyclic graph for k = 7, which is the reason that these
two graphs give exactly the same real-covering efficiency (.504).

The values in the n′
c column of Table 8.1 are so much larger than those in the

preceding two columns that it is clear that the real lattices used for the preceding
columns were not optimal. This is made explicit in the last column of the table,
which gives the efficiency of the real lattice covering obtained from the computed
integer lattice covering via Proposition 4.1(b). For k = 1 and k = 3 these coverings
are just (scaled versions of) the two coverings we explicitly constructed above, but
later coverings obviously do substantially better.

The best real covering obtained from these computations is that for k = 7, with
efficiency .504. As in the undirected case, we can reconstruct generators for the
lattice from the given generating set 2, 9, 35 for Z84; after simplification, the resulting
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Table 8.1

Best directed Cayley graphs of cyclic groups, three generators.

k |S′
k| FFZ Tor. Impr. AFG n′

c Generators n′
c/|S′

k| n′
c/ vol(S̄′

k+3)

0 1 1 1 1 1 .222222

1 4 2 4 4 4 1,2,3 1 .375000

2 10 4 4 7 9 1,3,4 .900000 .432000

3 20 8 16 16 16 1,4,5 .800000 .444444

4 35 12 16 19 27 1,4,17 .771428 .472303

5 56 18 32 31 40 1,6,15 .714286 .468750

6 84 27 32 50 57 1,13,33 .678571 .469136

7 120 120 36 48 56 84 2,9,35 .700000 .504000

8 165 159 48 72 86 111 1,31,69 .672727 .500376

9 220 207 64 128 128 138 1,11,78 .627273 .479167

10 286 263 80 128 134 176 1,17,56 .615385 .480655

11 364 329 100 144 182 217 1,13,119 .596154 .474490

12 455 405 125 192 243 273 1,14,153 .600000 .485333

13 560 491 150 256 252 340 1,90,191 .607143 .498047

14 680 589 180 288 333 395 1,35,271 .580882 .482394

15 816 699 216 432 432 462 1,29,97 .566176 .475309

16 969 823 252 432 441 560 1,215,326 .577915 .489867

17 1140 960 294 500 549 648 1,76,237 .568421 .486000

18 1330 1111 343 576 676 748 1,41,147 .562406 .484613

19 1540 1277 392 600 688 861 1,27,463 .559091 .485162

20 1771 1460 448 768 844 979 1,22,351 .552795 .482781

21 2024 1658 512 1024 1024 1140 1,45,196 .563241 .494792

22 2300 1875 576 1024 1036 1305 1,246,1030 .567391 .501120

23 2600 2109 648 1024 1228 1440 1,126,415 .553846 .491579

24 2925 2361 729 1280 1445 1616 1,56,257 .552479 .492608

25 3276 2634 810 1372 1460 1788 1,154,1452 .545788 .488703

26 3654 2926 900 1600 1715 1963 1,90,780 .537219 .482923

27 4060 3240 1000 2000 2000 2224 1,425,704 .547783 .494222

28 4495 3574 1100 2000 2015 2442 1,964,1372 .543270 .491826

29 4960 3932 1210 2048 2315 2693 1,39,942 .542944 .493103

30 5456 4312 1331 2400 2646 2920 1,540,831 .535191 .487520

31 5984 4716 1452 2400 2664 3220 7,30,2277 .538102 .491553

32 6545 5145 1584 2880 3042 3591 1,1519,2031 .548663 .502531

33 7140 5598 1728 3456 3456 3850 2,475,1177 .539216 .495113

34 7770 6078 1872 3456 3474 4191 1,748,2652 .539382 .496437

35 8436 6584 2028 3456 3906 4468 1,353,2789 .529635 .488555

36 9139 7118 2197 4032 4375 4871 1,238,1113 .532990 .492692

37 9880 7680 2366 4032 4396 5328 1,345,2344 .539271 .499500

38 10660 8270 2548 4704 4921 5698∗ 1,1375,2410 .534522 .496046

39 11480 8890 2744 5488 5488 6131∗ 1,51,1589 .534059 .496518

40 12341 9540 2940 5488 5509 6513∗ 1,560,5070 .527753 .491504

41 13244 10222 3150 5488 6097 6942∗ 1,793,1860 .524162 .488965

42 14190 10935 3375 6272 6728 7533∗ 1,1612,4961 .530867 .496000

43 15180 11680 3600 6272 6752 8064∗ 1,1377,4960 .531225 .497082
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Table 8.2

Best directed Cayley graphs of Abelian groups, three generators.

k n′
a Group Generators n′

a/|S′
k| n′

a/ vol(S̄′
k+3)

12 279 Z93 × Z3 (1,0),(9,1),(10,2) .613187 .496000

17 672 Z168 × Z2 × Z2 (2,1,0),(9,0,0),(35,0,1) .589474 .504000

18 752 Z188 × Z4 (1,0),(13,2),(14,1) .565414 .487204

19 888 Z222 × Z2 × Z2 (1,0,0),(142,1,0),(180,0,1) .576623 .500376

26 1980 Z330 × Z6 (1,0),(123,2),(234,3) .541872 .487105

27 2268 Z252 × Z3 × Z3 (2,0,0),(9,1,0),(35,0,1) .558621 .504000

28 2448 Z816 × Z3 (1,0),(427,0),(564,1) .544605 .493035

29 2720 Z680 × Z2 × Z2 (1,0,0),(191,1,0),(90,0,1) .548387 .498047

30 2997 Z333 × Z3 × Z3 (1,0,0),(31,1,0),(180,0,1) .549304 .500376

35 4500 Z300 × Z15 (1,0),(3,1),(214,7) .533428 .492054

37 5376∗ Z336 × Z4 × Z4 (2,1,0),(9,0,0),(35,0,1) .544130 .504000

41 7104∗ Z444 × Z4 × Z4 (1,0,0),(364,1,0),(180,0,1) .536394 .500376

42 7641∗ Z2547 × Z3 (1,0),(256,1),(2238,2) .538478 .503111

generating vectors are (−2, 2, 2), (3,−3, 3), and (4, 3,−1). We now have a computer-
assisted proof that the lattice generated by these vectors gives a lattice covering of
R3 by S̄′

10; but one can obtain useful extra information (as well as, perhaps, more
satisfaction) by proving this directly.

Proposition 8.1. Let L′
7 be the lattice in R3 generated by the vectors (−2, 2, 2),

(3,−3, 3), and (4, 3,−1); then S̄′
10 + L′

7 = R3.
Proof. First, note that the following vectors are in L′

7:

v1 = (−2, 2, 2), v8 = (1,−1, 5) = v1 + v2,

v2 = (3,−3, 3), v9 = (−1, 1, 7) = 2v1 + v2,

v3 = (4, 3,−1), v10 = (3, 4,−6) = v3 − v1 − v2,

v4 = (6, 1,−3) = v3 − v1, v11 = (−7, 7, 1) = 2v1 − v2,

v5 = (5,−5, 1) = v2 − v1, v12 = (−5,−2, 8) = 2v1 + v2 − v3,

v6 = (1, 6,−4) = v3 − v2, v13 = (−1, 8,−2) = v1 − v2 + v3,

v7 = (2, 5, 1) = v1 + v3, v14 = (8,−1,−5) = v3 − 2v1.

For each vector vi = (r, s, t), we have 1 ≤ r+ s+ t ≤ 8; hence, the translated tetrahe-
dron S̄′

10 +vi intersects the plane x+y+ z = 10. In fact, the intersection is a triangle
whose vertices have coordinates (10−s−t, s, t), (r, 10−r−t, t), and (r, s, 10−r−s).

Figure 8.2 shows the upper face of S̄′
10. For each i ≤ 14, it indicates which part of

this face is covered by the translate S̄′
10 + vi. (The face is divided into unit triangles,

each of which is labeled by the value(s) of i for which S̄′
10 + vi covers that triangle.)

Clearly, each unit triangle is labeled, so the translates S̄′
10 +vi cover the entire upper

face of S̄′
10.

In fact, since each vi has coordinates summing to at least 1, the smaller translates
S̄′

9 +vi, i ≤ 14, cover the upper face of S̄′
10. For any x in this upper face, there is an i

such that x ∈ S̄′
9 + vi, so S̄′

1 + x ⊆ S̄′
1 + S̄′

9 + vi = S̄′
10 + vi. Since S̄′

11 is the union of
S̄′

10 and the sets S̄′
1 + x for x in the upper face of S̄′

10, we have S̄′
11 ⊆ S̄′

10 + L′
7, and
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Fig. 8.2. Coverage of one face of S̄′
10 under L′

7.

hence S̄′
11 + L′

7 ⊆ S̄′
10 + L′

7.
We now prove by induction that, for all integers k ≥ 10, S̄′

k+L′
7 ⊆ S̄′

10 +L′
7. The

case k = 10 is trivial. If it is true for k, then

S̄′
k+1 + L′

7 = S̄′
1 + S̄′

k + L′
7 ⊆ S̄′

1 + S̄′
10 + L′

7 = S̄′
11 + L′

7 ⊆ S̄′
10 + L′

7,

so it is true for k + 1.
Finally, for any y ∈ R3, there is a member w of L′

7 such that the coordinates of
y −w are all positive (e.g., let w be a large multiple of −v7). Then y −w ∈ S̄′

k for
some k, so y ∈ S̄′

k + L′
7, and hence y ∈ S̄′

10 + L′
7. Therefore, S̄′

10 + L′
7 = R3.

This covering has efficiency det(v1,v2,v3)/ vol(S̄′
10) = .504. Hence, Corollary

4.7(b) gives the following.
Corollary 8.2. For all k, there is a directed Cayley graph of an Abelian group

on three generators which has diameter k and size at least 0.084k3 +O(k2).
We can now use the method of (the real version of) Lemma 3.1 to get a funda-

mental region T ′
7 ⊆ S̄′

10 for the lattice L′
7. (Recall that any such region must have

volume det(v1,v2,v3) = 84.) To do this, just start with S̄′
10, look at each of the

vectors vi (i ≤ 14) defined above, and delete those points of S̄′
10 which lie in S̄′

10 +vi.
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Fig. 8.3. A subset of the tetrahedron S̄′
10 which tiles space.

(We have vi 
 0 for all i if ≺ orders vectors primarily by the sum of coefficients.)
What is left is the set shown in Figure 8.3; since this is the union of 84 unit cubes,
we know that there is no need to subtract further translates S̄′

10 + w. This set was
obtained independently by Fiduccia, Forcade, and Zito [14].

So this set T ′
7 gives a lattice tiling of R3 using L′

7. This tiling is quite unusual;
the translates of T ′

7 fit together in a peculiar way, seeming to wind around each other.
One interesting fact is that each translate of T ′

7 is adjacent to (i.e., shares a bound-
ary segment of positive area with) 28 other translates, a surprisingly high number.
(T ′

7 itself is adjacent to T ′
7 + vi and T ′

7 − vi for i ≤ 14.)
In many of the tilings we constructed explicitly, there was a polycube fundamental

region like T ′
7, but there was also an alternate fundamental region which was convex;

for instance, for the optimal covering of R2 by right triangles, one could use either an
L-tromino or a hexagon as the fundamental region. Clearly L′

7 has convex fundamental
regions (e.g., its Voronoi regions), but it turns out that they are unsuitable for the
current problem, as shown below.

Proposition 8.3. There is no convex fundamental region for the lattice L′
7

included within the tetrahedron S̄′
10.

Proof. Since T ′
7 gives a lattice tiling of R3 by L′

7, every point of R3, except for
those lying on boundaries of the tiling, can be translated by a vector in L′

7 to a unique
point of T ′

7. In particular, if we look at the part of S̄′
10 lying outside T ′

7, then we can
break it up into finitely many parts (in fact, we can just cut it along the integer
translates of the three coordinate planes) which can be translated in a unique way by
members of L′

7 so as to lie within T ′
7.
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If one does this, one finds that there are parts of T ′
7 which do not get covered by

translates of parts of S̄′
10 \T ′

7. Most of these uncovered parts look like inverted copies
of S̄′

1 (i.e., translates of −S̄′
1), although there are some larger ones. In particular, the

sets (1, 1, 1)− S̄′
1, (8, 1, 1)− S̄′

1, (1, 8, 1)− S̄′
1, and (1, 1, 8)− S̄′

1 are not covered by such
translates. This implies that each of those four sets is disjoint (except for boundaries)
from all of the translates S̄′

10 + w for w ∈ L′
7 \ {0}. It follows that any fundamental

region for L′
7 included within S̄′

10 must include all four of these sets.
If the fundamental region is also convex, then it must contain any convex combi-

nations of points in those four sets; in particular, it must include the sets (3, 1, 1)− S̄′
1

and (1, 3, 3)− S̄′
1. But (1, 3, 3) = (3, 1, 1) + v1, so the v1-translate of the region over-

laps the region itself in a set of positive volume, which is impossible for a fundamental
region of L′

7. Therefore, no fundamental region of L′
7 within S̄′

10 can be convex.
There is no obvious reason why the lattice L′

7 should be exactly optimal for a
lattice covering of R3 by the tetrahedron S̄′

10. In the case of undirected graphs on
three generators, the lattices obtained for each k were not optimal but were closer
and closer approximations to the lattice Lbcc, which does appear to be optimal. One
would expect something similar to occur in the directed case, but it does not; the real
lattice efficiencies in the last columns of Tables 8.1 and 8.2 go up and down irregularly
and (so far) do not exceed the value of .504 attained by L′

7.
Given this, it seems reasonable to examine L′

7 and try to adjust it slightly in order
to improve its efficiency; there should be some locally optimal lattice to which L′

7 is
an approximation, and we would like to find it. Quite surprisingly, it turns out that
no adjustment is necessary. Just before submitting the present paper, the authors
found a recent paper of Forcade and Lamoreaux [15] proving this same result by a
method slightly different from that presented here.

Theorem 8.4 (Forcade and Lamoreaux [15]). Among those lattices L for which
S̄′

10 + L = R3, the lattice L′
7 is locally optimal.

Proof. We use the same methods as for Theorem 7.2. Recall the vectors v1, . . . ,v14

from Proposition 8.1. The vectors v1, v2, v3 generate L′
7; a nearby lattice L will be

generated by nearby vectors v′
1 = (a1, b1, c1), v′

2 = (a2, b2, c2), and v′
3 = (a3, b3, c3).

Again concatenate v′
1, v′

2, v′
3 and v1, v2, v3 to get v′ and v in R9. Let F (v′) be

the determinant of the matrix with rows v′
1, v′

2, v′
3; then we have F (v) = 84, and

we want to see that F (v′) < 84 for any other v′ near v for which the corresponding
lattice L satisfies S̄′

10 + L = R3. We compute that the gradient of F at the point v
is g = (−6, 15, 21, 8,−6, 14, 12, 12, 0).

Referring back to Figure 8.2, we see that the point (1, 1, 8) is on the boundary of
S̄′

10 + vi for i = 8, 9, 12, as well as on the boundary of S̄′
10 itself; one can check that

no other L′
7-translate of S̄′

10 is near this point. The nearby lattice L contains points
0, v′

8 = v′
1 + v′

2, v′
9 = 2v′

1 + v′
2, and v′

12 = 2v′
1 + v′

2 − v′
3. For any small positive

ε, the point (a1 + a2 − ε, 2b1 + b2 − ε, 2c1 + c2 − c3 − ε), which is near (1, 1, 8), will
not be in v′

8 + S̄′
10 because its first coordinate is smaller than that of v′

8. By looking
at second and third coordinates respectively, we see that this point is not in v′

9 + S̄′
10

or v′
12 + S̄′

10 either. Hence, in order to have S̄′
10 + L = R3, this point must be in

S̄′
10 itself, so we must have

a1 + a2 + 2b1 + b2 + 2c1 + c2 − c3 − 3ε ≤ 10.

Since ε can be arbitrarily small, we need

a1 + a2 + 2b1 + b2 + 2c1 + c2 − c3 ≤ 10
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in order to have S̄′
10 + L = R3. So we have the constraint

u1 · v′ ≤ 10, where u1 = (1, 2, 2, 1, 1, 1, 0, 0,−1).

The same reasoning applied at the points (1, 2, 7), (3, 2, 5), (5, 2, 3), (5, 3, 2), (4, 4, 2),
(3, 5, 2), (2, 6, 2), (1, 7, 2), (8, 1, 1), (6, 3, 1), (3, 6, 1), and (1, 8, 1) gives the constraints

u2 · v′ ≤ 10, where u2 = (1, 1, 2, 1, 0, 1, 0, 0, 0),

u3 · v′ ≤ 10, where u3 = (0, 1, 1, 1, 0, 1, 0, 0, 0),

u4 · v′ ≤ 10, where u4 = (−1, 1, 0, 1, 0, 1, 0, 0, 0),

u5 · v′ ≤ 10, where u5 = (−1, 0, 1, 1, 0, 0, 0, 1, 0),

u6 · v′ ≤ 10, where u6 = (0,−1, 1, 0,−1, 0, 1, 1, 0),

u7 · v′ ≤ 10, where u7 = (−1, 1, 1,−1, 0, 0, 1, 1, 0),

u8 · v′ ≤ 10, where u8 = (1, 0, 1, 0,−1, 0, 1, 1, 0),

u9 · v′ ≤ 10, where u9 = (0, 2, 1,−1,−1, 0, 1, 0, 0),

u10 · v′ ≤ 10, where u10 = (−2,−1,−1, 0, 0, 1, 1, 1, 0),

u11 · v′ ≤ 10, where u11 = (−1, 0,−1, 0, 0, 1, 1, 1, 0),

u12 · v′ ≤ 10, where u12 = (−1, 0, 1,−1,−1, 0, 1, 1, 1),

u13 · v′ ≤ 10, where u13 = (0, 1, 2,−1,−1,−1, 1, 1, 0).

Again note that all thirteen of these inequalities are satisfied with equality when
v′ = v. Hence, they can be rewritten as ui · (v′ − v) ≤ 0 for i = 1, 2, . . . , 13.

One can easily check that the vectors u1, u2, u4, u5, u6, u7, u8, u10 are linearly in-
dependent; their common null space is generated by the vector w = (0, 0, 0, 1, 1,−1, 2,
−1, 1). (The other five vectors ui are also orthogonal to w, so they are linear combi-
nations of the eight listed above.) Also, we have

g = u1 + 4.8u2 + 6.4u4 + u5 + 1.6u6 + 3.2u7 + 3.4u8 + u9 + 1.8u10 + u12.

Let C be the closed cone consisting of all vectors t in the subspace spanned by
u1, . . . ,u13 such that ui · t ≤ 0 for all i ≤ 13. Then the above equations imply that
g · t ≤ 0 for all t in C, and equality can hold only when t = 0. Hence, as in Theorem
7.2, there is a neighborhood U of g such that, for any g′ in U and any nonzero t in C,
g′ · t < 0.

We can compute that, for any real number r, the determinant for the lattice given
by v + rw is F (v + rw) = 84− 12r2. Clearly, this is at most 84, with equality only
when r = 0.

Now, any vector v′ close to v can be expressed as v + t1 + t2 where t1 is a small
multiple of w and t2 is a small linear combination of the vectors u1, . . . ,u13. The
reasoning from Theorem 7.2 shows that t2 must be in C if S̄′

10 + L = R3. Also as in
that theorem, we find that F (v + t1) ≤ F (v) with equality only when t1 = 0, and
F (v+t1 +t2) ≤ F (v+t1) with equality only when t2 = 0. Therefore, F (v′) ≤ F (v),
with equality holding only when v′ = v. So v gives a local maximum of F , as
desired.

This and the computational evidence make it plausible that L′
7 actually gives

an optimal lattice covering of R3 by S̄′
10, and hence that the asymptotic formula in

Corollary 8.2 is optimal.
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9. Cayley graphs on more than three generators. In higher dimensions,
analogues of many of the preceding constructions exist, but they do not produce
lattice coverings as efficient as one would hope for.

For lattice coverings with the d-dimensional dual cube, one can use the d-dimen-
sional body-centered cubic lattice (the set of vectors in Zd whose coordinates are
all odd or all even). By the same argument as for the three-dimensional case, this
lattice gives a lattice covering of Rd by S̄d/2. The efficiency of this covering is

2d−1/ vol(S̄d/2) = 2d−1d!/dd, which is 2d−1 times the efficiency of the covering us-

ing the ordinary cubic lattice Zd.
As usual, the Cayley graph corresponding to this lattice is a twisted toroidal

mesh. For a given number m, one can connect the elements of Zd−1
2m × Zm as in an

ordinary toroidal mesh, except that the wraparound connections for the last coordi-
nate are twisted along all of the other coordinates: (x1, . . . , xd−1,m−1) is connected
to (x1±m, . . . , xd−1±m, 0). This gives a graph of diameter �dm/2� and size 2d−1md,
which is about 2d−1 times as large as the best ordinary toroidal mesh of this diameter.

One can optimize this slightly. Given the dimension d and the desired diameter
k, let q and r be the quotient and remainder when 2k+ 1 is divided by d; we assume
k is large enough that q > 0. Then a good lattice L to use is the body-centered
cubic lattice above, scaled up by a factor q + 1 in each of the first r coordinates and
by a factor q in the remaining d − r coordinates. The resulting Zd/L is isomorphic
to (Zr2q+2 × Zd−r2q )/H with the canonical generators, where H is the two-element
subgroup {0, (q+1, . . . , q+1, q, . . . , q)} (there are r q+1’s); it can be laid out as a
twisted toroidal mesh on Zr2q+2×Zd−r−1

2q ×Zq or on Zr−1
2q+2×Zd−r2q ×Zq+1. If q is even

and r > 0, this Cayley graph is isomorphic to that of Zq+1 × Zr−1
2q+2 × Zd−r2q with the

generators e2, . . . , ed and (1, . . . , 1, q, . . . , q) with r 1’s; if q is odd or r = 0, then it is
isomorphic to the Cayley graph of Zr2q+2×Zd−r−1

2q ×Zq with generators e1, . . . , ed−1

and (q+1, . . . , q+1, 1, . . . , 1) with r q+1’s. The size of this graph is slightly larger
than the size of the cyclic Cayley graph constructed by Chen and Jia [5], but the ratio
of the two sizes tends to 1 for large k.

For the directed case, we must consider lattice coverings by d-simplices; as usual,
by affine invariance, it doesn’t matter which simplex is used. One can show that a
lattice for covering with a given d-simplex is given by the following generating vectors:
for each face of the simplex, take a vector which is twice the vector from the centroid
of the simplex to the centroid of that face. (This gives d+1 vectors, but they sum to 0,
so just take d of them.) The efficiency of this covering works out to be d!2d/(dd(d+1)).

Unfortunately, in both cases, the efficiency decreases exponentially with d: by
Stirling’s formula,

2d−1d!

dd
∼
√
πd

2

(
2

e

)d

and

d!2d

dd(d+ 1)
∼
√

2π

d

(
2

e

)d
.

This seems to be the case for all known explicitly constructed lattice coverings by
these shapes (and by spheres).

On the other hand, in 1959 Rogers [19] gave a nonconstructive proof that there
exist much more efficient lattice coverings by these shapes (or by any convex body)
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in high dimensions, and he gave an even better result for the case of spheres. More
recently, Gritzmann [16] extended the latter result to apply to any convex body with
a sufficient number of mutually orthogonal hyperplanes of symmetry. (The number
required is quite small: only �log2 ln d� + 5.) Gritzmann’s result states that there is
a constant c (not depending on d or on the convex body) such that, for any convex
body K in Rd with the above number of mutually orthogonal planes of symmetry,
there is a lattice covering of Rd by K with density at most cd(ln d)1+log2 e.

The regular dual d-cube and the regular d-simplex do have the required symmetry
planes for large enough d. This is clear for the dual d-cube; it has the same d orthog-
onal planes of symmetry as the d-cube to which it is dual. For the regular d-simplex,
note that the perpendicular bisector of an edge is a hyperplane of symmetry and that
edges which do not share a vertex have orthogonal directions (the easiest way to see
this is to look at the regular d-simplex in Rd+1 whose vertices are e1, . . . , ed+1, and
take dot products), so one can find �d/2� mutually orthogonal hyperplanes of sym-
metry. Therefore, we get lattice coverings of the specified density for large d, and
by adjusting the constant c we can make the bound apply for all d (for these two
particular shapes). Therefore, letting c̄ = c−1, we can use Corollary 4.7 to get the
following.

Theorem 9.1. There is a constant c̄ > 0 (not depending on d or k) such that, for
any fixed d > 1 and for all k, there exist undirected Cayley graphs of Abelian groups
on d generators having diameter ≤ k and size at least

2dc̄

d!d(ln d)1+log2 e
kd +O(kd−1),

and there exist directed Cayley graphs of Abelian groups on d generators having di-
ameter ≤ k and size at least

c̄

d!d(ln d)1+log2 e
kd +O(kd−1).

The coverings produced by this method are probably fairly strange. We seem to
have already run into this in three dimensions for the directed case; for the undirected
case it apparently happens later.

10. Layouts with short wires. The obvious way to lay out a toroidal mesh
is as a rectangular array with mesh connections between adjacent nodes in the array
and with long wires connecting opposite ends of the array; these long wires may cause
communication delays. However, there is a standard trick for rearranging the layout
so as to remove the need for long wires. In the one-dimensional case, instead of placing
the nodes in the order 1, 2, 3, . . . , n (where i is connected to i+1 for i = 1, 2, . . . , n−1
and n is connected to 1), one can place them in the order 1, n, 2, n−1, 3, n−2, . . . ;
then the maximum required wire length is only twice the mesh spacing. In higher
dimensions, one can apply the same trick to each dimension separately, and again the
required wire length is twice the mesh spacing.

It is not immediately obvious that this interleaving trick can be applied to twisted
toroidal meshes; a simple interleaving in each dimension would not make the twisted
cross-connections short. But it is possible to get short-wire layouts for the twisted
meshes in a similar way. One approach is to perform the interleaving twice on the
long dimensions of the mesh; for instance, if the mesh has length 16 in one of the long
dimensions, then the nodes would be arranged in the order

1, 9, 16, 8, 2, 10, 15, 7, 3, 11, 14, 6, 4, 12, 13, 5.
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Fig. 10.1. Short-wire layout for a twisted toroidal mesh.

Then wires in this dimension would have length at most four times the mesh spacing.
Now, when one does a single interleaving on the short dimension, the twisted cross-
connections become short as well.

Another method is shown in Figure 10.1(a)–(c). Here the idea is to modify the
original arrangement (a) by shearing the mesh (rotating the ith level in the short
dimension by i − 1 units in each of the long dimensions), as shown in (b), so that
the twisted cross-connections become (almost) straight. Then one can do an ordinary
interleaving in each dimension to get the result shown in (c). This gives a layout in
which the maximum wire length is 2

√
d times the mesh spacing.

Some of the other Abelian Cayley graphs we have considered can be treated
similarly, especially the ones which differ only slightly from twisted toroidal meshes.
For the optimal two-generator undirected Abelian Cayley graph, if one starts with
the almost-rectangular layout shown in Figure 5.1 (a (k+1)× (k+1) square next to a
k × k square) and performs a shear as in Figure 10.1, then the result is a 2k × (k+1)
rectangle with one node left over; this can then be interleaved to get a short-wire
layout. A more difficult case is the two-generator directed graph from Theorem 6.2
and Corollary 6.3; here one can start with the natural L-shaped layout and perform
shears on separate parts to obtain a rectangle with dimensions (a + 2b) × a (made
up of three subrectangles with different shear patterns), where the necessary cross-
connections are almost straight across, and hence interleaving will give a good layout.

11. Generators of order 2. The undirected Cayley graphs produced so far all
have even degree (twice the number of generators). If one is interested in undirected
Cayley graphs of odd degree, one will have to use a generator of order 2.

Using d unrestricted generators plus one order-2 generator, one can get an undi-
rected Abelian Cayley graph of a given diameter which is about twice as large as one
can get using d unrestricted generators alone. More precisely, if na(d, k) is the size
of the largest Abelian Cayley graph of diameter k using d generators, and n+

a (d, k) is
the size of the largest such graph using d generators plus one order-2 generator, then

2na(d, k − 1) ≤ n+
a (d, k) ≤ 2na(d, k).



512 RANDALL DOUGHERTY AND VANCE FABER

To see this, first let G be generated by g1, . . . , gd and ρ, where ρ has order 2. If G has
diameter at most k using these generators, and H is the subgroup of size 2 generated
by ρ, then G/H is generated by the images gi + H for 1 ≤ i ≤ d with diameter at
most k, so |G/H| ≤ na(d, k), so |G| ≤ 2na(d, k); hence, n+

a (d, k) ≤ 2na(d, k). On the
other hand, if G is generated by g1, . . . , gd with diameter at most k− 1, then G×Z2

is generated by (gi, 0) for i = 1, . . . , d and (0, 1) and has diameter at most k using
these generators; this shows that 2na(d, k − 1) ≤ n+

a (d, k).
We can also study n+

a (d, k) using the same methods that were used for na(d, k).
The appropriate free (universal) group to use here is Zd × Z2, with the canonical
generators (ei, 0) for i = 1, . . . , d and (0, 1). The set of elements of this group which
can be written as a word of length at most k in the generators is precisely Wk =
(Sk×0)∪ (Sk−1×1). For any Abelian group G with generators g1, . . . , gd and ρ (ρ of
order 2), there is a unique homomorphism from Zd ×Z2 to G taking (ei, 0) to gi and
(0, 1) to ρ; the Cayley graph of G using these generators has diameter at most k if
and only if the homomorphism maps Wk onto G. So the obvious upper limit for the
size of G is |Wk| = |Sk|+ |Sk−1|.

We are now led to study quotient groups (Zd × Z2)/N , where N is a (normal)
subgroup of Zd × Z2 of finite index; we want such an N of the largest possible index
such that Wk +N = Zd × Z2.

One simple possibility is that N ⊆ Zd×{0}; in this case the resulting group is just
(Zd/N0)×Z2, where N = N0 × {0}. It is easy to see that the diameter of this group
is precisely one more than the diameter of Zd/N0 using the canonical d generators.

Note that N0 is a d-dimensional lattice; let v1, . . . ,vd be a list of generators
for this lattice. Now let N ′ be the subgroup of Zd × Z2 generated by (vi, 1) for
i = 1, . . . , d. Then we have

|Zd × Z2 : N ′| = 2 |Zd : N0| = |Zd × Z2 : N | .
Furthermore, the diameter of (Zd × Z2)/N

′ is at most one more than the diameter
of Zd/N0, which means that it is no larger than the diameter of (Zd × Z2)/N .

This shows that, when trying to determine n+
a (d, k), we may restrict ourselves to

studying subgroups N of Zd ×Z2 of finite index which are not included in Zd × {0}.
So choose g ∈ Zd such that (g, 1) ∈ N . The subgroup N ∩ (Zd×{0}) is of index 2

in N and hence of finite index in Zd × Z2. So we have N ∩ (Zd × {0}) = L × {0}
for some d-dimensional lattice L. Note that (2g, 0) = 2(g, 1) ∈ N , so 2g ∈ L.
(Normally g will not be in L; if g ∈ L, then (g, 0) ∈ N , so (0, 1) ∈ N , and so
the order-2 generator collapses to the identity in the quotient group.) Also, we have
|Zd × Z2 : N | = |Zd : L|.

It is now easy to see that

(Wk +N) ∩ (Zd × {0}) = ((Sk + L) ∪ (Sk−1 + g + L))× {0}.
Hence, in order to have Wk +N = Zd × Z2, it is necessary to have

(Sk + L) ∪ (Sk−1 + g + L) = Zd.(∗)
This necessary condition is also sufficient because

(Wk +N) ∩ (Zd × {1}) = ((Sk−1 + L) ∪ (Sk + g + L))× {1}
= (((Sk + L) ∪ (Sk−1 + g + L)) + g)× {1}.

So our goal is to find such a lattice L and extra generator g (with 2g ∈ L) so that (∗)
is satisfied and |Zd : L| is as large as possible.
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We are now ready to consider specific values of d. As usual, the case d = 1 is
easy. The maximal possible value of |Z : L| is |Wk| = 4k, and this value is attained by
letting L be generated by the element 4k, with g = 2k. This leads to the cyclic Cayley
graph on the group Z4k with unrestricted generator 1 and order-2 generator 2k.

For d = 2 we have a situation very similar to that in Figure 5.1 (lattice coverings
with Aztec diamonds), but not identical because we must use two different shapes.
The upper bound on |Z2 : L| is |Wk| = 4k2 + 2. For k = 1 this bound is actu-
ally attainable; it leads to the Cayley graph from Z6 with unrestricted generators 1
and 2 and order-2 generator 3. But for k > 1 the pieces Sk and Sk−1 do not fit
together well enough to give a perfect tiling. The best one can do is the lattice L
generated by (2k + 1, 1) and (−1, 2k − 1), with the extra generator g = (k, k), as
shown in Figure 11.1.

The graph of diameter k resulting from this covering is the Cayley graph of the
cyclic group Z4k2 with unrestricted generators 1 and 2k−1 and order-2 generator 2k2.
One can get another Cayley graph of this size by using the lattice generated by (2k, 0)
and (0, 2k), but this graph will not be cyclic; it comes from the group Z2k × Z2k.

The outlined shape in Figure 11.1 (a (2k+ 1)× (2k− 1) rectangle with one extra
point) is a fundamental region which is convenient for an actual layout of nodes in
a network. Note that a 2k × 2k rectangle (or, for that matter, any rectangle with
both sides greater than 1) will not work as a fundamental region for this lattice. The
alternate lattice in the previous paragraph does allow one to use a layout which is a
2k × 2k rectangle; in fact, this is just a toroidal mesh. However, in either case one
will have to make the extra connections specified by the order-2 generator.

When one moves to d = 3, it becomes harder to get optimal results, so again
the authors resorted to a computational search. For k = 1, the best graph is the
Cayley graph of Z8 with unrestricted generators 1, 2, 3 and order-2 generator 4; for
k = 2, the best is Z26 with unrestricted generators 1, 2, 8 and order-2 generator 13.
For 3 ≤ k ≤ 10, the optimal results, like those for three generators alone, form a
pattern of period 3, as shown in Table 11.1. (Again the best graphs are all cyclic.
This time the parameter a is defined to be the integer nearest 2k/3.)

We can now apply the methods in the proof of Theorem 7.1 to show the following.
Theorem 11.1. For each k ≥ 3, the cyclic undirected Cayley graph using the

group and generators specified in Table 11.1 has diameter k.
The authors again conjecture that these are actually optimal such Abelian Cayley

graphs for all k ≥ 3, not just for 3 ≤ k ≤ 10.
For d > 3, one can get reasonably good results by letting L be approximately

a cubic lattice, with g near the center of one of the cubes; this makes L ∪ (g + L)
approximately a body-centered cubic lattice. Again, though, the efficiency of this
covering decreases exponentially with d; one can do much better using the results of
Gritzmann [16].

One can also consider the possibility of using more than one generator of
order 2. For instance, one could look at Cayley graphs of degree 2d + 2 obtained
by using d unrestricted generators and two generators of order 2.

However, this is not going to be helpful if one wants to construct large undirected
Cayley graphs of a given degree and diameter, at least if the diameter is substantially
larger than the degree. For instance, suppose that the degree is fixed as 2d + 2. If
one uses d unrestricted generators and two order-2 generators, then the size of the
resulting undirected Abelian Cayley graph of diameter k is at most four times the
number of points in the d-dimensional shape Sk. (More precisely, by the methods
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Fig. 11.1. Lattice covering of Z2 using Sk and Sk−1 (shown for k = 3).

Table 11.1

Best undirected Cayley graphs of cyclic groups of diameter k using three generators plus one
order-2 generator (3 ≤ k ≤ 10).

k mod 3 0 1 2

a 2k/3 (2k + 1)/3 (2k − 1)/3

Lattice
generators

(2a, 1,−1) (2a− 1,−1, 0) (2a + 1,−1, 0)

(−1, 2a,−1) (1, 2a,−1) (1, 2a,−1)

(1, 1, 2a) (0, 1, 2a− 1) (0, 1, 2a + 1)

Extra
generator

(a, a + 1, a− 1) (a, a, a− 1) (a + 1, a, a)

Cyclic
group size

64k3 + 108k

27

64k3 + 60k − 16

27

64k3 + 60k + 16

27

Unrestricted
generators

1 1 1

4a3 − 2a2 + 4a− 1 2a− 1 2a + 1

4a3 − 2a2 + 2a− 1 4a2 − 2a + 1 4a2 + 2a + 1

Order-2
generator

4a3 + 3a 4a3 − 4a2 + 3a− 1 4a3 + 4a2 + 3a + 1

used above for one order-2 generator, one gets a limit of |Sk|+2|Sk−1|+ |Sk−2|.) This
limit is O(kd), which is less than the O(kd+1) one gets by using d + 1 unrestricted
generators. The same argument shows that using more than two order-2 generators
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cannot be useful for large k; one gets larger graphs by replacing two order-2 generators
with one unrestricted generator.

If one is interested in the small-diameter case, though (especially when the diam-
eter is less than or equal to the degree), then order-2 generators must be considered.
The most extreme version of this would be to make all of the generators have or-
der 2. This then becomes precisely the covering radius problem for binary linear
codes; see the surveys by Cohen et al. [8, 9] for more on this problem. The result-
ing graphs would be hypercubes with additional diagonal connections to reduce the
diameter.

12. Small-diameter graphs. In most of the previous sections, we considered
the case where the degree of the graph (or the number of generators used for a Cayley
graph) was a fixed small value, while the diameter bound varied and was usually much
larger than the degree. (In particular, the connections with tilings of Euclidean space
were useful mainly in this case.) New, interesting problems arise if one instead fixes a
(small) diameter bound and allows the degree to vary. (The authors thank the referee
for bringing this topic to their attention.)

In this section we will use the variable d to denote the degree of the graph or
digraph. In fact, in order to make it easier to state results, we will assume that the
set of generators used for undirected Abelian Cayley graphs is closed under negation;
hence, d will also be the number of generators used in both directed and undirected
cases.

We first dispose of the trivial cases. If the diameter bound is zero, then the graph
must have only one vertex. If the diameter bound is one, then the graph must be a
complete graph or digraph, and the Moore bound of d + 1 is met by such complete
graphs. These graphs are Cayley graphs of cyclic groups, using all nonzero elements
as generators. (If we were not assuming that the set of generators is closed under
negation, then we would only need about half of the nonzero elements as generators
in the undirected case. A similar remark applies to all of the other undirected Cayley
graphs here.)

Now consider the case of diameter 2 for undirected graphs. The Moore bound for
this case is d2 + 1. McKay, Miller, and Širáň [18] have constructed vertex-transitive
(but not Cayley) graphs which come relatively close to this bound in a number of
cases: For any d of the form (3q − 1)/2 where q is a prime power congruent to 1
modulo 4, they construct a vertex-transitive graph of degree d and diameter 2 with
(8/9)(d+ 1

2 )2 vertices. They note that the best known construction which works for
all d, due to Griggs, is the Cayley graph of Za+1×Zb+1, where a and b are d/2 rounded
up and down, with the generators being those elements having exactly one nonzero
coordinate. The number of vertices here is⌊

d+ 2

2

⌋⌈
d+ 2

2

⌉
,

which can be expressed as (d2 +4d+4− δ)/4, where δ is 1 for odd d and 0 for even d.
Here is a cyclic variant of the above product construction. For any a ≥ 0 and

b ≥ 0, the Cayley graph of the cyclic group Z(2a+1)(b+1) using the 2a+ b generators

±1,±2, . . . ,±a, 1(2a+ 1), 2(2a+ 1), . . . , b(2a+ 1)

has diameter 2 (or less in trivial cases). Given a degree d, we get the best results here
by splitting d+ 2 into two parts as nearly equal as possible so that at least one of the
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Table 12.1

Best undirected Cayley graphs of Abelian groups, diameter 2.

d n Generators

1 2 1

2 5 ±1

3 8 ±1, 4

4 13 ±1, ±5

5 16 ±1, ±3, 8

6 21 ±1, ±2, ±8

7 26 ±1, ±2, ±8, 13

parts is odd, and letting these parts be 2a + 1 and b + 1. The size of the resulting
Cayley graph is (d2 + 4d+ 4− δ)/4, where δ is 1 for odd d, 0 for d ≡ 0 (mod 4), and
4 for d ≡ 2 (mod 4), so it is as good as the product construction 3/4 of the time.

We can get some indication of how close to optimal these constructions are by
looking at the results from previous sections of this paper for the diameter-2 case.
These give optimal Abelian Cayley graphs for all d ≤ 7, as shown in Table 12.1; all
of them turn out to be cyclic. As noted in the preceding section, since we are not in
the large-diameter case, we have to consider the possibility that one can get better
graphs by using multiple order-2 generators; it turns out that this possibility does not
occur in these seven cases.

For 2 ≤ d ≤ 7, the sizes in this table are greater than (d2+4d+4)/4, so the product
construction and its cyclic variant are not optimal. Using these specific examples as
well as geometric reasoning, we are led to the following two improvements on the
cyclic construction.

Construction A. For any a ≥ 0 and b ≥ 2, the Cayley graph of the cyclic group
Z(2a+1)(b+2)+1, using the 2a+ b generators

±1,±2, . . . ,±a, a+ 1 + 1(2a+ 1), a+ 1 + 2(2a+ 1), . . . , a+ 1 + b(2a+ 1),

has diameter 2. Given a degree d, we get the best results here by splitting d+ 3 into
two parts as nearly equal as possible so that one of the parts is odd while the other
is at least 4, and letting these parts be 2a + 1 and b + 2. For d ≥ 4, the size of the
resulting Cayley graph is (d2 + 6d + 13 − δ)/4, where δ is 1 for even d, 0 for d ≡ 3
(mod 4), and 4 for d ≡ 1 (mod 4).

Construction B. For any a ≥ 2 and b ≥ 1, the Cayley graph of the cyclic group
Z(2a+1)(b+1)−4, using the 2a+ b− 2 generators

±1,±3,±4, . . . ,±a, 1(2a+ 1)− 2, 2(2a+ 1)− 2, . . . , b(2a+ 1)− 2,

has diameter 2. (Note that (j(2a+1)−2)+2 = ((j+1)(2a+1)−2)− (1(2a+1)−2).)
Given a degree d, we get the best results here by splitting d + 4 into two parts as
nearly equal as possible so that one of the parts is odd and at least 5 while the other
is at least 2, and letting these parts be 2a + 1 and b + 1. For d ≥ 4, the size of the
resulting Cayley graph is (d2 +8d− δ)/4, where δ is 1 for odd d, 0 for d ≡ 2 (mod 4),
and 4 for d ≡ 0 (mod 4).

Both Construction A and Construction B give optimal results for 5 ≤ d ≤ 7
(Construction A does for d = 4 as well) and do equally well for d = 8, but Construction
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B does better than Construction A for d > 8 (and both of them do better than the
product construction). It is possible that Construction B gives the optimal degree-d
diameter-2 Abelian Cayley graph for all d ≥ 5, but it seems more likely that further
improvements are possible for large d.

The best one can hope to achieve with an Abelian Cayley graph is the size of the
set S2 (recall that there is a suppressed d here, or actually a d/2), which is(

d+ 2

2

)
−
⌈
d

2

⌉
= d2/2 +O(d).

So one cannot get close to the size of the McKay–Miller–Širáň (MMS) graphs, although
the MMS graphs are “almost Abelian Cayley”: Šiagiová [21] has shown that each
MMS graph is a Abelian lift of a two-vertex graph, while Abelian lifts of one-vertex
graphs are just the Abelian Cayley graphs.

The situation for directed Abelian Cayley graphs turns out to be very similar to
that in the undirected case. Again one has a product construction (in fact, exactly
the same as the product construction for the undirected case) giving a diameter-2
Abelian Cayley digraph on d generators of size �(d2 + 4d + 4)/4�. Also, there is a
cyclic version of the construction, using the group Z(a+1)(b+1) and the a+b generators

1, 2, . . . , a, 1(a+ 1), 2(a+ 1), . . . , b(a+ 1),

which, when a = �d/2� and b = �d/2�, gives a digraph of the same size as that from
the product construction (this time there is no exceptional case).

The computations in previous sections do not give as much information for this
case; we only have the optimal results for d = 1, 2, 3. These are all cyclic, on groups
Z3 (generator 1), Z5 (generators 1, 2), and Z9 (generators 1, 3, 4), respectively. One
can get the following analogues of Constructions A and B, though they are not quite
as good.

Construction A′. For any a ≥ 0 and b ≥ 0, the Cayley digraph of the cyclic
group Z(a+1)(b+2)−1, using the a+ b generators

1, 2, . . . , a, a+ 1(a+ 1), a+ 2(a+ 1), . . . , a+ b(a+ 1),

has diameter 2. Given a degree d, we get the best results here by splitting d+ 3 into
two parts as nearly equal as possible, and letting these parts be a+ 1 and b+ 2. For
d ≥ 4, the size of the resulting Cayley graph is �(d2 + 6d+ 5)/4�.

Construction B′. For any a ≥ 4 and b ≥ 0, the Cayley digraph of the cyclic
group Z(a−2)(b+2)+5, using the a+ b− 1 generators

1, 3, 4, . . . , a, a+ 1(a− 2), a+ 2(a− 2), . . . , a+ b(a− 2),

has diameter 2. Given a degree d, we get the best results here by splitting d+ 1 into
two parts as nearly equal as possible so that each of the parts is at least 2, and letting
these parts be a − 2 and b + 2. For d ≥ 3, the size of the resulting Cayley graph is
�(d2 + 2d+ 21)/4�.

This time, Construction A′ gives the best results for d ≥ 5, although Construction
B′ is optimal for d = 3 (they are tied when d = 4). Again this is a slight improvement
over the product construction. Further improvements may be possible, but the best
that one can hope for from an Abelian Cayley digraph of diameter 2 is

(
d+2
2

)
vertices,

and this again falls far short of the MMS graph (considered as a digraph) or the Moore
bound of d2 + d+ 1.
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One can consider graphs or digraphs of a fixed diameter k > 2 and get results
similar to those above. In this case the Moore bound is dk+O(dk−1), but the best one
can hope for from an Abelian Cayley (di)graph is dk/k!+O(dk−1). An explicit product
construction gives dk/kk + O(dk−1) vertices; improvements on this are possible, but
it is not clear whether the constant 1/kk can be improved.

13. Conclusions. We have shown that one can construct Cayley graphs of
Abelian groups which have substantially more vertices than traditional toroidal
meshes but retain certain desirable features. In particular, routing on the twisted
toroidal meshes is easily described in almost the same manner as on toroidal meshes,
and the twisted toroidal meshes host the discrete nonperiodic orthogonal grids used in
numerical calculations in exactly the same way that toroidal meshes do. In addition,
we have shown how our d-dimensional meshes can be constructed with physical wire
lengths that remain constant with increasing diameter (and increasing number of ver-
tices) just as the corresponding toroidal meshes can. We have given results which are
provably optimal in two dimensions and probably optimal in three dimensions—the
physically interesting cases.

In the sequel to this paper, we will show that our methods can be extended to cover
certain types of nilpotent groups. These groups yield graphs with cardinalities which
still increase polynomially with diameter for a given degree, but with an exponent
which is larger than in the Abelian case. One class of groups for which we obtain
optimal results includes the groups discussed in Draper and Faber [12]. In particular,
we show that the particular groups analyzed in that paper are not optimal for large
diameters.
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SIAM J. DISCRETE MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 17, No. 4, pp. 521–540

Abstract. In this paper we extend the technique provided in [M. Flammini and S. Pérennès,
Inform. and Comput., to appear] to allow the determination of lower bounds on the broadcasting
and gossiping time required by the so-called restricted protocols. Informally, a protocol is (I,O)-
restricted if at every processor each outgoing activation of an arc depends on at most I previous
incoming activations and any incoming activation influences at most O successive outgoing acti-
vations. Examples of restricted protocols are systolic ones and those running on bounded degree
networks.

Thus, under the basic whispering model, we provide the first general lower bound on the gossiping
time of d-bounded degree networks in the directed and half-duplex cases. Moreover, significantly
improved broadcasting and gossiping lower bounds are obtained for well-known networks such as
butterfly, de Bruijn, and Kautz graphs.

All the results are also extended to other communication models such as the c-port and/or postal
one.
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1. Introduction. Broadcasting (one-to-all communication) and gossiping (all-
to-all communication) are well-known communication primitives to disseminate infor-
mation in communication networks. Such problems have been extensively investigated
in recent years for many different networks and under a large variety of models. A
survey of the main related results can be found in [9, 8, 5, 12, 10, 11].

We consider first the basic model, called whispering or processor-bound, where at
each communication round each processor can have only one active incident link; i.e.,
the set of the active links forms a matching. Active links are used at the correspond-
ing processors to deliver the items known until that communication round to their
neighbors. If the network can be modelled as an undirected graph, it is possible to
further distinguish between two different cases: the half-duplex mode, in which active
links allow the transmission of messages in only one direction, and the full-duplex
mode, in which messages can travel in both directions simultaneously. Clearly such a
distinction is meaningless for broadcasting. In fact, for each given root the protocol is
fixed in advance and there is a unique item travelling around. Therefore, it traverses
each link only once and in one direction.

Starting from the basic whispering model, several generalizations can be defined.
First, it is possible to relax the constraint that at each communication round only
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one incident link is activated, thus allowing at most c ≥ 1 active links. This model
is called the c-port (see, for instance, [8]). Moreover, in the postal model [1] it is
assumed that the communication time can be slower than one time step, so that
when items are sent through an active link, they will be available at the arriving
processor only after a number of rounds δ ≥ 1. The above models are orthogonal
in the sense that it is possible to have the c-port also in the postal case. Finally,
it is possible to establish some bounds on the lengths of the messages, i.e., on the
number of items that can travel simultaneously on a link [3]. However, all the results
shown in this paper assume no bound on the messages’ length. A more detailed and
exhaustive description of the various models together with the corresponding results
can be found in [9, 1, 8, 5, 12, 10, 11, 3].

If we restrict our attention to the whispering model, the best lower bounds on the
broadcasting time are as follows. Let the parameter d be defined for undirected graphs
as the maximum degree minus one and for directed graphs as the maximum out-degree.
Then for bounded degree networks in [17, 4] it has been proved that the broadcasting

time b(G) of a graph G of n vertices with parameter d satisfies b(G) ≥ b̂(d) log n

(from now on all logarithms are assumed to base 2), where b̂(d) = 1
log ς and ς is the

largest real number such that ςd − ςd−1 − · · · − ς − 1 = 0. This yields b̂(2) = 1.4404,

b̂(3) = 1.1374, b̂(4) = 1.0562, and, for large d, b̂(d) ≈ (1 + log(e)/2d).
For butterfly and de Bruijn networks (see section 3 for a formal definition) bet-

ter lower bounds have been obtained in [14] and then improved in [19, 18] by using
their structure. For example, in [19] it is proved that for undirected wrapped but-
terflies, b(WBF (2, D)) ≥ 1.7621D (≈ 1.7621 log n) and b(WBF (3, D)) ≥ 2.0002D
(≈ 1.2619 log n), while for undirected de Bruijn networks, b(DB(2, D)) ≥ 1.4404D
(= 1.4404 log n) and b(DB(3, D)) ≥ 1.8028D (= 1.1374 log n).

Concerning lower bounds on gossiping, in the half-duplex mode there is a general
lower bound of 1.4404 log n for all graphs of n vertices [6, 16, 15, 20], this bound being
attained for complete graphs. Such a lower bound has been generalized in [7], where it
has been shown that any s-systolic (i.e., periodic with period s) gossip protocol in the
directed and half-duplex modes for any graph takes at least ĝ(s) log(n)−O(log log n)
time steps, where ĝ(s) = 1/ log(1/λ) and λ is the real number between 0 and 1
such that

√
p�s/2�(λ) ·√p�s/2�(λ) = 1, with pj(λ) = λ + λ3 + · · · + λ2j−1 for any

integer j > 0. Moreover, improved lower bounds on the gossiping time of s-systolic
protocols are provided in the directed, half-duplex, and full-duplex cases for butterfly,
de Bruijn, and Kautz networks. Other results concerning specific networks can be
found in [5, 13, 8, 12].

In this paper we extend the technique provided in [7] to allow the determination
of lower bounds on the broadcasting and gossiping time required by the so-called
restricted protocols. Informally, a protocol has input restriction I if at every proces-
sor the items delivered during any outgoing activation have been communicated to
the processor during at most I of the previous incoming activations. Similarly, the
protocol has output restriction O if at every processor the items received during any
incoming activation are delivered by the processor using at most O successive outgo-
ing activations. A protocol with input restriction I and output restriction O is called
(I,O)-restricted. As an example, the broadcast protocols running on d-bounded de-
gree networks are (1, d)-restricted, the gossip protocols on d-bounded degree networks
(∞, d)-restricted, and the s-systolic gossip protocols (I,O)-restricted with I+O ≤ s.

We derive general lower bounds on the broadcasting and gossiping time of re-
stricted protocols. In particular, every (I,O)-restricted protocol for broadcasting
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or gossiping in the full-duplex mode takes at least b̂(I,O) log(n) − O(log log n) time

steps, where b̂(I,O) = 1/ log(1/λ) and λ is the real number between 0 and 1 such
that qO(λ) = 1, with qj(λ) = λ + λ2 + · · · + λj for any integer j > 0. Similarly, in
the directed and undirected half-duplex cases, every (I,O)-restricted gossip protocol
takes at least ĝ(I,O) log(n) − O(log log n) time steps, where ĝ(I,O) = 1/ log(1/λ)
and λ is the real number between 0 and 1 such that

√
pI(λ) ·√pO(λ) = 1, again

with pj(λ) = λ + λ3 + · · · + λ2j−1 for any integer j > 0. For I and O going to in-
finity, as a simple corollary this yields the general lower bound independently proved
in [6, 16, 15, 20] for all graphs and any (unrestricted) gossip protocol, up to an
O(log log n) additive factor. Moreover, since as noted above every s-systolic gossip
protocol is (I,O)-restricted with I+O ≤ s, as a corollary we obtain the same results
in [7].

By exploiting the fact that every protocol for a graph with parameter d (defined as
above) is (∞, d)-restricted, we then derive the first general lower bound in the directed
and half-duplex modes on the gossiping time of networks with fixed parameter d. This
gives at least 1.5728 log(n)−O(log log n) rounds for d = 2, 1.4829 log(n)−O(log log n)
rounds for d = 3, 1.4555 log(n)−O(log log n) rounds for d = 4, and so forth.

For broadcasting and full-duplex gossiping our results for fixed parameter net-
works coincide with the lower bounds coming from broadcasting [17, 4] up to an
O(log log n) additive factor, as it can be easily checked by letting λ = 1/ς. However,
by exploiting more information about the network topology, significantly improved
lower bounds are obtained for many relevant interconnection networks such as but-
terfly, wrapped butterfly, de Bruijn, and Kautz networks (see Figure 4.1). Similarly,
new lower bounds for such topologies are also obtained for directed and half-duplex
gossip protocols.

Finally, all the results are extended to other communication models, such as the
c-port and/or the postal one. Here new bounds are obtained also in the systolic case.

Before concluding the section, let us remark that, in addition to the particular
results and numerical values found, a valuable contribution of the paper is the lower
bounding technique that extends the ad hoc technique for systolic gossiping presented
in [7] in several ways. First, thanks to the use of different matrix norms, it allows us
to handle different communication patterns. For instance, all the broadcasting results
are completely new. Moreover, a deeper understanding of the intrinsic dependencies
of the actions of the protocols and of their effect on the structure of the associated ma-
trices has allowed a general definition of restricted protocols that includes in a unified
setting broadcasting ones, systolic ones, and those running on bounded degree graphs.
Other examples are protocols performing multicast (many-to-many communication)
in which there is a limited number of senders or receivers. Broadcasting is one ex-
tremal case. Finally, we have “memoryless” protocols, where every vertex remembers
only the items received during a fixed number of previous steps. Such protocols will
be further discussed in the conclusive section. Besides these examples, every pos-
sible constraint introduced in a protocol in general yields corresponding restrictions
that if properly evaluated allow the application of the technique. Concerning the
topology-dependent results, even if in this paper we consider only a limited number
of networks, the technique has a wide applicability and gives a general framework
allowing the determination of nontrivial and improved lower bounds for many other
graphs by exploiting very general topological properties. All these considerations hold
for different communication models in an orthogonal way. In fact, once a different
model is adopted, the whole framework is unchanged and can be exploited once the
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effect on the protocols’ matrices is determined. This outlines the nice basic feature
of the technique that all the possible variants (restrictions, communication patterns,
topologies, and communication models) are encapsulated in the protocols’ matrices
and do not affect, or have a very limited effect on, the other details. It is conceivable
that other possible variants can be included without substantial effort.

The paper is organized as follows. In the next section we introduce the notation
and necessary definitions. In section 3 we give some useful facts and properties on
protocols, topologies, matrices, and norms. In section 4 we provide the above men-
tioned lower bounds on the number of steps needed for broadcasting and full-duplex
gossiping. In section 5 we give the lower bounds on the gossiping time in the directed
and half-duplex cases for both general and specific networks. In section 6 we extend
all the results to the c-port and/or postal models, and finally, in section 7, we give
some conclusive remarks and discuss some open questions.

2. Notation and definitions. Let us first introduce some useful notation and
definitions.

We model the network as a digraph G = (V,A) in which vertices represent pro-
cessors and arcs communication links. Let n = |V | denote the number of vertices
in G.

Definition 2.1. A broadcast (resp., gossip) protocol of length t for G = (V,A) is
a sequence 〈A1, . . . , At〉 of t subsets A1, . . . , At ⊆ A subject to the following conditions:

1. Each Ai, 1 ≤ i ≤ t, is a matching in G (i.e., no two arcs in Ai have a
common endpoint).

2. For a given root vertex x ∈ V (resp., for any vertex x ∈ V ) and for any other
vertex y ∈ V , there exist a path 〈x0, x1, . . . , xl〉 with l ≤ t, x0 = x, and xl = y,
and a sequence of positive integers j1, . . . , jl such that 1 ≤ j1 < · · · < jl ≤ t
and for every i, 1 ≤ i ≤ l, (xi−1, xi) belongs to Aji .

Informally, each Ai represents the set of the arcs that are active at the commu-
nication round i. If an arc (x, y) is active at a step i, then at the beginning of step
i + 1, vertex y knows all the items known by x at the beginning of step i. Then, in
order for the sequence of the subsets Ai to be a broadcast (resp., gossip) procedure,
starting from the chosen root x (from any vertex x), for any other vertex y there must
exist an “informing” path from x to y whose arcs are activated in a proper sequence
so that at the end of the protocol y knows the items of x.

Definition 2.2. Given a digraph G and a vertex x ∈ V , let bx(G) be the mini-
mum length of a broadcast protocol for G with root x. The broadcasting time of G is
b(G) = maxx∈V bx(G).

The gossiping time g(G) of a digraph G is the minimum length of a gossip protocol
for G.

If we restrict our attention to symmetric digraphs, then the above definition
corresponds to half-duplex protocols. In order to obtain the full-duplex case, it is
sufficient to slightly modify the condition on the active arcs by saying that at every
communication round if (x, y) is active, then (y, x) is also active; i.e., any two active
arcs either do not have a common endpoint or are opposite. Clearly such a distinction
is meaningless for broadcasting, as there is always a single item travelling around and
it traverses each link only once and in one direction.

We denote the activation of an arc (x, y) during round i (i.e., when (x, y) ∈ Ai) as
(x, y, i) and denote by Act(〈A1, . . . , At〉), or simply Act, the set of all the activations
of the protocol 〈A1, . . . , At〉, i.e., Act = {(x, y, i) | (x, y) ∈ Ai, 1 ≤ i ≤ t}. m = |Act|
is the total number of activations.
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We can then see an informing path from x to y as constituted by the ordered
sequence of its activations, i.e., P (x, y) = 〈(x0, x1, j1), (x1, x2, j2), . . . , (xl−1, xl, jl)〉
with x0 = x, xl = y, and 1 ≤ j1 < · · · < jl ≤ t.

Let P(〈A1, . . . , At〉) or simply P be the set of all the information paths of the
protocol. Then the protocol performs a broadcasting from a given root x ∈ V if P
contains at least one informing path from x to any other vertex y ∈ V . Similarly, for
gossiping there must be at least one path for any possible pair of vertices x, y ∈ V .

Given any activation (x, y, i) ∈ Act incoming at a vertex y ∈ V , in some cases
not all the successive activations (y, z, j) outgoing from y depend on (x, y, i), i.e.,
carry items that have been communicated to y through (x, y, i). It is then possible
to define a dependence function D : Act → 2Act such that, for any (x, y, i) ∈ Act,
D(x, y, i) ⊆ {(y, z, j) | j > i} is the subset of the successive activations outgoing from
y that depend on (x, y, i).

Starting from D, let PD ⊆ P be the set of the informing paths in P that respect
D, i.e., such that if 〈(x0, x1, j1), (x1, x2, j2), . . . , (xl−1, xl, jl)〉 ∈ PD, then for any h,
1 ≤ h < l, (xh, xh+1, jh+1) ∈ D(xh−1, xh, jh).

Definition 2.3. A dependence function D is feasible for a broadcast (resp.,
gossip) protocol 〈A1, . . . , At〉 if given the root x ∈ V (resp., for any vertex x ∈ V ),
and given any other vertex y ∈ V , there exists at least one informing path P (x, y)
from x to y in PD.

Hence, D is feasible if respecting its dependence relationships does not affect the
broadcasting (resp., gossiping) property of the protocol, thus not making necessary
an increase of its length.

Definition 2.4. A broadcast (resp., gossip) protocol 〈A1, . . . , At〉 is (I,O)-
restricted at a given vertex y ∈ V if it admits a feasible dependence function D that
satisfies the following two conditions:

1. For any activation (y, z, j) ∈ Act outgoing from y, |{(x, y, i)|(y, z, j) ∈
D(x, y, i)}| ≤ I.

2. For any activation (x, y, i) ∈ Act incoming in y, |{(y, z, j)|(y, z, j) ∈
D(x, y, i)}| ≤ O.

A broadcast (resp., gossip) protocol is (I,O)-restricted if it is (I,O)-restricted at
every vertex y ∈ V .

Informally, if the protocol is (I,O)-restricted at a given vertex y ∈ V , then each
outgoing activation of y depends on at most I previous incoming activations and each
incoming activation influences at most O successive outgoing activations.

In order to prove the lower bounds, we now introduce the notion of delay digraph
of a restricted protocol.

Definition 2.5. The delay digraph DG(A1, . . . , At), or simply DG, of an (I,O)-
restricted protocol 〈A1, . . . , At〉 for G is a weighted digraph DG = (Act,A′) with A′ =
{((x, y, i), (y, z, j)) | (x, y, i) ∈ Act, (y, z, j) ∈ Act, (y, z, j) ∈ D(x, y, i)} and weight
function δ((x, y, i), (y, z, j)) = j − i.

In DG, given two activations (x, y, i) ∈ Act and (y, z, j) ∈ Act, δ((x, y, i),
(y, z, j)) = j − i is the delay encountered by an item passing (x, y) at time i to cross
(y, z) at time j. Delays are represented only between activations that are dependent
according to the dependence function D.

Definition 2.6. Given an (I,O)-restricted protocol 〈A1, . . . , At〉 for G with
delay digraph DG and a strictly positive real number λ < 1, the delay matrix
MDG(λ), or simply M(λ), of G with respect to the protocol is the m × m matrix
such that M(λ)(x,y,i),(y,z,j) = λδ((x,y,i),(y,z,j)) if ((x, y, i), (y, z, j)) ∈ A′, or else
M(λ)(x,y,i),(y,z,j) = 0.
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Fig. 2.1. An example of broadcast protocol with the associated delay digraph and delay matrix.
For the sake of simplicity in G only activated arcs are represented together with their communication
rounds. The protocol is (1, 3)-restricted, since there are at most three entries different from 0 in
each row and at most one in each column.

In the matrix M(λ) each row corresponds to an incoming activation and each
column to an outgoing one. Since the protocol is (I,O)-restricted, there are at most
O entries different from 0 per row and at most I per column.

A simple example of restricted broadcast protocol is depicted in Figure 2.1, to-
gether with the associated delay digraph DG and delay matrix M(λ).

Let us finally establish the key property of M(λ).
Consider the matrix M(λ)2 = M(λ) ·M(λ). Given any two activations (x, y, i),

(w, z, j) ∈ Act, the entry of M(λ)2 at row (x, y, i) and column (w, z, j) is given
by a sum of products, each corresponding to an intermediate activation (y, z, k) ∈
Act such that ((x, y, i), (y, w, k)) ∈ A′ and ((y, w, k), (w, z, j)) ∈ A′. Each such
product is equal to λδ((x,y,i),(y,w,k))λδ((y,w,k),(w,z,j)) = λ(k−i)+(j−k) = λj−i, so that
(M(λ))

2
(x,y,i),(w,z,j) = hλj−i, where h is the number of dipaths from (x, y, i) to (w, z, j)

in DG consisting of two arcs.
Generalizing the above argument, for any positive integer l, (M(λ))

l
(x,y,i),(w,z,j) =

hλj−i, where h is the number of dipaths from (x, y, i) to (w, z, j) in DG consisting
of exactly l arcs. Since all weights in DG are at least equal to 1, any dipath from
(x, y, i) to (w, z, j) has at most j− i < t arcs. Therefore, if there exists a dipath from
(x, y, i) to (w, z, j) in DG, then, as 0 < λ < 1,

M(λ)(x,y,i),(w,z,j) + (M(λ))
2
(x,y,i),(w,z,j) + · · ·+ (M(λ))

t
(x,y,i),(w,z,j) ≥ λj−i > λt.

3. Preliminaries. In this section we introduce some basic properties and facts
that will be used in the following sections.

First, let us give some examples of (I,O)-restricted protocols. The first one
concerns broadcast protocols, in which it is possible to assume that each vertex has
only one incoming activation.

Lemma 3.1. Every broadcast protocol is (1,O)-restricted.
Proof. The lemma trivially holds by observing that only the first incoming activa-

tion (x, y, i) ∈ Act at each vertex y ∈ V influences all the outgoing activations. More
precisely, it is possible to put all the outgoing activations (y, z, j) with j > i only in
the dependence set D(x, y, i). This clearly maintains in PD at least one informing
path from the root to any other vertex.
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Protocols running on bounded degree networks are also restricted. In fact, let the
parameter d be defined for undirected graphs as the maximum degree minus one and
for directed graphs as the maximum out-degree. Then the following lemma holds.

Lemma 3.2. Every protocol for a network with fixed parameter d is (∞, d)-
restricted.

Proof. The claim derives by observing that an item of information needs to
traverse a given arc only once. Since at any vertex y ∈ V for every activation (x, y, i)
there are at most d successive activations of the type (y, z, j) with j > i corresponding
to different arcs, then it is possible to put in the dependence set D(x, y, i) the at most
d elements obtained by the first activation after round i of every arc leaving y (clearly
except (y, x)). This maintains in PD at least one informing path between each pair
of vertices having an informing path in P.

Combining Lemmas 3.1 and 3.2, it is easy to derive that every broadcast protocol
for a network with fixed parameter d is (1, d)-restricted.

As a last example of restriction we have the s-systolic protocols, i.e., with Ai =
Ai+s for each 1 ≤ i ≤ t− s.

Lemma 3.3. Every s-systolic protocol at each vertex is (I,O)-restricted with
I +O ≤ s.

Proof. Given a vertex y ∈ V , let l and r be the number of incoming and out-
going activations, respectively, during a systolic period. Since a period contains s
activations, l + r ≤ s. Analogously as in the previous lemma, since for any activa-
tion (x, y, i) there are at most r successive activations of the type (y, z, j) with j > i
corresponding to different arcs, it is possible to put in the dependence set D(x, y, i)
the r outgoing activations that are within the next systolic period. This maintains
in PD at least one informing path between each pair of vertices having an informing
path in P. The lemma follows by observing that O = r and that, by construction,
each outgoing activation belongs to the dependence set of the l incoming activations
occurring in the previous systolic period. Hence I = l, and I +O = l + r ≤ s.

Notice that in bounded degree networks it is not possible to bound the input
restriction. In fact, any outgoing activation might depend on multiple previous acti-
vations of the same incoming arc, because each might carry different items. Even if
this is also true for systolic protocols, by the periodic fashion the outgoing activation
of each arc is repeated every s steps and thus is influenced only by the incoming acti-
vations occurring during the previous period. This allows us to also bound the input
restriction in such a way as to guarantee that the proper information paths are main-
tained. In fact, they are all the ones in which any two adjacent activations along the
path are distant at most s steps, and this clearly does not increase the dissemination
time.

As we will see in the following sections, better lower bounds can be determined
when some information about the topology of the network is known. More precisely,
this is possible for classes or families of networks containing a large number of vertices
distant from the root or among themselves.

Definition 3.4. Given a family G of arbitrarily large digraphs and two positive
real numbers α and l, G has an 〈α, l〉-broadcast separator if, for every digraph G =
(V,A) ∈ G of n vertices, there exist a root vertex x ∈ V and a subset of vertices Vx ⊂ V
such that miny∈Vx distG(x, y) = l log(n)(1− o(1)) and |Vx| = 2αl log(n)(1−o(1)).

An analogous definition can be given for gossiping.
Definition 3.5 (see [7]). Given a family G of arbitrarily large digraphs and

two positive real numbers α and l, G has an 〈α, l〉-gossip separator if, for every
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digraph G = (V,A) ∈ G of n vertices, there exist two subsets of vertices V1 ⊂ V and
V2 ⊂ V such that minx∈V1,y∈V2 distG(x, y) = l log(n)(1 − o(1)) and min(|V1|, |V2|) =
2αl log(n)(1−o(1)).

Notice that in the above two definitions α and l depend on the family G and
not on the single digraphs in G. In particular, for every G ∈ G, α and l are not a
function of the number of vertices of G. Moreover, by definition the inequality α·l ≤ 1
always holds. Clearly, an 〈α, l〉-gossip separator for G implies also the existence of an
〈α, l〉-broadcast separator.

In the following, when dealing with digraphs G whose corresponding families G
are clear from the context, for the sake of brevity we will often identify G simply by
G. So, for instance, we will say that G has an 〈α, l〉-broadcast or gossip separator to
mean that G has such a separator.

The following networks will be considered in what follows.
A butterfly digraph of degree d and dimensionD, denoted by BF (d,D), has as ver-

tices the (D + 1)dD tuples (x, l) ∈ {1, . . . , d}D × {0, . . . , D}, where x =
xD−1xD−2 . . . x1x0 is a string of length D over {1, . . . , d} and l ∈ {0, . . . , D} is
an integer called level. A vertex (xD−1xD−2 . . . x1x0, l) with l > 0 is joined with
pairwise opposite arcs to the d vertices (xD−1 . . . xl, α, xl−2, . . . x0, l − 1) such that
α ∈ {1, . . . , d}.

A wrapped butterfly digraph of degree d and dimensionD, denoted by �WBF (d,D),
has as vertices the DdD tuples (x, l) ∈ {1, . . . , d}D × {0, . . . , D − 1}, where x =
xD−1xD−2 . . . x1x0 is a string of length D over {1, . . . , d} and l ∈ {0, . . . , D − 1} is
an integer called level. A vertex (xD−1xD−2 . . . x1x0, l) with l > 0 has an arc toward
the d vertices (xD−1 . . . xlαxl−2 . . . x0, l− 1) such that α ∈ {1, . . . , d} and each vertex
(xD−1xD−2 . . . x1x0, 0) has an arc toward the d vertices (αxD−2 . . . x1x0, D− 1) with
α ∈ {1, . . . , d}. The corresponding undirected graph obtained by adding the opposite
of each arc is denoted asWBF (d,D) and is generally called a wrapped butterfly graph.

A de Bruijn digraph of degree d and dimension D, denoted by �DB(d,D), has as
vertices all the dD strings of length D over {1, . . . , d}. Any vertex xD−1xD−2 . . . x1x0

has an arc toward the d vertices xD−2xD−3 . . . x1x0α such that α ∈ {1, . . . , d}. The
corresponding undirected graph, denoted as DB(d,D), is called a de Bruijn graph.

A Kautz digraph of degree d and dimension D, denoted by �K(d,D), has as vertices
all the (d + 1)dD−1 strings xD−1xD−2 . . . x1x0 of length D over {1, . . . , d + 1} such
that for any j, 0 ≤ j ≤ D − 2, xj �= xj+1. Any vertex xD−1xD−2 . . . x1x0 has an arc
toward the d vertices xD−2xD−3 . . . x1x0α with α ∈ {1, . . . , d + 1} and α �= x0. The
corresponding undirected graph, denoted as K(d,D), is called a Kautz graph.

The families of the butterfly, de Bruijn, and Kautz networks with fixed degree d
have large separators.

Lemma 3.6 (see [7]). There exists an 〈α, l〉-gossip separator with
1. α = log(d)/2 and l = 2/ log d for BF (d,D);

2. α = log(d)/2 and l = 2/ log d for �WBF (d,D);
3. α = 2 log(d)/3 and l = 3/(2 log d) for WBF (d,D);
4. α = log d and l = 1/ log d for DB(d,D);
5. α = log d and l = 1/ log d for K(d,D).

We conclude the section by recalling some useful definitions and properties about
matrices that are well known in linear algebra (see, for instance, [2, 7]).

Let R
m be the set of all column vectors �x = (x1, . . . , xm)T of m real elements. A

real function | | : R
m → R is called a norm if |�x| ≥ 0 for every �x ∈ R

m, |�x| = 0 if and
only if all the m components of �x are equal to 0, |a�x| = abs(a)|�x| for every a ∈ R and
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�x ∈ R
m (abs(a) being the absolute value of a), and, finally, |�x+ �y| ≤ |�x|+ |�y| for all

�x, �y ∈ R
m.

For any integer d > 0, the d-norm of a vector �x ∈ R
m is defined as |�x|d =

(
∑m
j=1 abs(xj)

d)1/d. The d-norm ||M ||d of an n × m real matrix M is

sup�x∈Rm,|�x|d 	=0
|M�x|d
|�x|d . |�x|2 and ||M ||2 are the Euclidean vector and matrix norms,

respectively, while |�x|∞ = maxmj=1 abs(xi) and ||M ||∞ = maxni=1(
∑m
j=1 abs(Mi,j)) are

called vector and matrix maximum norms or norms of the maximum.
For every matrix M with nonnegative real elements, the ||M ||d matrix norm

satisfies the following properties:
1. ||M ||d ≥ 0;
2. ||M ||d = 0⇒M = 0;
3. for all a ∈ R, ||aM ||d = abs(a)||M ||d;
4. M ≥ N (i.e., Mi,j ≥ Ni,j for all i, j) ⇒ ||M ||d ≥ ||N ||d;
5. ||M +N ||d ≤ ||M ||d + ||N ||d;
6. ||MN ||d ≤ ||M ||d · ||N ||d;
7. if N is obtained from M by row and column permutations, ||N ||d = ||M ||d;
8. if M is everywhere null except in k subblocks M1, . . . ,Mk not sharing any

row or column, then ||M ||d = maxki=1 ||Mi||d.
Definition 3.7. Given an m×m real matrix M , a nonnull column vector �x ∈ R

m

is an eigenvector for M with eigenvalue e if M�x = e�x. The spectral radius ρ(M) of
M is the maximum absolute value of an eigenvalue of M .

The spectral radius of a matrix M is related to the Euclidean norm of M . In
fact, ||M ||2 =

√
ρ(MT ·M), where MT is the transpose of M , and if M is symmetric,

||M ||2 = ρ(M). Moreover, for any natural matrix norm, that is, defined from a vector

norm |�x|′ as sup�x∈Rm,|�x|′ 	=0
|M�x|′
|�x|′ , ||M ||′ ≥ ρ(M).

Definition 3.8 (see [7]). Given an m×m matrix M , a nonnull column vector
�x ∈ R

m is a semieigenvector for M with semieigenvalue e if M�x ≤ e�x.
Lemma 3.9 (see [7]). Given an m × m nonnegative matrix M and a strictly

positive semieigenvector �x ∈ R
m of M with semieigenvalue e, ρ(M) ≤ e.

4. Lower bounds for broadcasting. In this section we provide new lower
bounds on the broadcasting time of the (I,O)-restricted protocols. By Lemma 3.1,
we can restrict our attention to the case I = 1. For the sake of brevity, | | and
|| || will denote the vector and matrix norms of the maximum, i.e., | | = | |∞ and
|| || = || ||∞. Moreover, for any integer j > 0, the polynomial qj(λ) is defined as
qj(λ) = λ+ λ2 + · · ·+ λj .

The following theorem establishes lower bounds holding for any network.
Theorem 4.1. Let 〈A1, . . . , At〉 be a (1,O)-restricted broadcast protocol for a

digraph G = (V,A), O > 1. Then t ≥ b̂(1,O) log(n) − O(log log n), where b̂(1,O) =
1

log(1/λ) and λ is the real number such that 0 < λ < 1 and qO(λ) = 1.

Proof. Consider the delay digraph DG = (Act,A′). Clearly, m = |Act| ≤ tn/2, as
every node in G can have at most t incident activations—one per round. Let M(λ)
be the m×m delay matrix associated to the protocol and x be the root vertex.

Since the protocol performs broadcasting, there exists an informing path from x
to every other vertex in G. Let us then choose exactly one such path for every z ∈ V
(clearly, there can be more than one) and let (x, y, i) ∈ V ′ and (w, z, j) ∈ V ′ be the
first and the last activation, respectively, of the path. Recalling the key property of
the delay matrix outlined at the end of section 2,

M(λ)(x,y,i),(w,z,j) +(M(λ))
2
(x,y,i),(w,z,j) + · · ·+(M(λ))

t
(x,y,i),(w,z,j) ≥ λj−i > λt.(4.1)
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Let N be the m × m boolean matrix N representing the above choices, i.e.,
such that for every z ∈ V with z �= x, the element of N in the row of (x, y, i)
and column of (w, z, j) is equal to 1 if and only if (x, y, i) and (w, z, j) are the first
and the last activation, respectively, of the chosen informing path from x to z. Then,
inequality (4.1) can be extended to include all the vertices z ∈ V in a compact form as

M(λ) +M(λ)2 + · · ·+M(λ)t > λtN.

By the norm properties,

||M(λ)||+ ||M(λ)||2 + · · ·+ ||M(λ)||t ≥ ||M(λ)||+ ||M(λ)2||+ · · ·+ ||M(λ)t||(4.2)

≥ ||M(λ) +M(λ)2 + · · ·+M(λ)t|| > ||λtN || = λt||N ||.

Each row of M(λ) is associated to an activation (y, z, i) incoming at a vertex
z, while the at most O entries (z, w, j) different from 0 in the row correspond to
the successive activations outgoing from z that are influenced by (y, z, i). Each such
outgoing activation must belong to a different round and in turn has a different delay,
thus corresponding to an entry λa with a > 0 different from all the other entries in
the same row. Hence,

||M(λ)|| = m
max
i=1

m∑
j=1

Mi,j ≤ λa1 + λa2 + · · ·λaO ≤ qO(λ) = 1(4.3)

by the choice of λ. Moreover,

||N || = m
max
i=1

m∑
j=1

Ni,j ≥ n− 1

t
,(4.4)

since there are n−1 entries equal to 1 inN , distributed on at most t rows corresponding
to the activations (x, y, i) outgoing from the root.

By (4.2) and (4.3),

t ≥ ||M(λ)||+ ||M(λ)||2 + · · ·+ ||M(λ)||t > λt||N ||,

so using (4.4), t > log(||N ||)−log t
log(1/λ) ≥ log(n−1)−2 log t

log(1/λ) .

Then, if t ≥ b̂(1,O) log n, the claim trivially holds; otherwise it follows from the
latter inequality by observing that 2 log t = O(log log n).

As an application of the previous theorem and of Lemma 3.2, general lower bounds
can be obtained for bounded degree networks that coincide with the ones provided
in [17, 4] up to an O(log log n) additive factor. However, if more information about the
separating properties of the network is known, by refining the above theorem better
bounds can be determined.

Theorem 4.2. Let 〈A1, . . . , At〉 be a (1,O)-restricted broadcast protocol for a

digraph G = (V,A) with an 〈α, l〉-broadcast separator. Then t ≥ b̂(1,O) log(n)(1 −
o(1)), where b̂(1,O) = maxλ | 0<λ<1, qO(λ)≤1 l

α−log qO(λ)
log(1/λ) .

Proof. Consider the delay digraph DG = (Act,A′) with m = |Act| ≤ tn/2,
and let M(λ) be the m ×m delay matrix associated to the protocol. Moreover, let
d = minz∈Vx distG(x, z) and c = |Vx|, where x and Vx are the root vertex and the set
associated to the 〈α, l〉-broadcast separator of G, respectively.
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Similarly as in the proof of Theorem 4.1, there exists an m ×m boolean matrix
N satisfying the following conditions:

• For every vertex z ∈ Vx of G, there exist exactly two activations (x, y, i) ∈ Act
and (w, z, j) ∈ Act such that the corresponding element of N in the row
of (x, y, i) and column of (w, z, j) is equal to 1, while all the elements not
corresponding to such pairs are null.
• M(λ)d−1 + · · ·+M(λ)t > λtN .

The above conditions state that there exists an informing path from x to every
vertex z ∈ Vx of G. Moreover, as x and z are at distance at least d in G, any such
path in DG contains at least d − 1 different arcs. Therefore, recalling that for every
integer l, M(λ)l concerns only paths of l arcs in DG, the summation can be restricted
to the matrices from M(λ)d−1 to M(λ)t.

Again, by the choice of λ, ||M(λ)|| ≤ qO(λ) ≤ 1. Moreover, ||N || =
maxmi=1

∑m
j=1Ni,j ≥ c

t , since there are c entries equal to 1 in N , distributed on
at most t rows corresponding to the activations (x, y, i) outgoing from the root.

By the norm properties,

(t− d+ 2)||M(λ)||d−1 ≥ ||M(λ)||d−1 + ||M(λ)||d−2 + · · ·+ ||M(λ)||t

≥ ||M(λ)d−1||+ ||M(λ)d−2||+ · · ·+ ||M(λ)t||

≥ ||M(λ)d−1 + · · ·+M(λ)t|| > ||λtN || = λt||N || ≥ λt c
t
,

so that

t >
log(c)− (d− 1) log(||M(λ)||)− log(t− d+ 2)− log t

log(1/λ)

≥ αl log(n)− l log(n) log(qO(λ))− o(l log n)− log(t− d+ 2)− log t

log(1/λ)
.

Therefore, t ≥ lα−log qO(λ)
log(1/λ) log(n)(1 − o(1)). In fact, if t ≥ b̂(1,O) log(n), the

latter inequality trivially holds; otherwise it derives directly from the previous one by
observing that log(t− d+ 2) + log t ≤ 2 log t = O(log(l log n)).

By applying Theorem 4.2 and Lemma 3.6, the following lower bounds for butterfly,
de Bruijn, and Kautz networks can be determined.

Corollary 4.3. The lower bounds on the broadcasting time for BF (d,D),
�WBF (d,D), WBF (d,D), DB(d,D), and K(d,D) in Figure 4.1 hold.

Notice that in the above corollary we have made use of gossip separators since
broadcast separators cannot yield better values of α and l. In fact, in all the
cases α · l = 1 and l · log n coincides with the diameter up to a negligible additive
factor.

5. Lower bounds for gossiping. In this section we provide lower bounds on
the gossiping time of the (I,O)-restricted gossip protocols. We consider only the
directed and half-duplex cases, since in the full-duplex mode the results coincide with
those for broadcasting. We give both lower bounds holding for any network and refined
ones that exploit the separating properties. As an application, new lower bounds are
determined for bounded degree networks, both for general and specific topologies. For
the sake of brevity, in this section | | and || || will denote the Euclidean vector and
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Ours Previous

b̂(BF (2, D)) 2.2104 2

b̂(BF (3, D)) 1.5203 1.2618

b̂(BF (4, D)) 1.2938 1.0058 [17, 4]

b̂(BF (5, D)) 1.1837 1.0014 [17, 4]

b̂( �WBF (2, D)) 2.2200 1.7621 [19]

b̂( �WBF (3, D)) 1.5244 1.2619 [19]

b̂( �WBF (4, D)) 1.2957 1.0058 [17, 4]

b̂( �WBF (5, D)) 1.1847 1.0014 [17, 4]

b̂(WBF (4, D)) 1.1047 1.0058 [17, 4]

b̂(WBF (5, D)) 1.0433 1.0014 [17, 4]

b̂(K(2, D)) 1.3042 1.1374 [17, 4]

b̂(K(3, D)) 1.0433 1.0254 [17, 4]

Fig. 4.1. Some lower bounds for broadcasting. b(G) ≥ b̂(G) log(n)(1−o(1)). The unlisted cases
coincide with those in [17, 4], except for wrapped butterflies and de Bruijn with d = 2, 3, for which
better bounds are given in [19]. The previous lower bounds for BF (2, D) and BF (3, D) correspond
to the trivial ones given by the respective diameters.

matrix norms, i.e., | | = | |2 and || || = || ||2. Moreover, for any integer j > 0, the
polynomial pj(λ) is defined as pj(λ) = λ+ λ3 + · · ·+ λ2j−1.

The following lemmas for gossiping are analogous to the broadcasting lemmas
and can be derived as a simple modification of those in [7]. In fact, even if they are
not explicitly referred to as restricted protocols in [7], the proof is similar.

Lemma 5.1. Let 〈A1, . . . , At〉 be an (I,O)-restricted gossip protocol for a digraph
G = (V,A). Then t ≥ ĝ(I,O) log(n)−O(log log n), where ĝ(I,O) = 1

log(1/λ) and λ is

any real number such that 0 < λ < 1 and ||M(λ)|| ≤ 1.
Lemma 5.2. Let 〈A1, . . . , At〉 be an (I,O)-restricted gossip protocol for a digraph

G = (V,A) with an 〈α, l〉-gossip separator. Then t ≥ ĝ(I,O) log(n)(1 − o(1)), where

ĝ(I,O) = maxλ | 0<λ<1, ||M(λ)||≤1 l
α−log ||M(λ)||

log(1/λ) .

As a direct consequence of Lemmas 5.1 and 5.2, the problem of deriving lower
bounds on the gossiping time is reduced to the determination of the norm of the matrix
M(λ) associated to (I,O)-restricted gossip protocols. While this task is more or less
trivial in broadcasting with the norm of the maximum (this is why we incorporated it
directly in the proof), it is more difficult for the Euclidean norm. We now show how
such a norm can be determined by means of successive simplification steps performed
on M(λ).

Observe first that, by the properties of the matrix norm, the value of ||M(λ)||
is not affected by any row or column permutation of M(λ). By the definition of
DG, for every vertex x of the initial graph G, all the activations (y, x, i) in DG
entering x can be connected only to the activations (x, z, j) outgoing from x. It is
then possible to permute the rows of M(λ) in such a way that for every x all the
activations (y, x, j) in DG correspond to adjacent rows and all the activations (x, z, j)
to adjacent columns. The resulting matrix is everywhere null, except in disjoint
subblocks Mx1(λ), . . . ,Mxn(λ) such that, for any i �= j, blocks Mxi(λ) and Mxj (λ)
have no common rows or columns. Informally, each subblock Mx(λ) corresponds as
above to a vertex x of the initial graph G and reports the delays between its incoming
and its outgoing activations.
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By the properties of the matrix norm, ||M(λ)|| = maxx∈V ||Mx(λ)||; hence in the
remaining part of this section we concentrate on the determination of each ||Mx(λ)||.
In order to simplify the notation, for a given vertex x ∈ V , we will denote Mx(λ)
simply as M(λ) with the understanding that an upper bound on the norm of the
local M(λ) is also an upper bound on the norm of the global matrix.

As already observed, M(λ) expresses the local protocol occurring around x. Every
row of M(λ) corresponds to an incoming activation of x, that is, to a vertex (y, x, j)
in the delay graph DG, and every column corresponds to an outgoing activation of
x, that is, to a vertex (x, y, j) of DG. We implicitly assume that at each round an
arc incident to x is activated. In fact, any local matrix not satisfying this property
can be obtained from one in which the property is satisfied (which corresponds to
a complete local protocol at vertex x) by deleting the rows corresponding to the
removed incoming activations and the columns corresponding to the removed outgoing
activations. This cannot increase ||M(λ)|| and, since in order to apply Lemmas 5.1
and 5.2 we are interested in determining an upper bound on ||M(λ)||, it does not
affect the correctness of our proof. Moreover, we assume that the protocol locally
at x starts with an incoming activation and ends with an outgoing activation, since
this corresponds to deleting initial columns of 0’s and final rows of 0’s in M(λ), again
without affecting its norm.

In order to describe the properties ofM(λ), we first point out that locally at vertex
x it is possible to define two sequences of positive integers 〈(lj)j={1···k}, (rj)j={1···k}〉
such that, starting from the first incoming activation at round 1, the protocol locally at
x has l1 incoming activations (from round 1 to round l1), then r1 outgoing activations,
then l2 incoming activations, then r2 outgoing activations, and so on until the last
lk incoming activations and rk outgoing activations, where k is a suitable positive
integer such that k ≤ t/2�. Clearly,

∑k
j=1 lj + rj ≤ t.

Definition 5.3. Given the couple of sequences 〈(lj)j={1···k}, (rj)j={1···k}〉 associ-
ated with the local protocol at vertex x, the incoming (resp., outgoing) activation block
j is the set of the successive incoming (resp., outgoing) activations corresponding to
lj (resp., rj).

Since permuting the rows and columns of M(λ) does not affect ||M(λ)||, we can
assume the following ordering of the rows and columns of M(λ).

• Rows occur in order of incoming activation block and inside each block in
reverse order of round. So, for instance, the first row corresponds to the l1th
incoming activation of block 1 and row l1 to the first incoming activation of
block 1.
• Columns occur in order of outgoing activation block and inside each block

this time in order of round. Hence column 1 is associated to the first outgoing
activation of block 1 and column r1 to the last outgoing activation of block 1.

By construction, M(λ) can be divided in k2 blocks B1,1, . . . , Bk,k such that Bh,j
corresponds to the incoming activation block h and the outgoing activation block j
and is given by the intersection of the associated rows and columns (see Figure 5.1).
If j < h, then Bh,j has all entries equal to 0, since each incoming activation in block
h influences only the successive outgoing activations, i.e., in the outgoing activation
blocks from h to k. Moreover, in each block Bh,j with j ≥ h, any entry is different from
0 if the incoming activation associated to its row influences the outgoing activation
associated to its column, according to the dependence function D. In fact, only such
delays are represented in the delay graph. Two examples of M(λ) can be found in
Figure 5.1.
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λ λ2 λ4 λ5 λ8 λ9 λ10 λ14 · · ·
λ2 λ3 λ5 λ6 λ9 λ10 λ11 λ15 · · ·
0 0 λ λ2 λ5 λ6 λ7 λ11 · · ·
0 0 0 0 λ λ2 λ3 λ7 · · ·
0 0 0 0 λ2 λ3 λ4 λ8 · · ·
0 0 0 0 0 0 0 λ · · ·
0 0 0 0 0 0 0 λ2 · · ·
0 0 0 0 0 0 0 λ3 · · ·
...

...
...

...
...

...
...

...

λ 0 λ4 0 λ8 λ9 0 0 · · ·
0 λ3 λ5 0 λ9 0 λ11 0 · · ·
0 0 λ λ2 0 λ6 λ7 0 · · ·
0 0 0 0 λ 0 λ3 0 · · ·
0 0 0 0 0 λ3 0 λ8 · · ·
0 0 0 0 0 0 0 λ · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 λ3 · · ·
...

...
...

...
...

...
...

...

Fig. 5.1. Two examples of M(λ) with l1 = 2, r1 = 2, l2 = 1, r2 = 2, l3 = 2, r3 = 3, l4 = 3,
r4 = 1, . . . , where we have emphasized blocks Bh,j with 1 ≤ h, j ≤ 4. The first matrix corresponds
to an unrestricted protocol, while the second to a (3, 4)-restricted one (at most four nonnull entries
per row and three per column).

The following vectors and matrix operations can be used to suitably express M(λ)
and its semieigenvectors.

• �Λ(j) = (1, λ, . . . , λj−1)T .
• For ease of notation, given two column vectors �x and �y of h and j components,

respectively, we denote as �x�y = (�xT�yT )T the vertical concatenation of �x and
�y, i.e., the column vector of h+j components such that the first h components
coincide with the ones of �x and the last remaining j components coincide with
the ones of �y.
• Given two a × b matrices A and B, A

⊗
B is the componentwise product

operation of A and B, i.e., the matrix such that (A
⊗
B)h,j = Ah,j ·Bh,j .

By construction M(λ) can be expressed as the componentwise product D
⊗
N(λ)

of two matrices D and N(λ) constructed as follows.
D is a boolean matrix in which each element is equal to 1 if and only if the

corresponding element inM(λ) is nonnull, that is, if the outgoing activation associated
to its column belongs to the dependence set of the incoming activation associated to
its row. Since the protocol is (I,O)-restricted, there are at most O elements equal to
1 in each row and at most I in each column (see Figure 5.2).

N(λ) can be seen as the local matrix around vertex x in which there is no input-
output restriction; that is, every incoming activation influences all the successive
outgoing activations (as, for instance, the first matrix of Figure 5.1).

For any integer j, 0 ≤ j ≤ k, let slj and srj be defined as
∑j
g=1 lg and

∑j
g=1 rg,

respectively (hence sl0 = sr0 = 0). Then block Bh,j is given by the intersection of
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1 0 1 0 1 1 0 0 · · ·
0 1 1 0 1 0 1 0 · · ·
0 0 1 1 0 1 1 0 · · ·
0 0 0 0 1 0 1 0 · · ·
0 0 0 0 0 1 0 1 · · ·
0 0 0 0 0 0 0 1 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...

Fig. 5.2. The restriction matrix D associated to the (3, 4)-restricted protocol of Figure 5.1 (at
most four entries equal to 1 per row and three per column).

.

.

.

.

.

.

.

.

.

.

.

.

· · · Dslh−1+1,srj−1+1λ
δh,j Dslh−1+1,srj−1+2λ

δh,j+1 · · · Dslh−1+1,srj
λ
δh,j+rj−1 · · ·

· · · Dslh−1+2,srj−1+1λ
δh,j+1

Dslh−1+2,srj−1+2λ
δh,j+2 · · · Dslh−1+2,srj

λ
δh,j+rj · · ·

.

.

.

.

.

.

.

.

.

· · · Dslh,srj−1+1λ
δh,j+lh−1

Dslh,srj−1+2λ
δh,j+lh · · · Dslh,srj

λ
δh,j+lh+rj−2 · · ·

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5.3. Block Bh,j in M(λ).

rows from slh−1 + 1 to slh and columns from srj−1 + 1 to srj . Moreover, if h ≤ j,
given any two integers a and b such that slh−1 + 1 ≤ a ≤ slh and srj−1 + 1 ≤
b ≤ slj , the element of M(λ) at row a and column b (hence belonging to Bh,j) is
M(λ)a,b = Da,bλ

δh,jλa−slh−1−1λb−srj−1−1, where δh,j is the number of rounds between
the last activation of the incoming activation block h and the first activation of the
outgoing activation block j; that is, δh,j = 1 +

∑j−1
g=h(rg + lg+1) = srj−1 − srh−1 +

slj − slh + 1 (see Figure 5.3). In N(λ), block Bh,j can be suitably expressed as

Bh,j = λδh,j�Λ(lh)(�Λ(rj))
T .

Let �Λ = (λx1 · �Λ(r1))(λ
x2 · �Λ(r2)) · · · (λxk · �Λ(rk)) and �Θ = (λx1 · �Λ(l1))(λ

x2 ·
�Λ(l2)) · · · (λxk · �Λ(lk)), where xj =

∑j−1
g=1(rg − lg+1) = srj−1 − slj + sl1, 1 ≤ j ≤ k

(thus x1 = 0).

The vectors �Λ and �Θ thus defined have the particular property that, if we multiply
each column b of N(λ) by the bth element of �Λ, then any row a contains different

odd powers of λ, multiplied times the ath element of �Θ. This means that the sum of
all the elements of row a, which is equal to the ath element of the vector N(λ) · �Λ,

is at most equal to the ath element of �Θ multiplied by p∞(λ) = limj→∞ pj(λ) (see

Figure 5.4). Analogously, the ath element of the vector M(λ) · �Λ is at most equal to

the ath element of �Θ multiplied by pO(λ), as in M(λ) there are at most O nonnull
entries per row.

Similar considerations hold multiplying the ath column of M(λ)T by the ath

element of �Θ, so that the bth element of M(λ)T · �Θ is at most equal to the bth element

of �Λ multiplied by pI(λ).
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λ λ3 λ5 λ7 λ9 λ11 λ13 λ15 · · · 1 ≤ p∞(λ)
λ2 λ4 λ6 λ8 λ10 λ12 λ14 λ16 · · · λ ≤ λp∞(λ)
0 0 λ λ3 λ5 λ7 λ9 λ11 · · · λ ≤ λp∞(λ)
0 0 0 0 λ λ3 λ5 λ7 · · · λ ≤ λp∞(λ)

0 0 0 0 λ2 λ4 λ6 λ8 · · · �Θ = λ2 ≤ λ2p∞(λ)
0 0 0 0 0 0 0 λ2 · · · λ ≤ λp∞(λ)
0 0 0 0 0 0 0 λ3 · · · λ2 ≤ λ2p∞(λ)
0 0 0 0 0 0 0 λ4 · · · λ3 ≤ λ3p∞(λ)
...

...
...

...
...

...
...

...
...

1 λ λ λ2 λ λ2 λ3 λ · · · = �ΛT

Fig. 5.4. N(λ) with the vectors �Λ (transposed) and �Θ, where all entries of each column b have

been multiplied by the bth element of �Λ. On the right there is an upper bound on the sum of the
elements of each row in the new matrix.

Therefore, it is possible to prove the following lemma.
Lemma 5.4. ||M(λ)|| ≤√pI(λ)

√
pO(λ).

Proof. By Lemma 3.9, it is sufficient to show that �Λ is a semieigenvector of
M(λ)T ·M(λ) with semieigenvalue pI(λ)pO(λ), so that ||M(λ)|| =√ρ(M(λ)T ·M(λ)) ≤√
pI(λ)

√
pO(λ).

By definition, if b is any integer such that srj−1 +1 ≤ b ≤ srj for a suitable j > 0,
that is, column b in M(λ) corresponds to the outgoing activation block j, then the

bth element of the semieigenvector �Λ is �Λb = λb−srj−1−1λsrj−1−slj+sl1 = λb−slj+sl1−1.
Similarly, if a is any integer such that slh−1 +1 ≤ a ≤ slh for a suitable h > 0, that is,
row a in M(λ) corresponds to the incoming activation block h, then the ath element

of vector �Θ is �Θa = λa−slh−1−1λsrh−1−slh+sl1 . Thus, the ath element of M · �Λ (i.e.,

the product of row a of M and �Λ) is equal to

k∑
j=h

srj∑
b=srj−1+1

Da,bλ
srj−1−srh−1+slj−slh+1λa−slh−1−1λb−srj−1−1λb−slj+sl1−1

=

k∑
j=h

srj∑
b=srj−1+1

λa−slh−1−1λsrh−1−slh+sl1Da,bλ
2(b−srh−1)−1

= λa−slh−1−1λsrh−1−slh+sl1

k∑
j=h

srj∑
b=srj−1+1

Da,bλ
2(b−srh−1)−1

= λa−slh−1−1λsrh−1−slh+sl1

srk∑
b=srh−1+1

Da,bλ
2(b−srh−1)−1

≤ λa−slh−1−1λsrh−1−slh+sl1pO(λ) = pO(λ)�Θa,

since at most O elements Da,b with fixed a are equal to 1, and thus M · �Λ ≤ pO(λ)�Θ.
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Param. d 2 3 4 5 6 7 8 9
ĝ(d) 1.5728 1.4829 1.4555 1.4459 1.4425 1.4412 1.4407 1.4405

Fig. 5.5. The general lower bounds for different values of the parameter d. g(G) ≥ ĝ(d) log(n)−
O(log logn). For limited d no previous lower bounds are known (except the ones inferred from
broadcasting in [17, 4]), while for d = ∞ the value coincides with the 1.4404 in [6, 16, 15, 20].

Similarly, the bth element of MT · �Θ (again with srj−1 +1 ≤ b ≤ srj for a suitable
j > 0) is equal to

j∑
h=1

slh∑
a=slh−1+1

Da,bλ
srj−1−srh−1+slj−slh+1λa−slh−1−1λb−srj−1−1λa−slh−1−1λsrh−1−slh+sl1

=

j∑
h=1

slh∑
a=slh−1+1

λb−slj+sl1−1Da,bλ
2(a+slj−slh−slh−1)−1

= λb−slj+sl1−1

j∑
h=1

slh∑
a=slh−1+1

Da,bλ
2(a+slj−slh−slh−1)−1

≤ λb−slj+sl1−1pI(λ) = pI(λ)�Λb,

since at most I elements Da,b with fixed b are equal to 1.

Thus, MT · �Θ ≤ pI(λ)�Λ, and

MT ·M · �Λ ≤ pO(λ)MT �Θ ≤ pI(λ)pO(λ)�Λ;

hence the lemma is proved.
By Lemmas 5.1, 5.2, and 5.4, the following theorems hold.
Theorem 5.5. Let 〈A1, . . . , At〉 be an (I,O)-restricted gossip protocol for a

digraph G = (V,A). Then t ≥ ĝ(I,O) log(n)− O(log log n), where ĝ(I,O) = 1
log(1/λ)

and λ is the real number such that 0 < λ < 1 and
√
pI(λ)

√
pO(λ) = 1.

Theorem 5.6. Let 〈A1, . . . , At〉 be an (I,O)-restricted gossip protocol for a
digraph G = (V,A) with an 〈α, l〉-gossip separator. Then t ≥ ĝ(I,O) log(n)(1− o(1)),

where ĝ(I,O) = max
λ | 0<λ<1,

√
pI(λ)
√
pO(λ)≤1

l
α−log(

√
pI(λ)
√
pO(λ))

log(1/λ) .

As a consequence of Theorems 5.5 and 5.6 and Lemmas 3.2 and 3.6, new lower
bounds can be determined for general and specific network topologies.

Corollary 5.7. Let G = (V,A) be a digraph with fixed parameter d > 1. Then,
in the directed and half-duplex cases, g(G) ≥ ĝ(d) log(n)−O(log log n), where ĝ(d) =

1
log(1/λ) and λ is the real number such that 0 < λ < 1 and

√
p∞(λ)

√
pd(λ) = 1.

Some numerical bounds arising from Corollary 5.7 are listed in Figure 5.5.
Corollary 5.8. The lower bounds on the gossiping time of any protocol for

BF (d,D), �WBF (d,D), WBF (d,D), DB(d,D), and K(d,D) in Figure 5.6 hold.

6. Extensions and generalizations. We now briefly sketch how our results
can be extended to other models. In all cases, our lower bound technique can be
used as well, with the difference being that the norm of the matrix associated to the
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Ours Previous
ĝ(BF (2, D)) 2.4200 2.4193 [7]
ĝ(BF (3, D)) 1.7889 1.7788 [7]

ĝ( �WBF (2, D)) 2.4280 2.4193 [7]

ĝ( �WBF (3, D)) 1.7825 1.7788 [7]

ĝ( �WBF (4, D)) 1.5895 1.5876 [7]

ĝ( �WBF (5, D)) 1.5071 1.5060 [7]

ĝ(WBF (2, D) 1.9770 1.9750 [7]
ĝ(WBF (3, D)) 1.5544 1.5538 [7]
ĝ(WBF (4, D)) 1.4591 1.4589 [7]

ĝ( �DB(2, D)) and ĝ( �K(2, D)) 1.6375 1.5876 [7]
ĝ(DB(2, D)) and ĝ(K(2, D)) 1.5965 1.5876 [7]

Fig. 5.6. Some improved lower bounds for specific networks. g(G) ≥ log(n)(1 − o(1)). The
unlisted entries coincide with the ones in Figure 5.5 or in [7].

protocol is different. Even if we do not show numerical values, all the results for
general and specific topologies can be extended by using the new norm.

Let us consider first the c-port model. In this case the condition that only one
incident arc can be active at each round is relaxed by admitting at most a given
number c > 0 of active arcs. For broadcasting (and full-duplex gossiping) it means
that, given any incoming activation at a given vertex, there are still at most O influ-
enced outgoing activations, where O is the output restriction. However, not all such
outgoing activations have a different delay, since up to c of them can belong to the
same round. Hence, if O = q · c+ r, ||M(λ)||∞ ≤ cλ+ cλ2 + · · ·+ cλq + rλq+1.

Similar considerations hold for the directed and half-duplex gossiping. Here
each row can contain at most c equal entries, and the same holds for each column.
By the (I,O)-restriction, a completely analogous argument shows that ||M(λ)|| ≤√
cλ+ cλ3 + · · ·+ cλ2qI−1 + rIλ2qI+1

√
cλ+ cλ3 + · · ·+ cλ2qO−1 + rOλ2qO+1, where

I = qI · c+ rI and O = qO · c+ rO.
In the postal model there is an additional integer parameter δ > 0 such that, once

a given item has been sent through a link, it will be available at the arriving vertex to
be sent on another link only after δ rounds (hence, in the basic model, δ = 1). This
means that an incoming activation cannot influence the outgoing activations before
the next δ rounds, and thus all the entries of M(λ) are either 0 or λa with a ≥ δ. By
completely analogous observations it is then easy to see that both in broadcasting and
in directed and half-duplex gossiping (also under c-port) it is sufficient to multiply
the basic norm by λδ−1.

Notice that by using the above norms new lower bounds can be obtained for all
the restricted protocols and thus for the bounded degree and also systolic ones.

7. Conclusion. In this paper we have provided a general technique that extends
the one presented in [7] and allows the determination of lower bounds on the broad-
casting and gossiping time of the restricted protocols. As a consequence new lower
bounds have been determined for bounded degree networks in the general case and
for specific topologies. Moreover, as a corollary we obtain the same results for systolic
protocols in [7].

As noted in the introduction, another example of restricted protocols are the
memoryless ones where, given a fixed number of steps δ > 0, every vertex remembers
only the items received during the previous δ steps. This means that an incoming
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activation influences at most δ successive outgoing activations, and an outgoing ac-
tivation depends on at most δ previous incoming activations; i.e., the protocol is
(δ, δ)-restricted.

We believe that memoryless protocols are not just an artificial example of re-
stricted protocols, but that they might be useful in improving the lower bounds for
bounded degree networks. In fact, it seems that in this case the input-output restric-
tion is a property that is too local to allow the determination of the best possible
lower bound, which we conjecture to be the one corresponding to a (d, d)-restriction.
Locally at each vertex it is possible to establish only an (∞, d)-restriction, but it
seems that the best dissemination time is achieved when the vertices have an equal
alternance of input and output activations, so that in the average the input restriction
is also low. A way to limit the input restriction might be to resort to more global
properties. We conjecture, in fact, that in a network with fixed parameter d memory-
less protocols with δ ≈ d are able to reach the optimal time up to a negligible additive
factor. If this is true, then better lower bounds for bounded degree networks can be
easily accomplished.
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Abstract. We prove an extremal combinatorial result regarding the fraction of satisfiable clauses
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1. Introduction. We deal with the notion of k-satisfiable conjunctive normal
form (CNF) formulae introduced and studied by Lieberherr and Specker [4, 5]. A
CNF Boolean formula (from now on referred to as formula) is k-satisfiable if any
subset of k clauses is satisfiable. For any k, let rk be the largest real (or, better, the
supremum of the set of reals) such that in any k-satisfiable set of m clauses, at least
rkm clauses are simultaneously satisfied. Roughly speaking, rk somewhat shows how
local satisfiability implies (fractional) global satisfiability. It has been known that
r2 = 2/(1 +

√
5) > .618 [4] (the inverse of the golden ratio), that r3 = 2/3 [5], and

that limk→∞ rk ≤ 3/4 [3]. Yannakakis [7] has given simplified proofs of the bounds
r2 ≥ 2/(1 +

√
5) and r3 ≥ 2/3 using the probabilistic method.

To the best of our knowledge, determining the exact value of limk→∞ rk was still
an open question.

Our results. We prove that limk→∞ rk = 3/4. Our proof is constructive: For
any r < 3/4 we show that a k exists such that given a k-satisfiable formula we can find
a probability distribution over its variables in such a way that any clause is satisfied
with probability at least r. It thus follows that an assignment satisfying at least a
fraction r of clauses must exist. It can even be found in linear time using the greedy
algorithm in [7].

We then consider a similar question for general constraint satisfaction problems
(CSPs). An instance of a CSP is a set of Boolean predicates (or constraints) over
Boolean variables. The arity of a constraint is the number of variables it depends
on. For a fixed integer h, the hCSP is the restriction of CSP where the arity of the
constraints is at most h. Note that if an hCSP instance does not contain identically
false constraints, then the random assignment, where each variable is true with prob-
ability 1/2, will satisfy at least a fraction 2−h of the constraints. We say that a CSP
instance is k-satisfiable if any subset of k constraints is satisfiable. For any integers

h and k, we define r
(h)
k as the supremum of the reals such that for any k-satisfiable

instance of hCSP with m constraints, at least r
(h)
k m are satisfiable.
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We prove limk→∞ r
(h)
k = 21−h. For the lower bound, it will be easy to use the

probabilistic method to obtain r
(h)
h+1 ≥ 21−h. In order to prove the upper bound

r
(h)
k ≤ 21−h for all k we will need a construction of hypergraphs that generalizes the

known construction of graphs with small maximum cut and large girth [1].

Preliminary definitions. A CNF Boolean formula (or, simply, a formula) is a
set {C1, . . . , Cm} of disjunctive clauses over a set of variables X = {x1, . . . , xn}. A
disjunctive clause is a disjunction of literals in which each literal is either a variable
xi or a negated variable ¬xi. An assignment for φ is a mapping τ : X → {true, false}
that associates a truth value with any variable. If l is a literal, then we say that τ
satisfies l if either l = x and τ(x) = true or l = ¬x and τ(x) = false. If C = l1∨ . . .∨ lh
is a clause, we say that τ satisfies C if τ satisfies lj for some j ∈ {1, . . . , h}. A formula
φ is k-satisfiable [4] if any subset of k clauses of φ is satisfiable.

An instance of a CSP is a set {C1, . . . , Cm} of constraints over a set of variables
X = {x1, . . . , xn}. A constraint is a Boolean predicate applied to variables from
X. An instance of hCSP (where h is an integer) is an instance of a CSP in which
the arity of all the predicates is at most h. We define assignments, satisfiability, and
k-satisfiability as formulae, with “clauses” replaced by “constraints” in the definitions.

A random assignment is a probability distribution over all the assignments. We
will restrict ourselves to random assignments, where each variable is assigned true
with a certain probability, independently of the assignments to the other variables
(bounded independence would also suffice). Thus a random assignment τR is entirely
specified by the probabilities {px}x∈X , where Pr[τR(x) = true] = px. To shorten
notation, we will write Pr[x = true] in place of Pr[τR(x) = true] when the random
assignment is clear from the context.

2. The CNF result.

2.1. Yannakakis’s argument and how to extend it: An informal ac-
count. In order to present the main ideas underlying our proof, let us first recall
Yannakakis’s proof that r3 ≥ 2/3. Given a 3-satisfiable formula, he shows how to find
a probability distribution over the variables that satisfies all clauses with probability
at least 2/3. If a literal l occurs in a unary clause, then we set Pr[l = true] = 2/3. Note
that this definition is consistent since it is impossible to have the clauses (x) and (¬x)
in the same 3-satisfiable formula. To all the other variables (the ones that do not oc-
cur in unary clauses), if any, we give value true with probability 1/2. Ternary clauses,
or longer ones, are satisfied with probability at least 1− (2/3)3 = .7037 · · · > 2/3. It
remains to consider binary clauses. If at least one of the literals in a binary clause
is true with probability at least 1/2, then the probability that the clause will be sat-
isfied is at least 1 − (2/3)1/2 = 2/3. The only bad case happens when both literals
are true only with probability 1/3, but this is impossible because it would mean that
the formula contains clauses (l1), (l2), (¬l1 ∨¬l2), which contradicts the fact that it is
3-satisfiable.

When we want to achieve the same construction with an arbitrary r < 3/4 in place
of 2/3, we run into some trouble. Let us try with r = .74. Literals occurring in unary
clauses must be true with probability .74. If l occurs in a unary clause, and we have
the clause ¬l∨x, then x must be true with probability at least 1−(1−r)/r = .6486 . . . .
Then we have to consider literals occurring with ¬x in a binary clause: they have to
be true with probability at least .5991 . . . . There are three more cases to be considered
(probabilities will be, respectively, 0.566 . . ., 0.5406 . . ., and 0.5191 . . .); we still have
to make sure that we are not introducing any inconsistency, and we have to deal with
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ternary and 4-ary clauses (clauses with 5 or more literals are satisfied with probability
at least 1− (.74)5 > .74).

The above discussion leaves us with the idea that the range of values for the
probabilities of the literals should be p1 = r, p2 = 1− (1− r)/r, p3 = 1− (1− r)/p2,
. . . , pk = 1−(1−r)/pk−1. It is comforting that this sequence will eventually go below
1/2, where it can be stopped (Lemma 2).

We also note that, when we want to achieve a ratio close to 3/4, the number of
cases to be considered explodes, and that a uniform method to deal with them has to
be found.

In order to attribute probabilities to the literals in a uniform way, we introduce
the idea of ranking them according to the depth of proofs of the literals in a simple
propositional proof system, whose axioms are the clauses of the formula. This gives
at the same time a uniform way to deal with clauses of different lengths and a simple
method to show that the assignment of probabilities is consistent.

2.2. The actual proof. The following definition gives the values that we will
use in the probability distribution.

Definition 1. For any real r �= 0, we define the sequence {ari }i≥1 as follows:
• ar1 = r;
• ari+1 = 1− (1− r)/ari .

If we start from a number r < 3/4, the sequence eventually goes below 1/2.
Lemma 2. For any r such that 1/2 < r < 3/4, an h(r) exists such that arh(r) < .5.
Proof. Suppose the lemma is false. Note that if ari > 0, then ari+1 < ari , as can be

easily proved by induction. Then we have a monotonically decreasing sequence that
is lower bounded by 0.5: such a sequence must have a limit, so let it be x. Then x is
a real root of the equation

x = 1− (1− r)/x,
that is,

x2 − x+ 1− r = 0.

But such an equation has no real root when 1 − 4(1 − r) < 0, that is, when r <
3/4.

The following definition allows us to rank literals and will be used to assign to
each of them the right probability.

Definition 3 (provability). Given a CNF formula φ,
• if (l) ∈ φ, then l is 1-provable in φ.
• if (l1 ∨ · · · ∨ lh) ∈ φ and ¬lj is ij-provable in φ for j = 1, . . . , h − 1, then lh

is (1 + max{i1, . . . , ih−1})-provable in φ.
A literal is exactly i-provable in φ if i is the smallest integer such that it is i-provable
in φ.

Note that in a formula there can be literals that are not i-provable for any i. More
generally, a formula may contain a literal l such that, for every i, neither l nor the
negation of l is i-provable. For example, if a formula contains no unit clause, then no
literal is i-provable for any i. This is no coincidence, since in formulae without a unit
it is simple to satisfy at least 3/4 of the clauses. The notion of i-provability helps us
identify those literals that create the most “trouble” when we try to satisfy a large
fraction of the clauses of a formula.

Lemma 4. Let φ be a formula with clauses of length at most 4. If x is i-provable
in φ and ¬x is j-provable in φ, then φ is not (3i+1 + 3j+1 − 2)-satisfiable.
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Proof. Simple induction shows that when a literal l is i-provable in φ, then a set
Sl of at most 3i+1 − 1 clauses of φ exists such that any assignment that satisfies all
the clauses in Sl must also satisfy l. The base case is for i = 1, in which case the set is
just {(l)}, of size 1 < 31+1−1. If l is i-provable, then there is a clause (l

∨k
j=1 lj) with

0 ≤ k ≤ 3 such that ¬lj is ij-provable with ij ≤ i− 1. By inductive hypothesis there
are sets S1, . . . , Sk, each of size at most 3i−1 such that each assignment that satisfies
the clauses of Sj must also contradict lj . Let us now take Sl = {(l∨kj=1 lj)}

⋃k
j=1 Sj .

Then |Sl| ≤ 3i+1 − 1, and an assignment that satisfies all the clauses of Sl must
contradict l1, . . . , lk but also satisfy (l

∨
j lj), and therefore it must satisfy l.

The lemma now follows by observing that the set Sx ∪ S¬x has at most 3i+1 +
3j+1 − 2 clauses, and no assignment can satisfy all of them.

The next theorem is clearly a sufficient condition for limk→∞ rk ≥ 3/4.
Theorem 5. For any r such that 1/2 < r < 3/4, a k exists (depending on r)

such that for any k-satisfiable formula φ we can find in polynomial time a probability
distribution over the variables in such a way that any clause is satisfied with probability
at least r.

Proof. For any variable x, the probability px of x to be true will be a rational
between r and 1− r, and, in particular, between 1/4 and 3/4. This implies that any
5-ary clause is satisfied with probability at least 1 − (3/4)5 > 3/4. Thus we only
have to care about unary, binary, ternary, and 4-ary clauses. Let us fix r < 3/4 and
let k = 2 · 3h(r)+1 − 1. Let φ be a k-satisfiable formula, and let φ4 be the subset of
clauses of φ of length at most 4. Observe that if some literal is i-provable in φ4 for
some i ≤ h(r), then it is not possible that its complement is j-provable in φ4 for some
j ≤ h(r).

We shall use the values ar1, . . . , a
r
h(r)−1, 0.5 in our probability distribution. Let

pi = ari for i = 1, . . . , h(r) − 1 and ph(r) = 1/2. The probability distribution is as
follows.

Pr[x = true] =

⎧⎨
⎩

pi if x is exactly i-provable in φ4 for i ≤ h(r)− 1,
1− pi if ¬x is exactly i-provable in φ4 for i ≤ h(r)− 1,
1
2 otherwise.

It should be clear that the definition above is consistent. Recall that the sequence
p1, . . . , ph(r) is decreasing. So if a variable x is exactly i-provable for some i < h(r),
the smaller i is, the larger Pr[x = true] is.

Claim 6. Under the probability distribution above, any clause of φ is false with
probability at most 1− r.

Proof. The statement is easy to prove for unary clauses and for clauses with five
or more literals.

Let C = (l1 ∨ · · · ∨ lh) be a clause with two or more literals; we assume Pr[l1 =
false] ≤ Pr[l1 = false] ≤ · · · ≤ Pr[lh = false]. If Pr[l2 = false] ≤ 1/2, then also
Pr[l1 = false] ≤ 1/2 and Pr[C is false] ≤ 1/4 < 1− r. It remains to consider the case
Pr[l2 = false] > 1/2. Then ¬l2 is exactly i2-provable for some i2 ≤ h(r) − 1; also
¬l3 and ¬l4 (if present) are exactly i3-provable (resp., i4-provable) for some i3 ≤ i2
(resp., i4 ≤ i2). It follows that l1 is exactly i1-provable for some i1 ≤ i2 + 1, and thus
Pr[l1 = false] = 1− pi1 ≤ 1− ai1 = (1− r)/ai1−1,

1 while Pr[l2 = false] = pi2 = ai2 ≤

1Note that if i1 = h(r), then l1 will be assigned probability 1/2 (that is, exactly pi1 ) not because
it is exactly h(r)-provable, but because it is not i-provable for i < h(r) and, of course, neither is its
complement (so l1 falls in the “otherwise” part of the definition).
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ai1−1. As a consequence, we have

Pr[C is false ] ≤ Pr[l1 = l2 = false] ≤ 1− r.
The theorem thus follows.

3. Constraint satisfaction problems.
Lemma 7. Let φ be an (h + 1)-satisfiable instance of hCSP. Then it is possible

to satisfy at least 21−h of the constraints.
Proof. We describe a random assignment that satisfies each constraint with prob-

ability at least 21−h.
We say that a constraint is conjunctive if there is only one assignment of its

variables that satisfies it. For any variable that occurs in a conjunctive constraint,
we set it to the value imposed by the constraint. This is consistent (otherwise the
instance would not be 2-satisfiable). This partial assignment does not contradict any
(nonconjunctive) constraint (otherwise the instance would not be (h+ 1)-satisfiable).
We give probability 1/2 to all the other variables. It is easy to see that any constraint
that is not satisfied by the partial assignment is true with probability at least 2/2h:
indeed, either it is still h-ary and has two or more satisfying assignments, or its arity
has been decreased by the partial assignment, and so it is true with probability at
least 1/2h−1.

Let h, r < 21−h, and k be fixed. We will show how to find a k-satisfiable instance
of hCSP such that only a fraction r of its constraints is simultaneously satisfiable.

We will use only one type of constraint, the hypercut
h constraint, defined as

follows:

hypercut
h(x1, . . . , xh−1, y) ≡ (x1 �= y) ∧ (x1 = · · · = xh−1).

For h = 2 this is the xor constraint that gives rise to a CSP that is equivalent to
2-colorability.

For a set φ of hypercut
h constraints, if hypercut

h(x1, . . . , xh−1, y) ∈ φ, then
we say that, for any i = 1, . . . , h − 1, xi is adjacent to y (and that y is adjacent to
xi) in φ. A cycle of length l (l ≥ 3) is a sequence of variables x1, . . . , xl such that xl
is adjacent to x1 and xi is adjacent to xi+1 for i = 1, . . . , l− 1. The reader should be
easily convinced that φ is satisfiable if and only if it does not contain a cycle of odd
length. The next theorem is well known for the case h = 2 [1].

Lemma 8. For any integers k, h, and any ε > 0, there exists a family of m
hypercut

h constraints such that no more than (21−h + ε)m are simultaneously sat-
isfiable and any k of them are satisfiable.

Sketch of proof. To meet the second requirement we just have to construct an
instance without short cycles of odd length. The following construction will work for
all sufficiently large n. We fix a (small) constant δ > 0 and a (large) constant c such
that

21−h(1 + δ)/(1− 2δ) < 21−h + ε,

2k(2c(k − 1))k ≤ δcn,

c ≥ 6 log e log
1

δ2
2h−1.

Letm = cn, and let s(n) = n
(
n−1
h−1

)
be all the possible hypercut

h constraints over
the variable set {x1, . . . , xn}. We construct a random instance of hCSP by choosing
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each of the s(n) constraints independently with probability m/s(n). We make the
following claims:

1. With probability at least .9, the number of constraints in the random instance
is at least m(1− δ).

2. With probability at least .9, the generated instance is such that any assign-
ment satisfies at most 21−h(1 + δ)m constraints.

3. With probability at least .5, there are at most 2k(2c(k− 1))k cycles of length
≤ k in the generated instance.

With positive probability, a random instance will satisfy all three properties. In
particular, there will exist an instance satisfying such properties. By removing from
it a constraint for each cycle of length ≤ k, we obtain a new instance with no cycle of
length ≤ k, m′ ≥ m(1 − 2δ) constraints, and such that no assignment satisfies more
than (21−h + ε)m′ constraints. This modified instance proves the lemma.

We now prove the three claims.
1. The average number of constraints is m. By Chernoff bounds, it will be at

least (1 − δ)m with probability at least 1 − e−δ2m/2, which is larger than .9
for sufficiently large n.

2. If we fix one of the 2n possible assignments, which gives value true to tn
variables, and value false to (1 − t)n, it will satisfy a randomly chosen
constraint with probability

th−1(1− t) + (1− t)h−1t ≤ (1/2)h−1.

From Chernoff bounds, the probability that, for a random instance, there
exists an assignment satisfying more than m21−h(1 + δ) constraints, is at
most

2ne−δ
221−hcn/3 ≤ 2−n ≤ .1

for sufficiently large n.
3. There are n(n − 1) · · · (n − l + 1) possible cycles of length l. Thus, there

are at most knk cycles of length ≤ k. Two fixed variables are adjacent
with probability at most 2c(k − 1)/n. For different pairs of variables, their
probability of being adjacent is not necessarily independent, but they are
negatively correlated, so a given cycle exists with probability at most (2c(k−
1)/n)k. The average is at most k(2c(k− 1))k; with probability at most .5 the
actual number is more than twice the average.

Theorem 9. For any h ≥ 2, limk→∞ r
(h)
k = 21−h.

4. Conclusions. It is a startling coincidence that 3/4 is the integrality gap of
the tightest known linear programming relaxation of MAX SAT [2] and that 21−h

is the integrality gap of the tighter known linear programming relaxation of MAX
hCSP [6]. It would be interesting to understand if this fact has some explanation.
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VU DONG TÔ† AND REIHANEH SAFAVI-NAINI†

SIAM J. DISCRETE MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 17, No. 4, pp. 548–570

Abstract. A q-ary code has identifiable parent property (IPP) if it allows one of the parents
of a descendant word to be found. A 2-IPP code ensures that at least one parent of a pirate word
constructed by a coalition of two users can be found. In this paper, we answer a question raised in
[H. D. L. Hollmann et al., J. Combin. Theory Ser. A, 82 (1998), pp. 121–133] and show that F (q),
the maximum number of codewords in a 2-IPP code of length 3, satisfies |G0| ≤ F (q) ≤ |G0| + 2,
where G0 is a well-defined graph. We also give an efficient algorithm (O(q3)) for finding maximal
codes.

Key words. IPP code, frameproof, c-secure code, collusion secure fingerprinting, graph theory,
color graph
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1. Introduction. In this paper, we are interested in codes with identifiable
parent property (IPP) that allow tracing of illegal copies of digital objects protected by
an embedded fingerprint. 2-IPP codes were introduced in [3] and further investigated
in [6] and [5]. In [3], bounds on F (n, q), the maximum number of codewords in q-ary
2-IPP codes of length n, were investigated and, for the first nontrivial case, that is,
F (3, q), it was shown that F (3, q) ≤ 3q − 1. However, this result is nonconstructive,
and codes that achieve the bound with equality are not known. In this paper, we
extend this result by giving the construction of a code which, for some values of q,
has the maximum number of codewords and, for other values of q, has at most two
less codewords compared to the maximal code.

Related works. Tracing pirates was first considered in the context of broad-
cast encryption [2]. Frameproof codes and c-secure codes were introduced in [1] for
protection against illegal copying of software. Traceability codes were studied in [2]
and [6]. The relationship between these codes was investigated in [5]. In the rest of
this paper, we will concentrate on 2-IPP codes.

Let A be an alphabet of size q, |A| = q, and An denote the set of n-tuples over
A. A code C, of length n and size N over A, is a subset of size N of An and is called
an (N,n, q)-code.

A codeword c ∈ C is an n-tuple (c1, c2, . . . , cn). For a subset X ⊂ C, we define the
set of descendants of X as

desc(X) = {a ∈ An : ai ∈ {xi : x ∈ X}, 1 ≤ i ≤ n}.

If a ∈ desc(X), then x ∈ X is a parent of a. The set of descendants is a subset of
An that can be constructed by a coalition of users who have the codewords in X.

∗Received by the editors January 3, 2002; accepted for publication (in revised form) September 30,
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For a code C, define

descw(C) = {a ∈ An : a ∈ desc(X), X ⊂ C, |X| ≤ w}.

A w-IPP code is a code with the property that for all words in descw(C) at least
one parent can be found. That is, for any a ∈ descw(C),

⋂
{a∈desc(X),|X|≤w}

X �= ∅.

2. q-ary code graph representation. Let C be a q-ary code of length 3. We
follow [3] and define a 3-color graph C∗ for C as follows (see Figure 1):

(i) Each node in C∗ corresponds to a codeword in C;
(ii) two nodes in C∗ are joined by an edge of color i if their corresponding

codewords in C have their symbols in the position i equal.

color 1

color 2

color 3

(1,4,1)

(2,3,2)
(3,4,2)

(3,1,2)
(4,2,2)

(4,5,3)

(4,7,1)

(5,6,4)

(7,7,6)

(6,7,5)

Fig. 1. 3-color graph representation.

Definition 1. Let G be a 3-color graph. If, for some q-ary code C of length 3,
we have G = C∗, then G is called a q-ary code graph.

For a 3-color graph G, for each i = 1, 2, 3, let Colori(G) denote the graph obtained
from G by removing all the edges of colors other than color i.

It is easy to see that for each i = 1, 2, 3, Colori(C∗) contains only cliques. This is
also a sufficient condition that enables a 3-color graph to be a code graph, as stated
in Theorem 2 below.

Theorem 2. If G is a q-ary code graph, then for all i = 1, 2, 3, Colori(G)
contains only cliques of color i. Let #Colori(G) denote the number of cliques in the
graph Colori(G); then #Colori(G) ≤ q for each i = 1, 2, 3.

Conversely, for a 3-color graph G, if for each i = 1, 2, 3 the graph Colori(G) only
contains cliques and #Colori(G) ≤ q, then there exists a q-ary code C of length 3 such
that G = C∗.

Given a q-ary code graph G, we can construct a corresponding code in the following
way. For each i = 1, 2, 3, label the cliques in the graph Colori(G) with the symbols 1,
2, . . . , #Colori(G). A node of G will be assigned a codeword (s1, s2, s3) if it belongs
to the clique of color 1 labeled s1, the clique of color 2 labeled s2, and the clique of
color 3 labeled s3 (see Figure 2). Thus, there are many codes associated with the

(6)

(5)

(4)

(3)

(2)

(1)
(6,5,5)

(7,5,6)

(5,7,4)

(4,5,2)

(4,4,1)

(1,1,1)
(3,3,1)

(2,1,2)

(1,2,1) (4,6,3)

(7)

(6)

(5)
(4)

(3)

(2)

(1)
(7)

(6)

(5)

(4)

(3)

(2)

(1)

Fig. 2. Constructing a code from the graph.
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same graph G that we consider equivalent. Equivalence of codes is as defined in [4].
Definition 3 (see [4]). Two q-ary codes C1, C2 of the same length n and same

size m are equivalent if there exists a permutation σ of the n coordinate positions and
permutations π1, π2, . . . , πn of the code alphabet for which (c1, c2, . . . , cn) ∈ C1 if and
only if (π1(cσ(1)), π2(cσ(2)), . . . , πn(cσ(n))) ∈ C2.

3. 2-IPP q-ary code graph.
Definition 4. Let G = C∗ be a q-ary code graph for a code C of length 3. If

the code C is 2-IPP, then G is called a 2-IPP q-ary code graph (2-IPP code graph for
short).

As stated in [3], it is easy to prove that C is a 2-IPP code if and only if the
following conditions are satisfied:

(i) IPP1: a, b, c distinct in C → ai, bi, ci distinct for some i.
(ii) IPP2: a, b, c, d ∈ C with {a, b}∩{c, d} = ∅ → {ai, bi}∩{ci, di} = ∅ for some i.

Translating these conditions into graph language for C∗ we have the following:
(i) IPP1: A, B, C distinct nodes in C∗ → there is a color i that does not appear

in the edges joining these three nodes.
(ii) IPP2: For any two disjoint pairs of nodes {A,B} and {C,D} in C∗, there is

a color i that does not appear in the edges joining the two sets {A,B} and {C,D}.
The patterns shown in Figure 3 are examples of forbidden patterns in 2-IPP

graph.

A
DC

B
A

C

B

Fig. 3. Forbidden patterns in 2-IPP graph.

3.1. A partial ordering on the set of maximal code graphs. Let F (q) =
F (3, q) denote the maximum size of a q-ary 2-IPP code of length 3. Our objective is
to find F (q). In [3], it is proved that for large enough q, 3q − 12

√
q ≤ F (q) ≤ 3q − 1.

There may exist many 2-IPP graphs with maximum number of nodes. We introduce
a partial ordering on code graphs with a maximum number of nodes and find the
maximum code graphs, which are also minimal based on this ordering.

First we introduce two orderings on the set of q-ary code graphs.
Definition 5. Let G1 and G2 be two q-ary code graphs. We say G1 is alphabeti-

cally smaller than G2, denoted by G1 <q G2 if and only if
(i) #Colori(G1) ≤ #Colori(G2) for all i = 1, 2, 3;
(ii) there is at least one i such that #Colori(G1) < #Colori(G2).

If #Colori(G1) = #Colori(G2) for all i = 1, 2, 3, then G1 and G2 are said to be
alphabetically equal, which is denoted by G1 =q G2.

Intuitively, if G1 <q G2, then the code generated by G1 uses less alphabet symbols
than that of G2.

In general, we can consider G a union of its connected subgraphs. There are four
types of connected subgraphs, which we will call 0-color part, 1-color part, 2-color
part, and 3-color part, depending on the number of colors that appear in a particular
subgraph. The 0-color part is just a single isolated node.

Since a 2-color part automatically satisfies the two conditions IPP1 and IPP2, it
is preferable to a 3-color part.

Definition 6. Let G1 and G2 be two q-ary code graphs. We say G1 is more color
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efficient than G2 and denote it by G1 ≺ G2, if and only if G1 has less 3-color parts
than G2.

Now we can define a partial order
 on the set of 2-IPP q-ary code graphs which
have a maximum number of nodes.

Definition 7. Let G1 and G2 be two 2-IPP q-ary code graphs with a maximum
number of nodes (|G1| = |G2| = F (q)). Then G1 
 G2 if and only if either G1 <q G2

or, G1 =q G2 and G1 ≺ G2.
From now on, we use G to denote a 2-IPP q-ary code graph which has a maximum

number of nodes that is minimal in the ordering 
. In section 4, we will establish
properties of G. Here we summarize all the known conditions on G:

1. G is a 2-IPP q-ary code graph, which implies that,
(i) for each i = 1, 2, 3, Colori(G) consists of only cliques (code graph condi-

tion);
(ii) for each i = 1, 2, 3, #Colori(G) ≤ q (q-ary);
(iii) for any three distinct nodes A, B and C, there exists a color i that does

not appear among the edges that join these nodes (IPP1);
(iv) for any two disjoint pairs of nodes {A,B} and {C,D}, there exists a color

i that does not appear among the edges joining these two sets (IPP2).
2. If G′ is a 2-IPP q-ary code graph, then |G′| ≤ |G| = F (q), where |L| denotes

the number of nodes in the graph L (maximal code).
3. There does not exist a 2-IPP q-ary code graph G′ with a maximum number

of nodes |G′| = |G| and G′ <q G (alphabetic minimal).
4. There does not exist a 2-IPP q-ary code graph G′ with a maximum number

of nodes |G′| = |G| that is alphabetically equal to G, and G′ ≺ G (color efficient).

4. Properties of G. It is easy to see that F (1) = 1 and F (2) = 2. From now
on we assume q > 2.

Lemma 8. |G| = F (q) > q (for all q > 2).
Proof. A 2-IPP q-ary code graph with q+1 nodes is shown in Figure 4. Therefore,

|G| ≥ q + 1.

3

q+1

q

4

2

1

Fig. 4. A 2-IPP q-ary code graph with q + 1 nodes.

Lemma 9 (see Lemma 2 in [3]). G is a simple graph. That is, any two nodes of
G are joined by at most one edge.

Proof. Assume that two nodes X and Y in G are joined by two edges of colors 1
and 2 (see Figure 5). We will show that in G the color 3 does not appear. Therefore,
|G| = #Color3(G) ≤ q, which contradicts Lemma 8.

Y

X
Y

T

X
Y

Z
T

Case 2

X

Case 1

Fig. 5. Nonsimple graph.
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Indeed, suppose we have edges of color 3. Then we have the following two cases.
Case 1. There is an edge of color 3 incident to X or Y . Without loss of generality,

assume this edge joins a node T to a node X. Then three points X, Y , and T violate
the condition IPP1.

Case 2. There is an edge of color 3 that joins a node T to a node Z. Then the
pairs {Z,X} and {T, Y } violate the condition IPP2.

Therefore, G is a simple graph.
As noted in [3], the only possible 3-color part in G is a binding of three proper

cliques of colors 1, 2, 3 at a single common node. Lemma 10 gives a complete proof
of this statement, which is only outlined in [3]. We call a clique proper if its size > 1.

Lemma 10. A 3-color part P in G must be a binding of three proper cliques of
colors 1, 2, and 3 at a common node (see Figure 6).

Fig. 6. A 3-color part.

Proof. Since G is simple, two proper cliques of different colors in P, which have
common nodes, must have exactly one common node; thus if we travel from one proper
clique to another, we must pass through the common node.

First, we show that there is a node that belongs to three proper cliques of different
colors. Suppose this is not the case. Then consider a path through proper cliques
that passes each clique at most once. The sequence of common nodes in this path will
consist of distinct nodes. Since P is a connected subgraph containing proper cliques
of three colors, there exists a path that goes through three consecutive proper cliques
of different colors (see Figure 7). So the pairs {A,C} and {B,D} violate the condition
IPP2.

A
C

DB

Fig. 7. Travel through cliques.

Therefore, there exists a common node B that belongs to three proper cliques C1,
C2, and C3 of colors 1, 2, 3 (see Figure 8). It is easy to see that P is a binding of only

2
C C

1

C
3

C
4

A

B

C
D

Fig. 8. P contains more than three cliques.
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these three cliques C1, C2, and C3 since, if P contains another clique, say C4, of color
1, then we again see the forbidden pattern A→ B → C → D.

A 2-color part P of colors i and j can be represented as a rectangular grid which
has #Colori(P) rows and #Colorj(P) columns. Two nodes are in the same row if
and only if they are in the same clique of color i; they are in the same column if and
only if they are in the same clique of color j. We can also draw the grid such that the
color i cliques are the columns and the color j cliques are the rows.

Note that a 2-color part contains at least three nodes because it has at least two
rows and at least two columns.

Example. In Figure 9, the 2-color part P contains #Color1(P) = 4 cliques of color
1 and #Color2(P) = 5 cliques of color 2. It can be represented as a 4× 5 rectangular
grid, where the rows are color 1 cliques and the columns are color 2 cliques.

4

3

2

1
5

98

65
7

1 432

10

10

9

8

7

6

Fig. 9. Rectangular grid representation of a 2-color part.

Lemma 11. If P is a 2-color part in G and P contains n nodes, xi cliques of
color i, and xj cliques of color j, then �n/xi = xj and �n/xj = xi.

Proof. Assume that �n/xi = t < xj . Then we can construct a rectangular grid
graph which has xi rows and t columns containing n nodes. This grid is a new 2-color
part P ′ which contains n nodes, xi cliques of color i, and t cliques of color j (see
Figure 10). The new graph G′ obtained from G by replacing P with P ′ is also a 2-IPP
q-ary code graph. It has the same number of nodes as G and G′ <q G, which is a
contradiction. Therefore (because n ≤ xixj) we get �n/xi = xj . Similarly, we have
�n/xj = xi.

10

2 3 41

7
5 6

8 9

1

2

3

4

5

10
6

7

8

9

P P’

Fig. 10. In P: n = 10, x1 = 4, x2 = 5; in P ′: n = 10, x1 = 4, x2 = 3.

adjoin two cliques of the same coloradjoin a node to a clique

Fig. 11. Adjoining.

In the next few lemmas, we will analyze the structure of G. In the proofs, we
often use the technique of adjoining a node to a clique or adjoining a clique to another
clique of the same color. Here adjoining means joining all the nodes in question so
that together they form a new clique of the same color (see Figure 11).
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Theorem 12. G does not contain a 0-color part.
Proof. Suppose that G contains a 0-color part, that is, an isolated node X. Since

|G| > q (Lemma 8), not all connected subgraphs of G are 0-color parts. Let P be a
connected subgraph of G which is not a 0-color part. Choose an arbitrary clique in
P and adjoin X to that clique (see Figure 12). What we obtain is a new 2-IPP q-ary
code graph which has the same number of nodes as G and is alphabetically smaller
than G. This is a contradiction. Therefore, G does not contain a 0-color part.

X X

P P

Fig. 12. G contains a 0-color part.

We will show in Lemmas 13, 14, and 15 that G can only contain at most one
1-color part, at most one 2-color part of the same colors, and at most one 3-color
part. Two 2-color parts are of the same colors if the two pairs of colors appearing in
them are the same.

Lemma 13. G does not contain more than one 1-color part.
Proof. Suppose that G contains two 1-color parts.
Case 1. The two 1-color parts are of the same color. By adjoining the two parts,

we have a new 2-IPP code graph which has the same number of nodes as G but is
alphabetically smaller than G (a contradiction).

Case 2. The two 1-color parts are of different colors i and j. Replace the two
1-color parts with a new 2-color part by adjoining a node of the 1-color part of color
i to the 1-color part of color j, as shown in Figure 13. We obtain a 2-IPP q-ary code
graph which has the same number of nodes as G and is alphabetically smaller than G
(a contradiction).

Therefore, G contains at most one 1-color part.

newold

Fig. 13. Case 2, two 1-color parts of different colors.

Lemma 14. G does not contain two 2-color parts of the same colors.
Proof. Suppose G contains two 2-color parts whose colors are the same. Select an

arbitrary clique from one part, another clique of the same color from the other part,
and adjoin them as shown in Figure 14. We obtain a new 2-IPP q-ary code graph

old new

Fig. 14. G contains two 2-color parts of colors 1 and 2.
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which has the same number of nodes as G and is alphabetically smaller than G. This
is a contradiction, and so G cannot contain two 2-color parts of the same colors.

Lemma 15. G does not contain more than one 3-color part.
Proof. Suppose that G contains two 3-color parts P1 and P2. P1 is a binding of

a clique of color 1 of size x1, a clique of color 2 of size y1, and a clique of color 3 of
size z1. P2 is a binding of a clique of color 1 of size x2, a clique of color 2 of size y2,
and a clique of color 3 of size z2. Consider a new 3-color part P which is a binding
of a clique of color 1 of size x1 + x2 − 1, a clique of color 2 of size y1 + y2 − 1, and a
clique of color 3 of size z1 + z2 as shown in Figure 15.

3

2
2

2

3

3

4

5

4

old new

Fig. 15. G contains two 3-color parts with x1 = 3, y1 = 2, z1 = 2, x2 = 2, y2 = 3, z2 = 3.

We have

|P1| = x1 + y1 + z1 − 2,

|P2| = x2 + y2 + z2 − 2,

|P| = (x1 + x2 − 1) + (y1 + y2 − 1) + (z1 + z2)− 2.

Therefore, |P| = |P1|+ |P2|.
We have

#Color1(P1) = 1 + (y1 − 1) + (z1 − 1),

#Color1(P2) = 1 + (y2 − 1) + (z2 − 1),

#Color1(P) = 1 + (y1 + y2 − 1− 1) + (z1 + z2 − 1).

Therefore, #Color1(P) = #Color1(P1) + #Color1(P2). Similarly, #Color2(P) =
#Color2(P1) + #Color2(P2).

We have

#Color3(P1) = 1 + (x1 − 1) + (y1 − 1),

#Color3(P2) = 1 + (x2 − 1) + (y2 − 1),

#Color3(P) = 1 + (x1 + x2 − 1− 1) + (y1 + y2 − 1− 1).

Therefore, #Color3(P) < #Color3(P1) + #Color3(P2).
So if we replace the two 3-color parts P1 and P2 with the new 3-color part P,

we obtain a new 2-IPP code graph that has the same number of nodes as G but is
alphabetically smaller than G, which is a contradiction. Therefore, G contains at most
one 3-color part.

Lemma 16. G does not contain both a 1-color part and a 3-color part.
Proof. Suppose that G contains a 1-color part, that is, a clique, and a 3-color

part. Adjoin the 1-color part to the clique of the same color in the 3-color part as
shown in Figure 16. We obtain a new 2-IPP code graph which has the same number
of nodes as G and is alphabetically smaller than G. This is a contradiction. Therefore,
G cannot contain a 1-color part and a 3-color part at the same time.



556 VU DONG TÔ AND REIHANEH SAFAVI-NAINI

newold

Fig. 16. G contains both 1-color part and 3-color part.

Lemma 17. G does not contain a 2-color part and a 1-color part of the color
which appears in the 2-color part.

Proof. Suppose that G contains a 1-color part of color i and a 2-color part made
of color i and another color. Select an arbitrary clique of color i in the 2-color part
and adjoin it to the 1-color part (see Figure 17). Then we have a new 2-IPP q-ary
code graph that has the same number of nodes as G and is alphabetically smaller than
G. This is a contradiction, and so G cannot have a 2-color part and a 1-color part of
a color that appears in the 2-color part.

old new

Fig. 17. G contains a 1-color part of color 2 and a 2-color part of colors 1 and 2.

Lemma 18. If G contains a 3-color part P (which is a binding of three proper
cliques of colors 1, 2, 3), then at least two of the three cliques in P must be of size 2.

Proof. For each i = 1, 2, 3, let ki be the size of the proper clique of color i in P.
Without loss of generality, we may assume that k1 ≥ k2 ≥ k3. We need to show that
k2 = k3 = 2. Suppose this is not the case; then we have k2 ≥ 3.

Construct a 1-color part P1 of color 1 and size k3. Let P2 be a 2-color part whose
rectangular grid representation has two rows corresponding to two cliques of color 1.
The first row contains k1 − 1 nodes and the second contains k2 − 1 nodes. There are
k1− 1 columns. Each of the first k2− 1 columns contains two nodes and forms k2− 1
cliques of color 2, each of size 2 (see Figure 18).

P

−1

−1

1P

2k

1k

2P

3k
3k

2k

1k

Fig. 18. Breaking the 3-color part to form a better graph.

We have |P| = k1+k2+k3−2, |P1| = k3, and |P2| = (k1−1)+(k2−1). Therefore,
|P| = |P1|+ |P2|.

We have #Color1(P) = 1+(k2−1)+(k3−1), #Color1(P1) = k3, and #Color1(P2)
= 2. Since k2 ≥ 3, we have #Color1(P) ≥ #Color1(P1) + #Color1(P2).
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Now

#Color2(P) = 1 + (k3 − 1) + (k1 − 1),

#Color2(P1) = k3,#Color2(P2) = k1 − 1,

imply that #Color2(P) = #Color2(P1) + #Color2(P2). Moreover,

#Color3(P) = 1 + (k1 − 1) + (k2 − 1),

#Color3(P1) = 1,

#Color3(P2) = (k1 − 1) + (k2 − 1)

imply #Color3(P) = #Color3(P1) + #Color3(P2).
Therefore, if we replace P with P1 and P2, then we have a new 2-IPP code graph

G′ which has the same number of nodes as G and G′ 
 G. This is a contradiction.
So k2 = 2, which implies that k2 = k3 = 2, and the 3-color part P in G must

contain at least two proper cliques of size 2 (see Figure 19).

Fig. 19. Shape of the 3-color part in G.

5. Graph structure of G. Based on the properties of G proved in the previous
section, we can now determine the structure of G. Theorems 19, 20, and 21 below
show that G can be one of the four possible types.

Theorem 19. If G does not contain a 1-color part or a 3-color part, then G
consists of either two or three 2-color parts of different color types.

If G consists of three 2-color parts, then q ≥ 7 and we say that G is of type I.
If G consists of two 2-color parts, then q ≥ 5 and |G| = 2q − 4. In this case, we

say that G is of type II.
Proof. If G does not contain a 1-color part or a 3-color part, then G contains only

2-color parts. Lemma 14 says that G cannot contain two 2-color parts of the same
color; therefore G is a union of at most three 2-color parts.
G contains at least two parts since, if it consists of only one 2-color part, say of

color 1 and 2, then |G| = #Color3(G) ≤ q, which contradicts Lemma 8. So G consists
of either two 2-color parts or three 2-color parts.

Case 1. Let G contain three 2-color parts. Use n1 to denote the number of nodes
in the 2-color part of colors 2 and 3 and use y1, z1 to denote the number of cliques
of color 2 and 3, respectively, in this part; use n2 to denote the number of nodes in
the part of colors 3 and 1, and use z2, x2 to denote the number of cliques of color 3
and 1, respectively, in this part; finally, use n3 to denote the number of nodes in the
part of colors 1 and 2, and use x3, y3 to denote the number of cliques of color 1 and
2, respectively, in this part (see Figure 20). Then #Color1(G) = n1 + x2 + x3 ≤ q →
q ≥ 3 + 2 + 2 = 7.

Case 2. If G contains two 2-color parts (see Figure 21), then,

#Color1(G) = n1 + x2 ≤ q,#Color2(G) = n2 + y1 ≤ q,#Color3(G) = z1 + z2 ≤ q.
This implies that q ≥ 5 and |G| = n1 + n2 ≤ 2q − x2 − y1 ≤ 2q − 4.
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Fig. 20. Graph of type I.

y1

z1

n1

z2

x 2

n2

Fig. 21. Graph of type II.

In fact we can make |G| = 2q − 4 by choosing y1 = x2 = 2, n1 = n2 = q − 2,
z1 = z2 = �(q − 2)/2.

Theorem 20. If G contains a 1-color part, then G has exactly two connected
subgraphs: the 1-color part and a 2-color part of the colors different from the color of
the 1-color part.

In this case, we have q ≥ 4 and |G| ≤ 2q − 3. We call G type III. Furthermore, if
q ≥ 6, then |G| ≤ 2q − 4.

Proof. If G contains a 1-color part P1, then Lemma 13 says that this is the
unique 1-color part; Lemma 16 excludes the existence of a 3-color part. Since |G| > q
(Lemma 8), G must contain connected subgraphs other than the 1-color part. The
only possible form of these subgraphs is to be 2-color parts. Let us assume P1 is of
color 1. Then Lemma 17 says that 2-color parts in G must be made of colors 2 and 3.
Lemma 14 says that there is only one such 2-color part in G—call it P2.

Thus, G is the union of the 1-color part P1 of color 1 and the 2-color part P2 of
colors 2 and 3 (see Figure 22).

y1

z1

n1

Fig. 22. Graph of type III.

We have #Color1(G) = 1 + n1 ≤ q, hence q ≥ 4 and n1 ≤ q − 1. We have

#Color2(G) = |P1|+ y1 ≤ q → |P1| ≤ q − y1,
#Color3(G) = |P1|+ z1 ≤ q → |P1| ≤ q − z1.
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We have y1, z1 ≥ 2, and thus |P1| ≤ q − 2 and |G| = |P1|+ n1 ≤ 2q − 3.
If |G| = 2q − 3, then y1 = z1 = 2 and n1 = q − 1 ≤ y1z1 = 4 → q ≤ 5. Therefore

if q ≥ 6, then |G| ≤ 2q − 4.
Theorem 21. If G contains a 3-color part P, then G = P, and G is a binding of

three cliques of sizes 2, 2, and q − 1. In this case, we say G is type IV and we have
|G| = q + 1.

Proof. From Lemma 18, we can assume that P is a binding of a clique of color 1
of size k and two cliques of colors 2 and 3, both of size 2. We need to show that P is
the whole of G and k = q − 1.

Let A and B, respectively, be two nodes in the clique of color 2 and the clique of
color 3 of P such that neither A nor B is the 3-color part’s common node.

Suppose P is not the whole G. Then G has another connected subgraph Q.
Theorem 12, Lemma 15, and Lemma 16 ensure that Q is a 2-color part. There are
three cases.

Case 1. Q is made up of colors 2 and 3 (Figure 23).

Q’Q
B

B

AA

P
P’

Fig. 23. G contains a 3-color part and a 2-color part.

The 1-color part P ′ is obtained from P by disconnecting A and B from P and
adjoining A and B to arbitrary cliques of color 2 and 3, respectively, in Q to get the
2-color part Q′.

Clearly, |P ′|+ |Q′| = |P|+ |Q|, and

#Color1(P ′) + #Color1(Q′) = #Color1(P) + #Color1(Q).

Moreover,

#Color2(P ′) = k,

#Color2(Q′) = #Color2(Q) + 1,

#Color2(P) = k + 1

imply that #Color2(P ′) + #Color2(Q′) = #Color2(P) + #Color2(Q).
Similarly, #Color3(P ′) + #Color3(Q′) = #Color3(P) + #Color3(Q).
Therefore, if we replace P and Q with P ′ and Q′, then we have a new 2-IPP

q-ary code graph G′ with the same number of nodes as G and G′ 
 G, which is a
contradiction. Case 2. Q is made up of colors 3 and 1 (Figure 24).

Q’Q
B

B

AA

P
P’

Fig. 24. G contains a 3-color part and a 2-color part.
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Fig. 25. G is of type IV.

Disconnect B from part P and adjoin it to an arbitrary clique of color 3 in Q to
obtain P ′ and Q′.

Clearly, |P ′|+ |Q′| = |P|+ |Q|,
#Color1(P ′) + #Color1(Q′) = #Color1(P) + #Color1(Q), and

#Color2(P ′) + #Color2(Q′) = #Color2(P) + #Color2(Q).

Moreover, #Color3(P ′) = #Color3(P) = k + 1, #Color3(Q′) = #Color3(Q)
imply that #Color3(P ′) + #Color3(Q′) = #Color3(P) + #Color3(Q).

Therefore, if we replace P and Q with P ′ and Q′, then we have a new 2-IPP code
graph G′ which has the same number of nodes as G and G′ 
 G—a contradiction.

Case 3. Q is made up of colors 1 and 2. The proof is similar to that of Case 2.
Therefore, P is the whole G.
We have |G| = k + 2 and #Color2(G) = k + 1 ≤ q (see Figure 25). Hence,

|G| ≤ q + 1 but, according to Lemma 8, |G| > q and so |G| = q + 1, which implies
k = q − 1.

Corollary 22. For q ≥ 5, |G| ≥ q + 2; hence G is not of type IV.
Proof. For q ≥ 5, there exists a 2-IPP code graph with q+2 nodes (see Figure 26).

Therefore |G| ≥ q + 2.

q+28

7

65

4
3

2

1

Fig. 26. A 2-IPP q-ary graph with q + 2 nodes.

Theorem 23. For q ≥ 17, G consists of three 2-color parts of different color
types. This means that G is of type I.

Proof. In section 6, we show the construction of a 2-IPP code graph consisting of
three 2-color parts with more than 2q − 4 nodes if q ≥ 17 (Corollary 25). Using this
construction and the bounds derived on the sizes of type II, III, and IV code graphs,
we conclude that G cannot be of type II, III, or IV; it must be of type I.

6. The main theorem. In this section, for each q ≥ 8 we will construct a
2-IPP code graph G0 and prove our main result, that is, |G0| ≤ F (q) ≤ |G0| + 2. As
in previous sections, G denotes a maximal 2-IPP q-ary code graph which is minimal
in the ordering 
.

Construction of the graph G0. There are six cases:
Case 1. q = r2 + 2r, where r ≥ 2 (Figure 27). We have

#Color1(G0) = #Color2(G0) = #Color3(G0) = q,

|G0| = 3r2 = 3q + 6− 6(r + 1) = 3q + 6− 6
√
q + 1 = 3q + 6− 6�

√
q + 1 .
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r

r

r

r

r

r
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Fig. 27. Graph G0 when q = r2 + 2r.

+ 1

r

r

r

r

r

r

2r2r2r

Fig. 28. Graph G0 when q = r2 + 2r + 1.

Note that, in this case, the code generated by G0 is equivalent to the code given
in Example 4 in [3].

Case 2. q = r2 + 2r + 1, where r ≥ 2 (Figure 28). We have

#Color1(G0) = q − 1,#Color2(G0) = #Color3(G0) = q,

|G0| = 3r2 + 1 = 3q + 10− 6(r + 2) = 3q + 10− 6�
√
q + 1 .

Case 3. q = r2 + 2r + 2, where r ≥ 2 (Figure 29). We have

#Color1(G0) = #Color2(G0) = #Color3(G0) = q,

|G0| = 3r2 + 4 = 3q + 10− 6(r + 2) = 3q + 10− 6�
√
q + 1 .

Case 4. q = r2 + 2r + 1 + k, where 2 ≤ k ≤ r (Figure 30). We have

#Color1(G0) = #Color2(G0) = #Color3(G0) = q,

|G0| = 3(r2 + k) = 3q + 9− 6(r + 2) = 3q + 9− 6�
√
q + 1 .

Case 5. q = r2 + 3r + 2, where r ≥ 2 (Figure 31). We have

#Color1(G0) = #Color2(G0) = #Color3(G0) = q,

|G0| = 3r2 + 3r + 2 = 3q + 8− 6(r + 2) = 3q + 8− 6�
√
q + 1 .

Case 6. q = r2 + 3r + 2 + k, where r ≥ 2 and 1 ≤ k ≤ r (Figure 32). We have

#Color1(G0) = #Color2(G0) = #Color3(G0) = q,

|G0| = 3(r2 + r + k) = 3q + 6− 6(r + 2) = 3q + 6− 6�
√
q + 1 .

Corollary 24. For all q ≥ 8, F (q) ≥ |G0| ≥ 3q + 6− 6�√q + 1 .
Proof. The proof follows from the above construction and from noting that r ≥ 2

when q ≥ 8.



562 VU DONG TÔ AND REIHANEH SAFAVI-NAINI

+ 2+ 2

r

r

r

r

2r2r 2r

r

r

Fig. 29. Graph G0 when q = r2 + 2r + 2.

r rr
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Fig. 30. Graph G0 when q = r2 + 2r + 1 + k, where 2 ≤ k ≤ r.

r
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r + 1
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Fig. 31. Graph G0 when q = r2 + 3r + 2.

r r

r + 1

r

+ r + k r2 + r + kr2 + r + k 2

r + 1r + 1

k k k

r

Fig. 32. Graph G0 when q = r2 + 3r + 2 + k, where 1 ≤ k ≤ r.

Corollary 25. |G0| > 2q − 4 for all q ≥ 17.
Proof. Consider the following six cases.
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Case 1. q = r2 + 2r. q ≥ 17 → r > 3. We have

|G0| = 3r2 → |G0| − (2q − 4) = 3r2 − (2r2 + 4r − 4) = r2 − 4r + 4 = (r − 2)2 > 0.

Case 2. q = r2 + 2r + 1. q ≥ 17 → r > 3. We have

|G0| = 3r2 + 1→ |G0| − (2q − 4) = 3r2 + 1− (2r2 + 4r − 2) = (r − 2)2 − 1 > 0.

Case 3. q = r2 + 2r + 2. q ≥ 17 → r ≥ 3. We have

|G0| = 3r2 + 4→ |G0| − (2q − 4) = 3r2 + 4− (2r2 + 4r) = r2 − 4r + 4 = (r − 2)2 > 0.

Case 4. q = r2 + 2r + 1 + k, where 2 ≤ k ≤ r. q ≥ 17 → r > 2. We have

|G0| = 3(r2+k)→ |G0|−(2q−4) = 3(r2+k)−(2r2+4r+2k−2) = (r−2)2+k−2 > 0.

Case 5. q = r2 + 3r + 2. q ≥ 17 → r > 2. We have

|G0| = 3r2 + 3r+ 2→ |G0| − (2q− 4) = 3r2 + 3r+ 2− (2r2 + 6r) = (r− 2)(r− 1) > 0.

Case 6. q = r2 + 3r + 2 + k, where 1 ≤ k ≤ r. q ≥ 17 → r > 2. We have

|G0| = 3(r2 + r + k)→ |G0| − (2q − 4) = 3(r2 + r + k)− (2r2 + 6r + 2k)

= (r − 2)(r − 1) + k − 2 > 0.

Therefore, |G0| > 2q − 4 for all q ≥ 17.
Definition 26. Let q be an integer, q ≥ 5. Let n(q) denote the maximum value

of n1 +n2 +n3, where n1, n2, n3, x2, x3, y3, y1, z1, z2 are positive integers satisfying
the following conditions:

n1 ≤ y1z1, n2 ≤ z2x2, n3 ≤ x3y3,

n1 + x2 + x3 ≤ q, n2 + y3 + y1 ≤ q, n3 + z1 + z2 ≤ q,
x2, x3, y3, y1, z1, z2 ≥ 2.

The following theorem is proved in the appendix.
Theorem 27. For all q ≥ 5, n(q) ≤ 3q + 6− 6

√
q + 1.

Lemma 28. For all q ≥ 5, F (q) ≥ n(q).
Proof. We prove F (q) ≥ n(q) by showing that if positive integers n1, n2, n3, x2,

x3, y3, y1, z1, z2 satisfy all the conditions stated in Definition 26, then there exists a
2-IPP q-ary code graph with n1 + n2 + n3 nodes.

Indeed, since n1 ≤ y1z1, it is possible to construct a graph P1 with n1 nodes such
that #Color1(P1) = n1, #Color2(P1) ≤ y1, and #Color3(P1) ≤ z1. If 1 ≤ n1 ≤ 2,
then P1 can be a 1-color part (of color 2 or 3) and; if n1 ≥ 3, then P1 can be a 2-color
part of colors 2 and 3 whose rectangular grid has up to y1 rows and z1 columns.
Since n2 ≤ z2x2 and n3 ≤ x3y3, it is possible to construct similar graphs P2 and
P3 with n2 and n3 nodes, respectively, and #Color2(P2) = n2, #Color3(P2) ≤ z2,
#Color1(P2) ≤ x2, #Color3(P3) = n3, #Color1(P3) ≤ x3, #Color2(P3) ≤ y3. Let P
be the union of P1, P2, and P3; then P is a graph with n1 + n2 + n3 nodes and does
not contain any 3-color part. Moreover,

#Color1(P ) = #Color1(P1) + #Color1(P2) + #Color1(P3) ≤ n1 + x2 + x3 ≤ q,
#Color2(P ) = #Color2(P1) + #Color2(P2) + #Color2(P3) ≤ y1 + n2 + y3 ≤ q,
#Color3(P ) = #Color3(P1) + #Color3(P2) + #Color3(P3) ≤ z1 + z2 + n3 ≤ q.
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Therefore, P is a 2-IPP q-ary code graph with n1 + n2 + n3 nodes.
Lemma 29. For all q ≥ 17, F (q) ≤ n(q).
Proof. From Theorem 23 we know that, for q ≥ 17, graph G must contain exactly

three 2-color parts of different colors (Figure 33). This means that n1, n2, n3, x2, x3,
y3, y1, z1, z2 are positive integers satisfying all the conditions stated in Definition 26.
Therefore, |G| = F (q) = n1 + n2 + n3 ≤ n(q).
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x 3
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2n

2x

2z

1n

1z

1y

3

Fig. 33. G must be of type I when q ≥ 17.

Theorem 30. For all q ≥ 17, F (q) = n(q).
Proof. The proof follows from Lemmas 28 and 29.
Lemma 31. For all q ≥ 17, F (q) ≤ 3q + 6− �6√q + 1  ≤ |G0|+ 2.
Proof. From Theorems 30 and 27, for all q ≥ 17 we have F (q) = n(q) ≤ [3q+ 6−

6
√
q + 1] = 3q + 6− �6√q + 1 .
Let f(q) = 3q + 6 − 6

√
q + 1. We complete the proof by showing that [f(q)] ≤

|G0|+ 2. Again, consider six cases.
Case 1. q = r2 + 2r,

|G0| = 3q + 6− 6
√
q + 1 = f(q) = [f(q)].

Case 2. q = r2 + 2r + 1,√
q + 1 > r + 1→ f(q) = 3q + 6− 6

√
q + 1 < 3q + 6− 6(r + 1) = 3q − 6r

→ [f(q)] ≤ 3q − 6r − 1 = 3(r2 + 2r + 1)− 6r − 1 = 3r2 + 2 = |G0|+ 1.

Case 3. q = r2 + 2r + 2. Similarly to Case 2, we have [f(q)] ≤ 3q − 6r − 1 =
3r2 + 5 = |G0|+ 1.

Case 4. q = r2 + 2r + 1 + k, where 2 ≤ k ≤ r. Similarly to Case 2, we have
[f(q)] ≤ 3q − 6r − 1 = 3r2 + 3k + 2 = |G0|+ 2.

Case 5. q = r2 + 3r + 2,√
q + 1 > r + 3/2→ f(q) = 3q + 6− 6

√
q + 1 < 3q + 6− 6(r + 3/2) = 3q − 6r − 3

→ [f(q)] ≤ 3q − 6r − 4 = 3(r2 + 3r + 2)− 6r − 4 = 3r2 + 3r + 2 = |G0|.
Case 6. q = r2 + 3r + 2 + k, where 1 ≤ k ≤ r. Similarly to Case 5, we have

[f(q)] ≤ 3q − 6r − 4 = 3r2 + 3r + 3k + 2 = |G0|+ 2.
In all six cases, we have [f(q)] ≤ |G0|+ 2.
The above proofs of Lemmas 29 and 31 also show the following.
Corollary 32. If the graph G is of type I, then

|G| ≤ 3q + 6− �6
√
q + 1 .

In particular, when q is of form r2 + 2r or r2 + 3r + 2, for r ≥ 2, and graph G is of
type I, then

|G| = 3q + 6− �6
√
q + 1  = |G0|.
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Combining the results from Corollary 24, Lemma 31, and Corollary 32, we have
the following main theorem.

Theorem 33. For all q ≥ 17,

3q + 6− 6�
√
q + 1  ≤ |G0| ≤ F (q) ≤ 3q + 6− �6

√
q + 1  ≤ |G0|+ 2.

Particularly, if q = r2 + 2r or q = r2 + 3r + 2, then F (q) = |G0|.
Theorem 34. For 3 ≤ q ≤ 16 we have

q 3 4 5 6 7 8 9 10 11 12 13 14 15 16
F (q) 4 5 7 8 10 12 14 16 18 20 22 24 27 28

.

Proof. q = 3: Theorems 19 and 20 imply that G cannot be of type I, II, or III. So
G is of type IV and, from Theorem 21, we have |G| = q+ 1 = 4, and G is a binding of
three cliques of sizes 2, 2, and q − 1 = 2 (see Figure 34). Therefore F (3) = 4.

Fig. 34. A maximal graph when q = 3.

q = 4: Theorem 19 implies that G cannot be of type I or II. So G is of type III or
IV. If it is of type III, then by Theorem 20, |G| ≤ 2q − 3 = 5. If it is of type IV, then
by Theorem 21, |G| = q + 1 = 5, and G is a binding of three cliques of sizes 2, 2, and
q − 1 = 3 (see Figure 35). Therefore F (4) = 5.

q = 5: Theorem 19 and Corollary 22 imply that G cannot be of type I or IV. So
G is of type II or III. If it is of type II, then by Theorem 19, |G| = 2q − 4 = 6. If it is
of type III, then by Theorem 20, |G| ≤ 2q − 3 = 7. Figure 36 shows a graph of type
III with 7 nodes, therefore implying F (5) = 7.

q = 6: Theorem 19 and Corollary 22 imply that G cannot be of type I or IV. So G
is of type II or III. If it is of type II, then by Theorem 19, |G| = 2q − 4 = 8. If it is of
type III, then by Theorem 20, |G| ≤ 2q − 4 = 8. Therefore F (6) = 8 (see Figure 37).

q = 7: Corollary 22 imply that G cannot be of type IV. So G is of type I, II, or
III. If it is of type I, then from the proof of Theorem 19, we must have x2 = x3 =
y3 = y1 = z1 = z2 = 2 and n1 = n2 = n3 = 3, and so |G| = 9. If it is of type II,
then by Theorem 19, |G| = 2q − 4 = 10. If it is of type III, then by Theorem 20,
|G| ≤ 2q − 4 = 10. Therefore F (7) = 10 (see Figure 38).

Observation. It is easy to verify that, for 8 ≤ q ≤ 14, we have 3q+6−�6√q + 1  =
2q − 4.

8 ≤ q ≤ 14: Corollary 22 implies that G cannot be of type IV. If it is of type I,
then from Corollary 32 and the above observation, |G| ≤ 2q−4. If it is of type II, then
by Theorem 19, |G| = 2q − 4. If it is of type III, then by Theorem 20, |G| ≤ 2q − 4.
Therefore F (q) = 2q − 4.

q = 15: G cannot be of type IV. If it is of type I, then |G| = |G0| = 27 since
q = r2 + 2r with r = 3. If it is of type II, then by Theorem 19, |G| = 2q − 4 = 26. If
it is of type III, then by Theorem 20, |G| ≤ 2q − 4 = 26. Therefore F (15) = 27.

q = 16: G cannot be of type IV. If it is of type I, then |G| ≤ 3q+6−�6√q + 1  =
29. If it is of type II, then by Theorem 19, |G| = 2q− 4 = 28. If it is of type III, then
by Theorem 20, |G| ≤ 2q − 4 = 28. Using an exhaustive search strategy shows that
there is no graph of type I with 29 nodes. Therefore F (16) = 28.
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type IIItype IV

Fig. 35. Maximal graphs when q = 4.

Fig. 36. A maximal graph of type III when q = 5.

Fig. 37. A maximal graph of type II when q = 6.

Fig. 38. A maximal graph of type II when q = 7.

7. Searching algorithm for maximal graphs. From Theorem 23, we know
that, for q ≥ 17, maximal graphs are of type I. Theorem 33 shows that the size of the
maximal graphs is at most 2 different from the size of G0. In the rest of this section,
we develop an efficient (O(q3)) algorithm that finds the actual values of the defining
parameters of the three 2-color parts of the maximal graphs.

Lemma 35. Suppose n1, n2, n3, x2, x3, y3, y1, z1, z2 maximize the sum
n1 + n2 + n3 subject to the conditions of Definition 26. Then

• n1 = y1z1 or n1 + x2 + x3 = q,
• n2 = z2x2 or n2 + y3 + y1 = q,
• n3 = x3y3 or n3 + z1 + z2 = q,
• 1

6

√
q + 1− 2 < x2, x3, y3, y1, z1, z2 < 6

√
q + 1

and, if n1 + x2 + x3 < q, then
• n1 = y1z1,
• n2 + y3 + y1 = q,
• n3 + z1 + z2 = q.

Proof. If n1 < y1z1 and n1 + x2 + x3 < q, then we can replace n1 with n1 + 1 to
obtain a larger value for n1 + n2 + n3 while the conditions are still satisfied. This is
a contradiction.

Thus n1 = y1z1 or n1+x2+x3 = q. Similarly, we have n2 = z2x2 or n2+y3+y1 =
q; also n3 = x3y3 or n3 + z1 + z2 = q.

We have n1 + n2 + n3 = F (q) ≥ 3q + 6− 6�√q + 1  > 3q − 6
√
q + 1. Moreover,

n1+x2+x3+n2+y3+y1+n3+z1+z2 ≤ 3q, and so x2+x3+y3+y1+z1+z2 < 6
√
q + 1.

Therefore, x2, x3, y3, y1, z1, z2 < 6
√
q + 1.

We have n1 + n2 + n3 > 3q − 6
√
q + 1, and n1, n2, n3 ≤ q, which implies n1,

n2, n3 > q − 6
√
q + 1. Since y1z1 ≥ n1 > q − 6

√
q + 1 and z1 < 6

√
q + 1 we have

y1 > (q − 6
√
q + 1)/6

√
q + 1 = 1

6

√
q + 1− 1− 1/(6

√
q + 1) > 1

6

√
q + 1− 2. Similarly,



2-IPP MAXIMAL CODES OF LENGTH 3 567

Table 1

F (q) and |G0| for 1 ≤ q ≤ 48.

q F (q) |G0| q F (q) |G0| q F (q) |G0| q F (q) |G0|
1 1 13 22 21 25 49 49 37 79 79
2 2 14 24 24 26 52 52 38 82 81
3 4 15 27 27 27 54 54 39 84 84
4 5 16 28 28 28 57 57 40 87 87
5 7 17 31 31 29 60 60 41 90 90
6 8 18 33 33 30 62 62 42 92 92
7 10 19 36 36 31 64 63 43 94 93
8 12 12 20 38 38 32 67 66 44 97 96
9 14 13 21 40 39 33 69 69 45 99 99
10 16 16 22 42 42 34 72 72 46 102 102
11 18 18 23 45 45 35 75 75 47 105 105
12 20 20 24 48 48 36 76 76 48 108 108

we can prove x2, x3, y3, y1, z1, z2 >
1
6

√
q + 1− 2.

If n1 +x2 +x3 < q, then n1 = y1z1. If we also have n2 + y3 + y1 < q, then we can
replace n2 with n2 + 1 and x2 with x2 + 1, while the conditions remain satisfied, to
obtain a larger value for the sum n1 + n2 + n3. This is a contradiction. So we must
have n1 + x2 + x3 = q; n3 + z1 + z2 = q is proved similarly.

From Lemma 35, we can assume that n2 + y3 + y1 = q and n3 + z1 + z2 = q, and
we have either n1 = y1z1 or n1 + x2 + x3 = q. Therefore to find n1, n2, n3, x2, x3,
y3, y1, z1, z2, we have the following O(q3) algorithm.

Initialize Max = |G0|.
Initialize (n1, n2, n3, x2, x3, y3, y1, z1, z2) = that of G0.
FOR x2, x3, y3, y1, z1, z2 in the range 1

6

√
q + 1− 2 to 6

√
q + 1

LOOP
n2 = q − (y3 + y1),
n3 = q − (z1 + z2),
n1 = q − (x2 + x3), or y1z1.
IF conditions satisfied, then

IF n1 + n2 + n3 > Max,
Max = n1 + n2 + n3

Save (n1, n2, n3, x2, x3, y3, y1, z1, z2)
END IF

END IF
END LOOP
Output F (q) = Max.
Output (n1, n2, n3, x2, x3, y3, y1, z1, z2).

Table 1 displays the outputs F (q) of the algorithm in comparison with the values
|G0| for 1 ≤ q ≤ 48.

Appendix. Proof of Theorem 27. We prove by contradiction. Suppose that,
for some integer q ≥ 5, there exist positive integers n1, n2, n3, x2, x3, y3, y1, z1, z2,
satisfying all conditions stated in Definition 26, and n1 +n2 +n3 > 3q+ 6− 6

√
q + 1.

Since n1 + n2 + n3 + x2 + x3 + y3 + y1 + z1 + z2 ≤ 3q, it follows that x2 + x3 + y3 +
y1 + z1 + z2 < 6

√
q + 1 − 6. Hence, x2 + x3 + y3 + y1 + z1 + z2 ≤ �6

√
q + 1  − 7.
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Therefore, at least one of the values x2 + y3 + z1 and x3 + y1 + z2 must be less than
or equal to (�6√q + 1  − 7)/2. Without loss of generality, assume that

x3 + y1 + z2 ≤ �6
√
q + 1  − 7

2
.(1)

Since x3 + y1 + z2 ≥ 6, q cannot be less than or equal to 8, so q ≥ 9.
Consider s = n1 +n2 +n3 +λ1(y1z1−n1)+λ2(z2x2−n2)+λ3(x3y3−n3)+ (1−

λ1)(q− n1 − x2 − x3) + (1− λ2)(q− n2 − y3 − y1) + (1− λ3)(q− n3 − z1 − z2), where
λ1, λ2, and λ3 are real numbers satisfying

λ1y1 = 1− λ3,(2)

λ2z2 = 1− λ1,(3)

λ3x3 = 1− λ2.(4)

We have

λ1 =
1 + z2x3 − z2
1 + y1z2x3

, λ2 =
1 + x3y1 − x3

1 + y1z2x3
, λ3 =

1 + y1z2 − y1
1 + y1z2x3

.

Clearly, 0 < λ1, λ2, λ3 < 1. Therefore, s ≥ n1 + n2 + n3 > 3q + 6− 6
√
q + 1. We will

derive a contradiction by showing that s ≤ 3q + 6− 6
√
q + 1.

Claim 1. λ1 + λ2 + λ3 ≤ 1.
Proof. From (2), (3), and (4), we have 3− (λ1 +λ2 +λ3) = λ1y1 +λ2z2 +λ3x3 ≥

2(λ1 + λ2 + λ3). Therefore, λ1 + λ2 + λ3 ≤ 1.
Claim 2.

1
λ1

+ 1
λ2

+ 1
λ3
< 3q + 3− 6

√
q + 1.

Proof. Since for any x, y > 0, if 1+x
1+y > 1, then 1+x

1+y <
x
y , we have

1

λ1
=

1 + y1z2x3

1 + z2x3 − z2 <
y1z2x3

z2x3 − z2 = y1
x3

x3 − 1
.

Using similar inequalities for λ2 and λ3, we have

1

λ1
+

1

λ2
+

1

λ3
< y1

x3

x3 − 1
+ z2

y1
y1 − 1

+ x3
z2

z2 − 1
.

If y1 = z2 = x3 = 2, then λ1 = λ2 = λ3 = 1
3 and 1

λ1
+ 1
λ2

+ 1
λ3

= 9 < 3q+3−6
√
q + 1.

If at least one of y1, z2, x3 is greater than 2, say, y1 > 2, then

1

λ1
+

1

λ2
+

1

λ3
< y1

x3

x3 − 1
+ z2

y1
y1 − 1

+ x3
z2

z2 − 1
≤ 2y1 +

3

2
z2 + 2x3

≤ 2(y1 + z2 + x3)− 1 ≤ �6
√
q + 1  − 8 (by (1)).

It is easy to show that if q ≥ 9, then �6√q + 1  < 3q + 11 − 6
√
q + 1. Therefore,

1
λ1

+ 1
λ2

+ 1
λ3
< 3q + 3− 6

√
q + 1.

Claim 3. s ≤ 3q + 6− 6
√
q + 1.

Proof. We have

s =
1

λ1
[λ1y1 − (1− λ3)][λ1z1 − (1− λ2)]− 1

λ1
(1− λ2)(1− λ3)

+
1

λ2
[λ2z2 − (1− λ1)][λ2x2 − (1− λ3)]− 1

λ2
(1− λ3)(1− λ1)

+
1

λ3
[λ3x3 − (1− λ2)][λ3y3 − (1− λ1)]− 1

λ3
(1− λ1)(1− λ2)

+ q(3− λ1 − λ2 − λ3).
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From (2), (3), and (4), we have

s = − 1

λ1
(1− λ2)(1− λ3)− 1

λ2
(1− λ3)(1− λ1)− 1

λ3
(1− λ1)(1− λ2)

+ q(3− λ1 − λ2 − λ3)

= −
(

1

λ1
+

1

λ2
+

1

λ3

)
+ (λ1 + λ2 + λ3)

(
1

λ1
+

1

λ2
+

1

λ3

)
− 3

−
(
λ2λ3

λ1
+
λ3λ1

λ2
+
λ1λ2

λ3

)
+ q(3− λ1 − λ2 − λ3).

From Cauchy’s inequality, we have

λ2λ3

λ1
+
λ3λ1

λ2
≥ 2λ3,

λ3λ1

λ2
+
λ1λ2

λ3
≥ 2λ1,

λ1λ2

λ3
+
λ2λ3

λ1
≥ 2λ2,

so

λ2λ3

λ1
+
λ3λ1

λ2
+
λ1λ2

λ3
≥ λ1 + λ2 + λ3.

Therefore,

s ≤ (3q − 3)− (q + 1)(λ1 + λ2 + λ3)−
(

1

λ1
+

1

λ2
+

1

λ3

)

+(λ1 + λ2 + λ3)

(
1

λ1
+

1

λ2
+

1

λ3

)

= 2q − 4 + [1− (λ1 + λ2 + λ3)]

[
q + 1−

(
1

λ1
+

1

λ2
+

1

λ3

)]

= 2q − 4 +
1

q + 1
[q + 1− (q + 1)(λ1 + λ2 + λ3)]

[
q + 1−

(
1

λ1
+

1

λ2
+

1

λ3

)]

≤ 2q − 4 +
1

4(q + 1)

[
2q + 2− (q + 1)(λ1 + λ2 + λ3)−

(
1

λ1
+

1

λ2
+

1

λ3

)]2
.

From Claims 1 and 2, we have

2q + 2− (q + 1)(λ1 + λ2 + λ3)−
(

1

λ1
+

1

λ2
+

1

λ3

)

≥ q + 1−
(

1

λ1
+

1

λ2
+

1

λ3

)
> q + 1− (3q + 3− 6

√
q + 1) = −(2q + 2− 6

√
q + 1)

and, from Cauchy’s inequality,

2q + 2− (q + 1)(λ1 + λ2 + λ3)−
(

1

λ1
+

1

λ2
+

1

λ3

)

= 2q + 2− (q + 1)λ1 − 1

λ1
− (q + 1)λ2 − 1

λ2
− (q + 1)λ3 − 1

λ3

≤ 2q + 2− 2
√
q + 1− 2

√
q + 1− 2

√
q + 1 = 2q + 2− 6

√
q + 1.

Therefore,

s ≤ 2q − 4 +
1

4(q + 1)
(2q + 2− 6

√
q + 1)2 = 3q + 6− 6

√
q + 1.
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This completes the proof of Theorem 27.
Acknowledgments. The authors would like to thank Greg Doherty for several

very helpful comments and suggestions.

REFERENCES

[1] D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data, IEEE Trans. Inform.
Theory, 44 (1998), pp. 1897–1905.

[2] B. Chor, A. Fiat, and M. Naor, Tracing traitors, in Advances in Cryptology (CRYPTO ’94),
Lecture Notes in Comput. Sci. 839, 1994, pp. 257–270.

[3] H. D. L. Hollmann, J. H. van Lint, J. Linnartz, and L. M. G. M. Tolhuizen, On codes
with the identifiable parent property, J. Combin. Theory Ser. A, 82 (1998), pp. 121–133.

[4] S. Roman, Coding and Information Theory, Springer-Verlag, Berlin, New York, 1992.
[5] J. N. Staddon, D. R. Stinson, and R. Wei, Combinatorial properties of frameproof and

traceability codes, IEEE Trans. Inform. Theory, 47 (2001), pp. 1042–1049.
[6] D. R. Stinson and R. Wei, Combinatorial properties and constructions of traceability schemes

and frameproof codes, SIAM J. Discrete Math., 11 (1998), pp. 41–53.



RADIUS THREE TREES IN GRAPHS WITH
LARGE CHROMATIC NUMBER∗

H. A. KIERSTEAD† AND YINGXIAN ZHU‡

SIAM J. DISCRETE MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 17, No. 4, pp. 571–581

Abstract. A class Γ of graphs is χ-bounded if there exists a function f such that χ (G) ≤
f (ω (G)) for all graphs G ∈ Γ, where χ denotes chromatic number and ω denotes clique number.
Gyárfás and Sumner independently conjectured that, for any tree T , the class Forb (T ), consisting
of graphs that do not contain T as an induced subgraph, is χ-bounded. The first author and Penrice
showed that this conjecture is true for any radius two tree. Here we use the work of several authors
to show that the conjecture is true for radius three trees obtained from radius two trees by making
exactly one subdivision in every edge adjacent to the root. These are the only trees with radius
greater than two, other than subdivided stars, for which the conjecture is known to be true.

Key words. forbidden induced subgraph, template, radius three tree, chromatic number, clique
number
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1. Introduction. For an integer n, let [n] denote the set {1, . . . , n}. The com-
plete graph on n vertices is denoted by Kn, and the complete bipartite graph with s
vertices in one part and t vertices in the other part is denoted by Ks,t. For a graph
G = (V,E) and a subset W ⊆ V , let G [W ] denote the subgraph of G induced by
W . For another graph H, we say that G induces H if H is isomorphic to an induced
subgraph of G. When G is clear from the context, we may sometimes write W for
G [W ]. The clique size of G is denoted by ω (G) and the chromatic number of G
is denoted by χ (G). As above, we may write ω (W ) and χ (W ) for ω (G [W ]) and
χ (G [W ]) when G is clear from the context.

A class Γ of graphs is said to be χ-bounded if there exists a function f such that
χ (G) ≤ f (ω (G)) for every graph G ∈ Γ. For a graph H, let Forb (H) denote the
class of graphs that do not contain an induced copy of H. In this paper, we study
the following conjecture which is due independently to Gyárfás and Sumner.

Conjecture 1.1 (Gyárfás [1] and Sumner [8]). For every tree T , Forb (T ) is
χ-bounded.

The conjecture, if true, is essentially as strong as possible. Since there are graphs
with arbitrarily large chromatic number and girth, Forb (H) is not χ-bounded if H
contains a cycle. The following easy proposition reduces the problem for forests to
the conjecture.

Proposition 1.2. Let F be a forest with connected components T1, . . . , Tm. Then
Forb (F ) is χ-bounded iff Forb (Ti) is χ-bounded for all i ∈ [m].

The strongest partial result concerning Conjecture 1.1 is the following theorem of
the first author and Penrice. It is proved by generalizing a “template” technique first
introduced (but not named) by Gyárfás, Szemerédi, and Tuza [3].
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Theorem 1.3 (Kierstead and Penrice [5]). For every tree T with radius at most
two, Forb (T ) is χ-bounded.

The only other trees T for which Forb (T ) was known to be χ-bounded were
obtained from the following theorem of Scott. Let Forb∗ (H) be the class of graphs
that do not contain an induced subdivision of H. Note that if T is a subdivision of a
star, then Forb∗ (T ) = Forb (T ).

Theorem 1.4 (Scott [7]). If T is a tree, then Forb∗ (T ) is χ-bounded.

Corollary 1.5 (Scott [7]). If T is a subdivision of a star, then Forb (T ) is
χ-bounded.

A natural goal is to try to extend Theorem 1.3 to radius three trees. The main
result of this paper is the following theorem that takes a significant step in this
direction. Our proof uses all the techniques of [5], techniques from [7] and [4], as well
as several new ideas.

Theorem 1.6. If T is the tree obtained from a tree with radius two by making
exactly one subdivision in every edge adjacent to the root, then Forb (T ) is χ-bounded.

We shall need the following theorem of Rödl.

Theorem 1.7 (Rödl [6]). For all trees T and positive integers t, Forb (T ) ∩
Forb (Kt,t) is χ-bounded.

This paper is organized as follows. In the remainder of this section we introduce
our notation. In section 2 we prove a local coloring result based on the work of
Scott [7]. In section 3 we present several general coloring techniques that will be used
later. In section 4 we review the necessary results on templates from [5]. The proof of
Theorem 1.6 is given in sections 5 and 6. In section 5 we describe a partitioning of the
vertices of a graph based on 1- and 2-neighborhoods of templates, and in section 6 we
use this partition to color the vertices of the graph. The novelty of this work involves
adapting the template technique of Kierstead and Penrice [5] to take advantage of
the new local colorings made available by Scott’s ideas [7]. This adaptation is not
straightforward. The partition presented in section 5 is considerably more delicate
than the partition used in [5]. Moreover, the coloring techniques required to take
advantage of this partition in section 6 are much harder than those used in [5].

For r, k ≥ 2, let Pr denote the path on r vertices and Sk denote the star on k+ 1
vertices. The root of Pr is defined to be one of its leaves, while the root of Sk is
defined to be its unique nonleaf. The (r, k)-broom Br,k is formed by identifying the
nonroot leaf of Pr with the root of Sk. The other leaf of Pr is the root of Br,k. A
spider is a subdivision of a star or, alternatively, the result of identifying the roots
of a collection of disjoint paths. A spider with toes S is the result of identifying
the roots of a collection of disjoint brooms. The root of a spider with toes S is the
new vertex obtained by this identification. Let Rd,k be the spider with toes obtained
by identifying the roots of d copies of B3,k. Let Rk denote Rk,k. Our main result
is equivalent to the statement that Forb (Rk) is χ-bounded for all k. The distance
d (v, w) between two vertices v and w is the number of edges in the shortest path from
v to w.

Let G = (V,E) be a graph and W ⊆ V . The neighborhood N (W ) of W is defined
by N (W ) = {v ∈ V −W : vw ∈ E for some w ∈ W}. The i-neighborhood S (W, i) of
W is the set of vertices x such that the shortest path from x to a vertex in W is i. For
v ∈ V , we may write N (v) instead of N ({v}) and S (v, i) instead of S ({v} , i). The
radius of G is the least integer r such that V ⊆ ⋃ri=0 S (v, i) for some vertex v. We say
that two sets of vertices U and W are adjacent if some vertex in U is adjacent to some
vertex in W . Also a vertex v is said to be adjacent to W if {v} is adjacent to W . Let
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Ram (a, b) be a Ramsey function such that any graph on Ram (a, b) vertices contains
a clique with a vertices or an independent set with b vertices. A function f : V → S is
a proper S-coloring of G if f (x) �= f (y) whenever xy ∈ E. If f : A→ B is a function
and S ⊆ A, then the image {f (s) : s ∈ S} of S under f is denoted by f [S].

2. 2-neighborhoods. When arguing by induction on the clique size, we can
assume that there is a bound on the chromatic number of the neighborhood of any
vertex. A key step in our current proof is showing that we can also assume that the
2-neighborhood of any vertex has bounded chromatic number. This is the content
of Lemma 2.2 below. The proof uses Lemma 2.1, which is a special case of a more
general lemma of the first author [4]. Its short proof is given for completeness. We
also need a 2-neighborhood partition (defined in the first paragraph of the proof of
Lemma 2.2) and other ideas due to Scott [7].

Lemma 2.1 (Kierstead [4]). Let H = (V,E) be a graph with χ (H) = c > hk.
If S ⊆ V satisfies both χ (S) ≤ h and χ (V − S) < χ (H), then there exists a vertex
v ∈ S such that v is adjacent to k vertices in H − S.

Proof. Suppose to the contrary that every vertex v ∈ S is adjacent to less than k
vertices in H −S. By hypothesis, there exist a proper [c− 1]-coloring f of V −S and
a proper [h]-coloring g of S. We shall obtain a contradiction by showing that f can be
extended to a proper [c− 1]-coloring of H as follows. For v ∈ S, let f (v) = ih+g (v),
where i is the least natural number such that v is not adjacent to any vertex w ∈ V −S
with f (w) = ih + g (v). Since v has less than k neighbors in V − S, we have i < k.
So f (v) ∈ [hk] ⊆ [c− 1]. To check that f is proper, consider u, v ∈ S and w ∈ V − S
with v adjacent to u and w. By the construction, f (v) �= f (w) and f (v) �= f (u)
since

f (v) modh = g (v) �= g (u) = f (u) modh.

Lemma 2.2. There exists a natural number m = m (h, k) such that, for every
graph H = (V,E) ∈ Forb (Rk), if χ (N (u)) < h for every u ∈ V , then χ (S (v, 2)) < m
for every v ∈ V .

Proof. Let Fi be the forest consisting of i components, each of which is isomorphic
to the star Sk. By Proposition 1.2 and either Theorem 1.3 or Corollary 1.5, there
exists a function f such that if G is a graph with χ (G) > f (ω (G)), then G contains
an induced copy of the forest Fhk. Define a function g recursively by

g (0) = 0 and g (d+ 1) = g (d) + f (h) + h2k + hd (2k + 3) .

Next, let m(h, k) = max {f(h), g(hk)}. We shall finish the proof by showing that if
χ (S (v, 2)) > m (h, k), then H contains an induced copy of Rk.

Suppose that H satisfies the hypothesis of the lemma. Let v be any vertex in
V and set Y0 = N (v), X0 = S (v, 2), and U0 = ∅. First, we recursively define a
partition {Z1, . . . , Za} ofX0, subsets Y1 ⊇ · · · ⊇ Ya, and functions ψ, ζ1, ψ1, . . . , ζi, ψa.
Consider a positive integer i and suppose that Yj and Zj have already been defined
for j ∈ [i− 1]. Set Ui = ∅ if i = 1; otherwise, set Ui =

⋃
j<i Zj . Set Xi = X0 − Ui.

If Xi = ∅, then set a = i − 1 and stop; otherwise, let Yi be a minimal subset of
Yi−1 such that N (x) ∩ Yi �= ∅ for all x ∈ Xi. By the minimality of Yi, for each
y ∈ Yi there exists z ∈ Xi such that N (z) ∩ Yi = {y}. Let ζi (y) be such a z. Then
ζi : Yi → Xi is an injection. Let Zi be the range of ζi. So ζi : Yi → Zi is a bijection.
Let ψi be the inverse of ζi. So the set Mi of edges between Yi and Zi is the perfect
matching {zψi (z) : z ∈ Zi}. This completes the recursive definition. Finally, define
ψ : X0 → Y0 by ψ (z) = ψi (z) if z ∈ Zi.
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Case 1. χ (Zi) > f (h) for some i ∈ [a]. Since ω (Zi) ≤ maxu∈Zi
χ (N (u)) < h,

there exists a subset W ⊆ Zi that induces Fhk. Let A be the hk-set of roots of
components of Fhk and B = ψi [A]. Since B ⊆ N (v) and χ (N (v)) < h, there exists
an independent k-subset B′ ⊆ B. Let A′ = ζi [B

′] and W ′ be the union of the
components of W that have roots in A′. Since Mi is a perfect matching, it follows
that {v} ∪B′ ∪W ′ induces Rk with root v.

Case 2. χ (Zi) ≤ f (h) for all i ∈ [a]. We first show by induction on d that if
χ (Ui) > g (d), then there exist Wd ⊆ Ui and Qd ⊆ Y1 such that Wd induces Fd, and
Wd ∪ Qd ∪ {v} induces a subgraph Gd such that Gd − E (Qd) is isomorphic to Rd,k
with root v. The base step d = 0 is trivial, so consider the induction step d = c+ 1.
Suppose χ (Ui) > g (d). Let j be the least integer such that χ (Uj) > g(c). Since
Uj = Uj−1 ∪ Zj−1 and χ (Zj−1) ≤ f (h), we have χ (Uj) ≤ g (c) + f (h). Thus

χ (Ui − Uj) > h2k + hc(2k + 3).

Let Wc and Qc be the sets whose existence is guaranteed by the induction hypothesis.
Note that |Wc| = c (k + 1) and |Qc| = c. Let A = N (Wc ∪Qc) ∩ (Ui − Uj), B =
N (Wc) ∩ Yj+1, C = N (B) ∩ (Ui − Uj), and S = Ui − (Uj ∪A ∪ C). Then S ∪ ψ [S]
is not adjacent to Wc ∪Qc. So it suffices to show that there exist x ∈ S and a k-set
I ⊆ S ∩N (x) such that {x, ψ (x)} ∪ I induces B2,k.

Suppose that z ∈Wc. Then z ∈ Zm for some m ∈ [j − 1]. Thus ψ (z) is the only
vertex in Ym adjacent to z. Since Yj+1 ⊆ Ym, at most one vertex in Yj+1 is adjacent
to z. It follows that |B| ≤ |Wc| = c(k+1). Since A∪C ⊆ N (Wc ∪Qc ∪B) and neigh-
borhoods of vertices are h-colorable, it follows that χ (A ∪ C) ≤ h |Wc ∪Qc ∪B| ≤
hc (2k + 3). Thus

χ (S) ≥ χ (Ui − Uj)− χ (A ∪ C) > h2k + hc(2k + 3)− hc(2k + 3) = h2k.

Let S′ ⊆ S be minimal subject to the condition that χ (S′) > h2k. Let z ∈ S′ and
y = ψ (z). By Lemma 2.1, there exists x ∈ N (y) such that |N (x) ∩ (S′ −N (y))| ≥
hk. Since N (v) is h-colorable, there exists an independent k-subset I ⊆ N (x) ∩
(S′ −N (y)). Let Wd = Wc ∪ {x} ∪ I and Qd = Qc ∪ {y}. Then Gd − E (Qd) is
isomorphic to Rd,k with root v.

Now suppose that χ (X0) > g (hk). Let Whk, Qhk, and Ghk be as above. Since
Qhk ⊆ N (v) is h-colorable, there exists an independent k-subset J ⊆ Qhk. Thus Ghk
contains an induced copy of Rk with root v.

3. Coloring techniques. A graph G = (V,E) is d-degenerate if there exists an
ordering v1 < v2 < · · · < vn of V such that |{j ∈ [i− 1] : vjvi ∈ E}| ≤ d for all i ∈ [n].

The maximum average degree of G is MAD (G) = maxH⊆G
2|E(H)|
|V (H)| . For a digraph D,

let ∆+ (D) be the maximum outdegree of D. The next three lemmas are well known.
Lemma 3.1. Every graph G = (V,E) is MAD (G)-degenerate.
Proof. We argue by induction on |V |. The base step |V | = 1 is trivial, so

consider the induction step. Let v be a vertex of G with minimum degree. Then
d (v) ≤ MAD (G) and MAD (G− v) ≤ MAD (G). By the induction hypothesis, G− v
is MAD (G)-degenerate. Putting v at the end of an ordering of V − v witnessing this
produces an ordering witnessing that G is MAD (G)-degenerate.

Lemma 3.2. If G is a d-degenerate graph, then χ (G) ≤ d+ 1.
Proof. Use first-fit to color the vertices of G in an order witnessing that G is

d-degenerate.
Lemma 3.3. Any directed graph G satisfies χ (G) ≤ 2∆+ (G) + 1.
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Proof. Since |E (H)| ≤ |V (H)|∆+ (G) for any subgraph H ⊆ G, it follows that
MAD (G) ≤ 2∆+ (G). By Lemma 3.1, G is 2∆+ (G)-degenerate, and so by Lemma 3.2,
we are done.

Lemma 3.4. Let G = (V,E) be a graph and g be a positive integer. Suppose that
{(Ai, Bi) : i ∈ I} is a family of ordered pairs of subsets of V such that |{j ∈ I − {i} :
Ai is adjacent to Bj}| < g for all i ∈ I. Then there exists a subset J ⊆ I such that

|J | ≥ |I|
2g and Ai is not adjacent to Bj for all distinct i, j ∈ J .

Proof. Define a digraph D = (I, A) by i → j iff i �= j and Ai is adjacent to Bj .
We are looking for a large independent subset of I. By Lemma 3.3, χ (D) < 2g since

∆+ (D) < g. Thus I contains an independent subset of size |I|
2g .

In applications, Ai and Bi are not necessarily disjoint and may be identical.

Lemma 3.5. Let G = (V,E) be a graph and {Ij : j ∈ [p]} be a partition of V into
independent sets. Suppose that

(1) |{j ∈ [i− 1] : some vertex in Ii is adjacent to at least k vertices in Ij}| < a1

for all i ∈ [p], and
(2) |{j : x is adjacent to Ij}| < a2 for all x ∈ V .

Then χ (G) < 2a1a2k.

Proof. Consider a digraph D = ([p] , A) defined by i → j iff some vertex in Ii
is adjacent to at least k vertices in Ij . By (1), ∆+ (D) < a1, and so by Lemma 3.3
χ (D) < 2a1. Let f be a proper [2a1]-coloring of D. Let g : V → [a2k] such that,
for all v ∈ Ii and w ∈ Ij , if v is adjacent to w and v is not adjacent to k vertices
in Ij , then g (v) �= g (w). This is possible by (2). Define h : V → [2a1] × [a2k] by
h (v) = (f (i) , g (v)), where v ∈ Ii. Clearly h is a proper coloring of G.

4. Templates. We shall need the concept of a k-template introduced by the first
author and Penrice in [5]. Let k be a positive integer and G = (V,E) be a graph with
ω (G) = n. A k-template in G is a pair Γ = (X,Y ) of subsets of V such that

(1) there exists an integer i with 2 ≤ i ≤ n such that G [Y ] is a complete i-partite
graph with k + (n− i+ 1) (k − 1) vertices in each part, and

(2) X ⊆ {v ∈ V − Y : v has less than k nonneighbors in each part of Y }.
The index I (Γ) of the k-template Γ = (X,Y ) is defined by I (Γ) = (i, |X|), where i
is the number of parts of G [Y ]. We order the indices lexicographically by (i, |X|) <
(i′, |X ′|) iff i < i′ or i = i′ and |X| < |X ′|. Let the index I (G) of a graph G be
the maximum index among all the k-templates of G; if this collection is empty, then
I (G) = (0, 0). Consider a template (X,Y ) and a vertex v ∈ Y . We say that v is
rarely adjacent to Y if v is adjacent to Y , but v is adjacent to less than k vertices
in each part of Y . We say that v is usually adjacent to Y if v is nonadjacent to
less than k vertices in each part of Y . We say that v is often adjacent to Y if v
is adjacent to Y , but it is neither rarely adjacent nor usually adjacent to Y . Let
O (Y ) = {v ∈ V − Y : v is often adjacent to Y }. Note that the vertices of X are
usually adjacent to Y . The following lemmas from [5] show the existence of templates
(Lemma 4.1), bound the size of maximum templates (Lemma 4.2), and show why
maximum templates are useful (Lemma 4.3). Except for Lemma 4.1, which is an
immediate corollary of Theorem 1.7, they have easy direct proofs.

Lemma 4.1 (Kierstead and Penrice [5]). For all trees T and integers n, k, if G
has a sufficiently large chromatic number, then G induces either T , or Kn+1, or a
k-template.

Lemma 4.2 (Kierstead and Penrice [5]). Let G be a graph with ω (G) = n. Let
Γ = (X,Y ) be a k-template of G, where Y is i-partite. If |X| > r (k, i), where
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r (k, i) = Ram
(
n+ 1, (k + (n− i) (k − 1)) 2i(k+(n−i+1)(k−1))

)
, then there exists a k-

template Γ′ = (X ′, Y ′) such that Y ′ ⊆ Y ∪ X and Y ′ is a complete (i+ 1)-partite
graph. Thus if I (G) = (i, |X|), then i ≤ n and |X| < r (k, i).

Lemma 4.3 (Kierstead and Penrice [5]). Suppose Γ = (X,Y ) is a k-template of
G, w is adjacent, but not rarely adjacent, to Y , and v is not usually adjacent to Y .
If v is adjacent to {w} ∪ Y , then there exists D ⊆ {w} ∪ Y such that D ∪ {v} induces
B2,k with root v. Moreover, if v is adjacent to Y , then we can choose D ⊆ Y .

Finally, we will need one new lemma on templates.
Lemma 4.4. Suppose Γ = (X,Y ) is a k-template of G. Let v be a vertex of

G−Y such that v is rarely adjacent to Y . Then there exists D ⊆ Y such that D∪{v}
induces B3,k with root v.

Proof of Lemma 4.4. Since each part of Y has at least 2k − 1 vertices and v is
rarely adjacent to Y , there exist vertices u0, u1, . . . , uk in some part of Y such that
v is adjacent to ui iff i = 0. Also, there exists w in some other part of Y that is not
adjacent to v. Clearly v, u0, w, u1, . . . , uk induce B3,k.

5. The partition. We now begin the proof of our Theorem 1.6. Note that if T ′

is an induced subgraph of T , then Forb (T ′) ⊆ Forb (T ). Thus it suffices to show that
for arbitrarily large k, Forb (Rk) is χ-bounded. Fix k. We shall argue by induction on
the pair (n, I), ordered lexicographically, that there exists a function b (n, I) such that,
for any graph G ∈ Forb (Rk), if ω (G) ≤ n and I (G) ≤ I, then χ (G) ≤ b (n, I). If
ω (G) < 2, the result is trivial, and if I (G) < (2, 0), it follows from Lemma 4.1. So for
the rest of the paper, let G = (V,E) be any graph in Forb (Rk) with ω (G) = n ≥ 2
and I (G) = I ≥ (2, 0). Recall that, by Lemma 4.2, for any maximum k-template
Γ = (X,Y ), both |X| and |Y | are bounded by a function of n (since k is fixed). We
begin by recursively defining a family of disjoint subsets {Xi, Yi, Ai, Bi : i ∈ [p]}∪{L}.

Let V1 = V and suppose that we have defined Xj , Yj , Aj , Bj , and Vj+1 for all
j ∈ [i− 1]. If (ω (Vi) , I (Vi)) < (n, I), then set p = i − 1 and L = Vi. Otherwise, let
Γ = (Xi, Yi) be a k-template with index I in Vi, Ai = Vi ∩ O (Yi), Bi = (Vi −Xi) ∩
N (Yi ∪O (Yi)), and Vi+1 = Vi− (Xi ∪ Yi ∪Ai ∪Bi). This completes the definition of
L and the set {Xi, Yi, Ai, Bi: i ∈ [p]}. LetX =

⋃
i∈[p]Xi, Y =

⋃
i∈[p] Yi, A =

⋃
i∈[p]Ai,

and B =
⋃
i∈[p]Bi.

We shall need the following lemmas about this partition.
Lemma 5.1. I (L) < I.
Proof. The proof is immediate from the halting condition.
Lemma 5.2. For all i < j ≤ p, the sets Yi ∪O (Yi) and Xj ∪Yj ∪Aj ∪Bj are not

adjacent.
Proof. Since Xj ∪Yj ∪Aj ∪Bj ⊆ Vi+1 = Vi− (Yi ∪N (Yi) ∪N (O (Yi))), it follows

that Yi ∪O (Yi) and Xj ∪ Yj ∪Aj ∪Bj are nonadjacent.
Let c = k + 2.
Lemma 5.3. Let v ∈ V and J = {j ∈ [p] : v is adjacent to Yj}. Then |J | < c.

Moreover, if J3 = {j ∈ [p] : v is usually adjacent to Yj}, then |J3| ≤ 1.
Proof. Partition J into J = J1 ∪ J2 ∪ J3, where

J1 = {j ∈ [p] : v is rarely adjacent to Yj} and

J2 = {j ∈ [p] : v is often adjacent to Yj} .

Suppose |J1| ≥ k. By Lemma 4.4, for each j ∈ J1, there exists Dj ⊆ Yj such that
{v} ∪Dj induces B3,k. Thus, using Lemma 5.2, {v} ∪⋃i∈J1

Dj induces Rk, which is
a contradiction. So |J1| < k. Suppose J2 �= ∅. Let i be the least index in J2. Then
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v ∈ O (Yi). By Lemma 5.2, v is not adjacent to Yj for j > i. So |J2| ≤ 1. Suppose that
i, j ∈ J3. Then by Lemma 5.2, v /∈ Y . Then both (Xi ∪ {v} , Yi) and (Xj ∪ {v} , Yj)
are k-templates in G. Since both (Xi, Yi) and (Xj , Yj) are maximum in G, it follows
that v ∈ Xi ∩Xj . Thus i = j and J3 ≤ 1. So |J | < c = k + 2.

Let d = c+ Ram (n, 2ck).
Lemma 5.4. Let v ∈ V and J = {j : v is adjacent to Yj ∪Aj}. Then |J | < d.
Proof. Suppose that |J | ≥ d. We shall obtain a contradiction by showing that

G induces Rk. Let J0 = {j ∈ J : v is not adjacent to Yj}. By Lemma 5.3, |J0| ≥
Ram (n, 2ck). For each j ∈ J0, let aj ∈ Aj be adjacent to v. Since ω (G) = n, there
exists J1 ⊆ J0 such that

|J1| = 2ck and {ai : i ∈ J1 is independent}.

By Lemma 5.3, |{i ∈ [p] : aj is adjacent to Yi}| < c for all j ∈ J1. Thus by Lemma 3.4
applied to the family {({aj} , Yj) : j ∈ J1}, there exists a k-subset I ⊆ J1 such that
for all distinct j, i ∈ I, aj is not adjacent to Yi. By Lemma 4.3, for every i ∈ I
there exists Di ⊆ Yi such that Di ∪ {ai} induces B2,k with root ai. By Lemma 5.2,
{v} ∪ {ai : i ∈ I} ∪⋃i∈I Di induces Rk, which is a contradiction.

Let e1 = d+ Ram (n, 4dk).
Lemma 5.5. Let v ∈ V and J = {j ∈ [p] : v is adjacent to Yj ∪ Aj ∪ Bj}. Then

|J | < e1.
Proof. Suppose that |J | ≥ e1. We shall obtain a contradiction by showing that

G induces Rk. Let J0 = {j ∈ J : v is adjacent to neither Yj nor Aj}. By Lemma 5.4,
|J0| ≥ Ram (n, 4dk). For each j ∈ J0, let bj ∈ Bj be adjacent to v. Since ω (G) = n,
there exists J1 ⊆ J0 such that |J1| = 4dk and {bj : j ∈ J1} is independent. For all
j ∈ J1, there exists zj ∈ Yj ∪O (Yj) such that zj is adjacent to bj . If possible, choose
zj ∈ Yj . Otherwise, by the construction, zj ∈ Aj . Regardless of whether zj ∈ Aj or
zj ∈ Yj , there exists an independent k-set Dj ⊆ Yj such that Dj∪{zj , bj} induces B2,k

with root bj : if zj ∈ Yj , this follows from Lemma 4.3; otherwise, bj is not adjacent
to Yj and it follows from the fact that zj ∈ Aj and so zj is often adjacent to Yj . By
Lemmas 5.3 and 5.4, for all i ∈ J1 we have

|{j ∈ J1 : {bi, zi} is adjacent to zj ∪Dj}| < 2d.

Thus by Lemma 3.4 applied to the family {({bj , zj,} , {zj ∪Dj}) : j ∈ J1} there exists
a k-subset I ⊆ J1 such that {bi, zi} is not adjacent to {zj}∪Dj for all distinct i, j ∈ I.
Then {v} ∪⋃i∈I ({bi, zi} ∪Di) induces Rk.

6. The coloring. We shall complete the proof by showing that the chromatic
number of each of A, B, X, Y , and L is bounded by a function of n.

Lemma 6.1. χ (L) is bounded by a function of n.
Proof. Trivially, ω (L) ≤ ω (G), and by Lemma 5.1, I (L) < I. Thus (ω (L) , I (L)) <

(n, I), and so by the induction hypothesis, χ (L) is bounded by a function of n.
Lemma 6.2. χ (Y ) is bounded by a function of n.
Proof. The proof follows immediately from the definition of templates that

χ (Yi) ≤ n for all i ∈ [p]. By Lemma 5.2, Yi is not adjacent to Yj for distinct
i, j ∈ [p]. Thus χ (Y ) ≤ n.

Lemma 6.3. χ (X) is bounded by a function of n.
Proof. Since each template (Xi, Yi) has the same index, each Xi has the same

cardinality, say t. By Lemma 4.2, t is bounded by a function of n. Partition X into
{Wj : j ∈ [t]} so that |Wj ∩Xi| = 1 for all j ∈ [t] and i ∈ [p]. Let f = c + 4ck and
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Q = {u}∪{vj , wj : j ∈ [f ]} be a spider with root u, where u is adjacent to each vj and
each vj is adjacent to wj . Using Theorem 1.3, it suffices to show that Wm ∈ Forb (Q),
and thus χ (Wm) is bounded by a function of n for all m ∈ [t].

Fix m ∈ [t] and set W = Wm. Suppose W induces Q. Without loss of generality,
let Q ⊆W . We shall obtain a contradiction by showing that a subset of Q∪Y induces
Rk with root u. For j ∈ [f ], define g (j) by vj ∈ Xg(j) and h (j) by wj ∈ Xh(j). Let

J =
{
j ∈ [f ] : u is not adjacent to Yh(j)

}
. Then |J | ≥ 4ck by Lemma 5.3. We claim

that, for each j ∈ J , there exists Dj ⊆ Yh(j) ∪ {wj} such that Dj ∪ {vj} induces
B2,k with root vj : since vj is usually adjacent to Yg(j) �= Yh(j), by Lemma 5.3, vj is
not usually adjacent to Yh(j). Also wj is usually adjacent to Yh(j) since wj ∈ Xh(j).
Thus by Lemma 4.3, there exists Dj ⊆ Yh(j) ∪{wj} such that Dj ∪{vj} induces B2,k.
By Lemma 5.3 and the fact that {vj , wj} is not adjacent to wi, we have |{i ∈ J :
{vj , wj} is adjacent to Di}| < 2c for all j ∈ J . Thus by Lemma 3.4 applied to the
family {({vj , wj} , Dj) : j ∈ J}, there exists a k-subset I ⊆ J such that for all distinct
i, j ∈ I, it is not the case that {vj , wj} is adjacent to Di. Thus by Lemma 5.2,
{u} ∪⋃i∈I (Di ∪ {vi}) induces Rk.

Lemma 6.4. χ (A ∪B) is bounded by a function of n.
Proof. First we show that χ (Ai ∪Bi) is bounded by a function of n for all i ∈ [p].

Let Yi = {yi,j : j ∈ [|Yi|]}. The vertices of Ai ∪ Bi can be partitioned into 2 |Yi| sets
Bi,j and B∗

i,j such that

Bi,j ⊆ N (yi,j) and B∗
i,j ⊆ N (O (Yi) ∩N (yi,j)) ∩ S (yi,j , 2) .

Clearly ω (N (yi,j)) < ω (G). So by the induction hypothesis, χ (Bi,j) is bounded by
a function of n. By Lemma 2.2 and the induction hypothesis, χ

(
B∗
i,j

)
is bounded

by a function of n. Since |Yi| is bounded by a function of n, our claim is proved.
Moreover, we can insist that for each color class S there exists y ∈ Yi such that
S ⊆ S (y, 1) ∪ S (y, 2). Thus it suffices to prove that if C =

⋃
i∈[p] Ci, where Ci is an

independent subset of (Ai ∪Bi)∩ (S (yi, 1) ∪ S (yi, 2)) for some yi ∈ Yi, then χ (C) is
bounded by a function of n.

We say that a family F of subsets of C is distinguishing if all i ∈ [p] satisfy
|{S ∈ F : Ci ∩ S �= ∅}| ≤ 1. Notice that, if F is a distinguishing family, then by
Lemma 5.5 every vertex is adjacent to at most e1 elements of F .

Define a new digraph H = ([p] , F ) as follows. Let e2 = f0 (f2 + 1), f0 = e1 + f1,
f1 = 2e1 (k + 2) k, f2 = f0 Ram (f3, n), f3 = 2f4, and f4 = 2e1 (k + 2) k. In partic-
ular, e2 ≥ 2e1 + 2f1 ≥ f4 + (k + 1) e1. We say that (u,M) is a witness for (i, j) iff
u ∈ Ci, M ⊆ [p]−{i, j}, |M | = e2, and for every m ∈M , there exists w ∈ Cj ∩N (u)
such that w is adjacent to at least k vertices in Cm. Let F be the set of ordered pairs
(i, j) for which there exists a witness.

Proposition 6.5. The outdegree of H is less than e2.
Proof. Suppose that the outdegree of i ∈ [p] is at least e2. We shall obtain a

contradiction by showing that G induces Rk. Let J = {j ∈ [p] : (i, j) ∈ F}. For each
j ∈ J , let (uj ,Mj) be a witness for (i, j).

Case 1. There exist v ∈ V and J0 ⊆ J such that |J0| = f0 and {uj : j ∈ J0} ⊆
N (v). Let K = {j ∈ [p] : v is adjacent to Cj}. Then |K| ≤ e1. Choose a subset J1 ⊆
J0−K with |J1| = f1 = f0−e1. Also choose an injection m : J1 → [p] so that m (j) ∈
Mj−(K ∪ J1) and uj is not adjacent to Cm(j). This is possible since |Mj |−(K ∪ J1) ≥
e2− 2e1− f1 ≥ f1. Finally, for each j ∈ J1 choose wj ∈ Cj ∩N (uj) and a k-set Zj ⊆
Cm(j)∩N (wj). Then {v, uj , wj}∪Zj induces B3,k with root v and {{wj} , Zj : j ∈ J1}
is a distinguishing family. It follows that {{wj} ∪ Zj : j ∈ J1} is also a distinguishing
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family. So by Lemma 3.4 applied to {({uj , wj} ∪ Zj , {wj} ∪ Zj) : j ∈ J1} there exists

a subset J2 ⊆ J1 such that |J2| = f1
2(k+2)e1

= k and {uj , wj} ∪ Zj is not adjacent to

{wj′} ∪ Zj′ for all distinct j, j′ ∈ J2. Since Ci is independent and {uj : j ∈ J2} ⊆ Ci,
it follows that {v} ∪⋃j∈J2

({uj , wj} ∪ Zj) induces Rk.
Case 2. Case 1 fails. Let J2 = {j ∈ J : yi is not adjacent to Cj} and U2 =

{uj : j ∈ J2}. Using Lemma 5.5 and the case, |U2| ≥ e2−e1
f0

≥ f2, note that U2 ⊆
S (yi, 2). Let S ⊆ N (yi) be a minimal set such that U2 ⊆ N (S) by the case |S| ≥ f2

f0
=

Ram (f3, n). Since S ⊆ N (yi) we have ω (S) < n. Thus S contains an independent
subset S0 with |S0| = f3. Using the minimality of S, there exists an injection j :
S0 → J2 such that s is the unique element of S0 that is adjacent to uj(s). For

each s ∈ S0 and m ∈ Mj(s), there exists ws,m ∈ N
(
uj(s)

) ∩ Cj(s) such that ws,m is

adjacent to Cm. Let Ws =
{
ws,m : m ∈Mj(s)

}
. Since Ws ⊆ Cj(s), it is independent.

By Lemma 5.5, |Ws| ≥ e2
e1
≥ k. Let S1 = {s ∈ S0 : |Ws −N (s)| ≥ k}.

Case 2a. |S1| ≥ f4. For each s ∈ S1, let Zs be a k-subset of Ws − N (s).
Then

{
yi, s, uj(s)

}∪Zs induces B3,k with root yi, and {yi}∪
⋃
s∈S1

{
s, uj(s)

}
induces

a spider. Moreover, {Zs : s ∈ S1} is a distinguishing family. Thus by Lemma 3.4
applied to the set

{({
s, uj(s)

} ∪ Zs, Zs)} there exists S2 ⊆ S1 with |S2| = f4
2(k+2)e1

= k

such that
{
s, uj(s)

} ∪ Zs and Zs′ are not adjacent for all distinct s, s′ ∈ S2. Thus

{yi} ∪
⋃
s∈S2

({
s, uj(s)

} ∪ Zs) induces Rk.
Case 2b. |S1| < f4. Let S3 ⊆ S0 − S1 with |S3| = f4 = f3 − f4. Then every

s ∈ S3 is adjacent to all but at most k − 1 vertices of Ws. Let J3 = {j (s) : s ∈ S3}.
Let M ′

j(s) =
{
m ∈Mj(s) : ws,m ∈ N (s)

}
. Then

∣∣∣M ′
j(s)

∣∣∣ ≥ e2 − (k − 1) e1. Choose an

injection m : S3 → [p] so that m (s) ∈ M ′
j(s) − J3 and neither s nor yi is adjacent to

Cm(s). This is possible because

|S3| = f4 ≤ e2 − (k − 1) e1 − 2e1.

Let Zs be a k-subset of N
(
ws,m(s)

) ∩Cm(s) and Ts =
{
ws,m(s)

} ∪Zs. Then {s} ∪ Ts
induces B2,k and {Ts : s ∈ S3} is a distinguishing family. When Lemma 3.4 is applied

to {({s} ∪ Ts, Ts) : s ∈ S}, there exists a subset S4 ⊆ S3 such that |S4| = f4
2(k+2)e1

= k

and {s} ∪ Ts is not adjacent to Ts′ for distinct s, s′ ∈ S4. It follows that {yi} ∪ S4 ∪⋃
s∈S4

Ts induces Rk.
By Lemma 3.3 and Proposition 6.5, we can properly color H with 2e2 colors.

Thus it suffices to show that C ′ =
⋃
i∈I Ci has bounded chromatic number for any

H-independent subset I ⊆ [p]. Partition C ′ into {Ni : i ∈ [e1]} ∪ {Me1} recursively
as follows. Let M0 = C ′. Now suppose that we have defined Mt. Call a vertex
v ∈ Mt good if there exist i, j ∈ I with i < j such that v ∈ Ci and v is adjacent
to at least k vertices in Cj ∩Mt. Let Mt+1 be the set of all good vertices in Mt.
Also let Nm+1 = Mm − Mm+1, Q = Me1 , and Qi = Q ∩ Ci. Using Lemma 5.5,
MAD (Nm) ≤ 2 (k − 1) e1; by Lemma 3.1, Nm is (2 (k − 1) e1)-degenerate; and by
Lemma 3.2, χ (Nm) ≤ 2ke1 for all m < e1. Thus it suffices to show that Q has
bounded chromatic number. Define an auxiliary digraph H ′ = (I, F ′) by (i, j) ∈ F ′

iff i < j and some vertex in Qi is adjacent to at least 2k vertices in Qj . By Lemmas
3.5 and 5.5, it suffices to prove Proposition 6.6 below. The following definitions are
needed to state this proposition. They are presented in a way that emphasizes clarity
in the proof of the proposition at the expense of clarity in the definition. Let e3 = ge1,
g = g1(g

′ + 1), g′ = Ram (g0, n), g0 = 2e1 (k + 1) k, g1 = 2 (k + 1) e2g2, g2 = g3g4,
g3 = 2ke1g4, g4 = g5g7, g5 = 2e1 (k + 1) k, g7 = g8 + g10, g8 = 2k2e2, g10 = 2kg11,
and g11 = 2e1k (k + 1).
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Proposition 6.6. The outdegree of H ′ is less than e3.

Proof. Suppose the outdegree of i ∈ I is at least e3 in H ′. We shall obtain a
contradiction by showing that G induces Rk. Let J = {j ∈ I : (i, j) ∈ F ′}. Let U
be a minimum subset of Qi such that for all j ∈ J there exists u ∈ U such that u
is adjacent to a 2k-subset of Qj . Then U is independent and, for all u ∈ U , there
exists h (u) ∈ J such that u is the unique vertex in U that is adjacent to at least 2k
vertices in Qh(u). Let Du be a 2k-subset of N (u) ∩ Qh(u). Then {Du : u ∈ U} is a
distinguishing family. By Lemma 5.5, |U | ≥ g = e3

e1
. Let Oi = (N (yi) ∩O (Yi))∪{yi}.

Then U ⊆ N (Oi). By Lemma 5.2, Oi is not adjacent to Cj for any j > i.

Case 1. No s ∈ Oi is adjacent to more than g1 vertices of U . Let S ⊆ Oi be a
minimum set such that U ⊆ N ({yi} ∪ S). Then |S| ≥ g′ = g

g1
−1, and for every vertex

s ∈ S there exists a neighbor us ∈ N (s)∩U such that s is the unique vertex in {yi}∪S
adjacent to us. So {yi, s, us} ∪ Dus

induces B2,k. Also ω (S) < n since S ⊆ N (yi).
Since |S| ≥ g′ = Ram (g0, n), there exists an independent subset S0 ⊆ S such that
|S0| = g0. Then {yi} ∪

⋃
s∈S0

{s, us} induces a spider. Let U0 = {us : s ∈ S0}.
By Lemma 3.4 applied to {({us} ∪Dus , Dus) : s ∈ S0}, there exists S1 ⊆ S0 with
|S1| = g0

2e1(k+1) = k such that {us} ∪ Dus is not adjacent to Dus′ for all distinct

s, s′ ∈ S1. It follows that {yi} ∪
⋃
s∈S1

({s, us} ∪Dus
) induces Rk.

Case 2. Some vertex s ∈ Oi is adjacent to more than g1 vertices of U . Let
U1 = U ∩ N (s). So |U1| ≥ g1. We claim that for each vertex u ∈ U1 there exist
indices l (u) and m (u) with i < l (u) < m (u) and a vertex vu ∈ Cl(u) ∩ N (u) such

that
∣∣Cm(u) ∩N (vu)

∣∣ ≥ k and Cm(u) ∩ N (u) = ∅. To see this fix u and let l (0) be
the greatest index such that Me1 ∩ Cl(0) ∩N (u) is nonempty. Now suppose we have
defined an increasing sequence of indices l (0) , . . . , l (t) such that Me1−r∩Cl(r)∩N (u)
is nonempty for all r ∈ [t]. Let v ∈Me1−t ∩ Cl(t) ∩N (u). Let l (t+ 1) be the largest

index such that l (t) < l (t+ 1) and
∣∣Me1−t−1 ∩ Cl(t+1) ∩N (v)

∣∣ ≥ k. The existence
of l (t+ 1) follows from the definition of Me1−t. If Cl(t+1) ∩ N (v) = ∅, then set
l (u) = l (t), m (u) = l (t+ 1), and vu = v. Otherwise continue. Eventually the
process must terminate since, by Lemma 5.5, u is adjacent to less than e1 sets Cj .

For each vertex u ∈ U1, let Zu be a k-subset of Cm(u) ∩N (vu). So {u, vu} ∪ Zu
induces B2,k. Since s ∈ Oi and i < l (u) < m (u), we have that s is not adjacent to
{vu} ∪Zu. So {s, u, vu} ∪Zu induces B3,k. Since I is independent in H, every vertex
in C ′ is adjacent to less than e2 vertices in U1: if v ∈ Ch is adjacent to e2 vertices in U ,
then (v, J1) is a witness for (h, i), where J1 = {h (u) : u ∈ U1}. Thus by Lemma 3.4
applied to the family {({vu} ∪ Zu, {u}) : u ∈ U1} there exists a subset U2 ⊆ U1 with
|U2| ≥ g2 = g1

2(k+1)e2
such that u is not adjacent to {vu′} ∪Zu′ for distinct u, u′ ∈ U2.

Consider the set M = {m (u) : u ∈ U2}. If |M | ≥ g3, then let U3 be a minimal
subset of U2 such that for every m ∈ M there exists u ∈ U3 such that m (u) = m.
Using the choice of U2 we have that |U3| ≥ g3 and {Zu : u ∈ U3} is a distinguishing
family. Thus by Lemma 3.4 applied to the family {(Zu, Zu) : u ∈ U3} there exists
U4 ⊆ U3 with |U4| = g4 = g3

2ke1
such that Zu is not adjacent to Zu′ for distinct

u, u′ ∈ U4. Otherwise there exists m ∈ M such that U4 = {u ∈ U2 : m (u) = m} has
cardinality at least g4 = g2

g3
. Again Zu is not adjacent to Zu′ for distinct u, u′ ∈ U4,

since Zu, Zu′ ⊆ Cm, which is independent.

Consider the set M ′ = {l (u) : u ∈ U4}. If |M ′| ≥ g5, then let U5 be a minimal
subset of U4 such that for every l ∈ M ′ there exists u ∈ U5 such that l (u) = l.
Then |U5| ≥ g5. Also {{vu} : u ∈ U5} is a distinguishing family. Thus by Lemma 3.4
applied to the family {({vu} ∪ Zu, {vu}) : u ∈ U5} there exists U6 ⊆ U5 with |U6| ≥

g5
2(k+1)e1

= k such that Zu ∪ {vu} is not adjacent to vu′ for distinct u, u′ ∈ U6. Then
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{s} ∪ ⋃u∈U6
({u, vu} ∪ Zu) induces Rk. Otherwise there exists l ∈ M ′ such that

U7 = {u ∈ U4 : l (u) = l} has cardinality at least g7 = g4
g5

. Again {vu : u ∈ U6} is
independent. But we are not done. We would like to show that U7 contains a k-set
U ′ such that Zu is not adjacent to vu′ for all distinct u, u′ ∈ U ′.

Consider the set U8 = {u ∈ U7 : |N (vu) ∩Du| ≥ k}. First suppose that |U8| ≥ g8.
Since I is independent in H, each vertex in C ′ is adjacent to less than e2 vertices in
{vu : u ∈ U7}. Thus, by Lemma 3.4 applied to the family {(Zu, {vu}) : u ∈ U8} there
exists U9 ⊆ U8 with |U9| = g8

2ke2
= k such that Zu is not adjacent to vu′ for all distinct

u, u′ ∈ U9. Thus {s} ∪ ⋃u∈U9
({u, vu} ∪ Zu) induces Rk. Otherwise U10 = U7 − U8

has cardinality at least g10 = g7 − g8. Then for each u ∈ U10 there exists a k-set
D′
u ⊆ Du such that vu is not adjacent to D′

u.
Suppose there exist a vertex r ∈ ⋃u∈U10

Zu and a subset U11 ⊆ U10 such that
{vu : u ∈ U11} ⊆ N (r) and |U11| = g11. Since {D′

u : u ∈ U11} is a distinguishing
family, by Lemma 3.4 applied to the family {({r} ∪D′

u, D
′
u) : u ∈ U11} there exists a

subset U12 ⊆ U11 with |U12| = g11
2(k+1)e1

= k such that {r}∪D′
u is not adjacent to D′

u′

for all distinct u, u′ ∈ U11. It follows that {r} ∪ ⋃u∈U12
({vu, u} ∪D′

u) induces Rk.
Otherwise, by Lemma 3.4 applied to the family {(Zu, {vu}) : u ∈ U10} there exists a
subset U13 ⊆ U10 with |U13| = g10

2g11
= k and Zu not adjacent to vu′ for all distinct

u, u′ ∈ U12. It follows that {s} ∪⋃u∈U13
({u, vu} ∪ Zu) induces Rk.

This completes the proof of Theorem 1.6.
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Abstract. An important problem in VLSI design is distributing a clock signal to synchronous
elements in a VLSI circuit so that the signal arrives at all elements simultaneously. The signal is
distributed by means of a clock routing tree rooted at a global clock source. The difference in length
between the longest and shortest root-leaf path is called the skew of the tree. The problem is to
construct a clock tree with zero skew (to achieve synchronicity) and minimal sum of edge lengths (so
that circuit area and clock tree capacitance are minimized).

We give the first constant-factor approximation algorithms for this problem and its variants
that arise in the VLSI context. For the zero skew problem in general metric spaces, we give an
approximation algorithm with a performance guarantee of 2e. For the L1 version on the plane, we
give an (8/ ln 2)-approximation algorithm.
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1. Introduction. A fundamental problem in VLSI design is clock routing, i.e.,
distributing a clock signal to synchronous elements in a VLSI circuit so that the
signal arrives at all elements simultaneously. The signal is distributed by means of a
clock routing tree rooted at a global clock source. The difference in length between
the longest and shortest root-leaf path is called the skew of the tree. To achieve
synchronicity, the skew should be zero. This is a significant issue in VLSI design,
as nonzero clock skew has been estimated to account for over 10% of overall system
cycle time in some high-performance systems [3]. Though it is easy to produce zero
skew clock routing trees (see, e.g., [4]), naive algorithms may produce trees that are
expensive in terms of total wirelength (i.e., sum of the edge lengths in the tree),
thereby increasing circuit area and clock tree capacitance. Thus, the ideal clock tree
routing algorithm would produce a zero skew clock tree with minimal total wirelength.

This problem, well studied in the VLSI community [14, 13, 7, 6, 23, 17, 25, 5, 15,
19, 8], is precisely the following variant of the classical Steiner tree problem:

Find a Steiner tree, with a distinguished root, so that the lengths of
all the root-leaf paths are the same and the sum of the lengths of
edges in the tree is minimized.
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While there are many proposed heuristics for attacking this problem and its variants
(see, for instance, the papers cited above), there are no algorithms with nontrivial
worst-case performance guarantees known. In this paper we give the first (constant-
factor) approximation algorithms for constructing clock trees with zero skew (or a
skew of at most a fixed bound), and wirelength as small as possible.

1.1. Clock routing problems. We focus on the following three versions of the
(zero or bounded skew) clock routing problem.

1. L1 clock routing. A clock signal must be distributed using horizontal and
vertical wires on the plane from a source to a set of terminal points. The
most common model of delay along a wire is the linear model, in which delay
corresponds to length. Therefore the distance between points is exactly the
L1 distance. This is the standard formulation of the problem.

2. Planar L1 clock routing. In general, the embedding of a clock tree may
have intersecting wires since the terminals are usually placed first, and then
two layers of metal are available for the horizontal and vertical wires of the
clock tree. This crossing of wires, however, may necessitate the introduction
of many vias, or connections between layers, which causes both additional
unmodeled delay and attenuation of the clock signal. Therefore one requires
a planar-embeddable clock tree [14]. We therefore consider a second version of
the routing problem (under the L1 metric on the plane) with the requirement
that the resulting clock tree be a planar embedding.

3. General metric space clock routing. The above two versions model the
clock routing problem for standard-cell or gate-array design methodologies,
which have many small functional modules. In contrast to this, building-block
design methodologies use larger functional blocks. These blocks are treated
as obstacles and routing must be done in the spaces between blocks. The
routing problem is formulated with respect to a graph, called the channel
intersection graph (CIG) that represents the available routing area. In this
model we can think of the terminals V as embedded in a metric space induced
by the topology of the CIG. Therefore the third variant of the problem we
study is routing a clock tree in an arbitrary metric space.

1.2. Preliminaries. We are given a metric space M with distance function d,
and a set V of points in M that are designated as terminals. As is standard, we
define a Steiner tree for V to be a tree in M that contains each terminal in V as a
vertex. (The vertices of the tree other than the terminals are referred to as Steiner
vertices.) We say that a clock tree T for V is a Steiner tree with a distinguished vertex
r called the root, such that every terminal v ∈ V occurs as a leaf of T . The tree has
an associated length function dT that assigns a length to every edge in T , subject to
the restriction that dT (u, v) ≥ d(u, v) (i.e., the tree is allowed to stretch distances).

Existing algorithms for clock routing in the L1 plane make use of snaking, or
wiggling an edge in order to lengthen it. Our definition of clock tree incorporates
snaking by allowing dT (u, v) > d(u, v). Without this extension, no zero skew tree
may exist. In our model, feasibility is no longer a concern—any tree whose leaves are
exactly the terminals can be “snaked” to a higher-cost zero skew tree.

If the metric space is the L1 plane, for instance, the length of an edge (u, v) in
T is at least the L1 distance between u and v. The cost of the tree T is the sum
of the lengths of all the edges of T . For v ∈ V , let the length of the path from the
root to v be �v = dT (r, v). The skew of T is maxu,v∈V |�u − �v|. If T has skew = 0,
we call it a zero skew (clock) tree (ZST) and if T has skew at most s, we call it an
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s-skew tree. (Note that, if necessary, this definition can be modified to allow terminals
to be internal vertices of the tree; in the plane, we can instead slightly displace the
internal vertex from the terminal. For general possibly discrete metric spaces, we
allow multiple points in the tree to correspond to the same point of the metric space.)

Formally, the zero (resp., bounded) skew clock tree problem is stated as follows.
Given a set V of terminals in a metric space M , find the minimum
cost zero skew tree (resp., tree with skew at most s for a given bound
s) for V .

When M is the L1 plane, we refer to the L1 variants of these problems. As discussed
earlier, intersecting wires in the embedding might cause additional unmodeled delays.
This motivates the planar variants of the above problem, where the tree T must be
planar-embeddable (i.e., have no crossing edges).

The bounded skew clock tree problem is easily seen to be NP-complete by setting
the skew to infinity so that the problem becomes the classical Steiner tree problem.
The same reduction implies that the problem has no approximation scheme in general
metrics unless P = NP. The zero skew problem is also NP-complete for general
metric spaces. To our best knowledge, the hardness question of the planar zero skew
problem is yet unsolved.

We will also refer to these problems as the zero or bounded skew clock routing
problems.

1.3. Our results. For the ZST problem in general metric spaces, we give an
approximation algorithm with a performance guarantee of 2e ≈ 5.44. We then give
an approximation algorithm for the bounded skew clock routing problem in general
metric spaces with a performance guarantee of 16.1065. Finally we give an (8/ ln 2)-
approximation algorithm for the planar ZST problem and a constant-factor approxi-
mation algorithm for the planar-embeddable bounded skew clock routing problem.1

1.4. Organization. Section 2 discusses some related work in clock routing. Sec-
tion 3 presents a general lower bound for the optimal solution to the problem. This is
used to obtain approximation guarantees for our algorithms. Section 4 (resp., section
5) gives the approximation algorithms for the zero (resp., bounded) skew clock routing
problems. Section 6 presents an approximation algorithm for the planar ZST prob-
lem, and section 7 presents an approximation algorithm for the planar-embeddable
bounded skew clock routing problems. Section 8 discusses the hardness of the ZST
problem.

2. Related work. Algorithms for clock tree constructions come in two flavors—
those that guarantee zero skew and others that attempt to minimize the skew. Notice,
however, that the aim is typically to minimize total wirelength.

The book by Kahng and Robins [14] contains a detailed account of many of the
algorithms for clock tree constructions and several experimental results. The main
emphasis on many of the algorithms, however, is to obtain practical solutions (which
perform well on standard benchmarks, which in turn may or may not represent the
average-case problem instance) rather than obtain solutions which have worst-case
performance guarantees. We review the most relevant algorithms below.

2.1. Minimizing clock skew. In [19], given a floor plan of modules, a scheme
to identify an entry point is presented. The optimal layout of the clock lines from

1Since the appearance of this paper, the approximation factors for the zero and bounded skew
clock routing problems in general metric spaces have been improved to 4 and 14, respectively [24].
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the source to the entry points is determined by an exhaustive search (of course, with
some pruning). No theoretical guarantees on the performance of the algorithm are
given.

In [13], the authors obtain a clock routing scheme consisting of Manhattan seg-
ments with constraints (like blockages) on the routing layers. They obtain a divide-
and-conquer algorithm which produces total wirelength of 1.5

√
n for n terminals dis-

tributed randomly on a uniform grid. Contrasting this with the largest possible wire-
length of

√
n+1 for a rectilinear Steiner tree for the same distribution, they conclude

that, on average, their algorithm is a 3/2-approximation algorithm when compared
to the minimum rectilinear Steiner tree.

Another algorithm for minimizing skew and wirelength based on matching is given
in [5, 15]. They construct a binary tree using geometric matching and show that for
cell-based designs, the total wirelength of their routing tree is on average, within
a constant factor of the wirelength in an optimal Steiner tree. Their experiments
suggest that the skew is near-zero on average.

2.2. Zero clock skew. An exact zero skew clock routing algorithm using the
Elmore delay model is presented in [21, 22]. The zero skew is obtained by a bottom-up
hierarchical approach via a zero skew merging of the recursive solutions. The main
emphasis is on experimental results.

A two-step approach to obtaining zero skew while simultaneously minimizing
wirelength is pioneered in [4]. In this, the authors present the Deferred Merge Embed-
ding (DME) algorithm, which embeds any given connection topology to create a zero
skew clock tree. The wirelength is optimal for linear delay. The connection topology
is generated by a top-down balanced bipartition (BB) approach. Though the DME
algorithm can be shown to produce the optimal tree for a given topology, the BB
approach is essentially a heuristic and has no performance guarantees.

3. A lower bound. We first demonstrate a lower bound on the cost of the
s-skew tree in any metric space. Let T be any rooted s-skew tree on the set V of
terminals, with root-leaf path length (i.e., the radius) R′. Since T has skew at most
s, the length of every root-leaf path is at least R′ − s.

We define the level of a vertex p ∈ T to be its distance in the tree from the root
(so the root is at level 0). Consider some level x ∈ [0, R′ − s]. If there are m vertices
at level x in T , then the m spheres of radius R′ − x centered at these vertices must
cover all the terminals of V . This observation can be converted into a lower bound as
follows. Let nV (R) be the minimum number of spheres of radius R needed to cover
the terminals V . When the set is apparent from context, we suppress the subscript
V .

Let ∆ be the diameter of the set of terminals V , and let R∗ be the minimum
value of x such that n(x) = 1 (thus R∗ > ∆/2). Note that R′ ≥ R∗. Then the cost of
the minimum cost s-skew tree must be at least∫ R′−s

0

n(R′ − x)dx =

∫ R′

s

n(R)dR ≥
∫ R∗

s

n(R)dR.

This lower bound, and the special case for s = 0, will be essential to analyzing our
algorithms.

4. An approximation algorithm for general metric spaces. In this section,
we present a 2e-approximation algorithm for the ZST problem in general arbitrary
metric spaces (assuming that snaking is valid). The algorithm is randomized but can
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Algorithm Connect-Centers:
Initialize: R := R0;u0 := s;U0 := V ; Ū := {U0}; Ḡ := ∅;T := ∅; i := 0;Rold := ∆/2.
repeat until i = |V |

S := V ; i = 0.
repeat until S = ∅

pick gi arbitrarily from S.
let Gi be all vertices in S within distance 2R from gi.
let S := S \Gi; i := i + 1.

for j = 0 to i− 1 do

let k be such that gj ∈ Uk.

add an edge from gj to uk of cost exactly 2Rold to T.
Rold := R;R := R/r; Ū := Ḡ; Ḡ := ∅.

Output T.

Fig. 1. Algorithm Connect-Centers.

be derandomized easily. We place Steiner vertices on top of terminals from V . For
ease of language, when we talk of using a terminal as an internal point in the tree,
we mean to place a Steiner vertex at that terminal and use the Steiner vertex as the
internal vertex in the tree.

Our algorithm repeatedly partitions the set of vertices to construct the tree. The
partitioning proceeds by greedily placing balls of a certain radius 2R and grouping all
vertices in the same ball together. To obtain more and more refined partitions, the
process repeats with balls of smaller radii. We denote by r the factor by which the
radii of balls decrease in each successive refinement of the partitioning process. We
will describe our algorithm for any value of r and choose a specific (optimal) value
for r at the end.

Algorithm Connect-Centers. Let ∆ be the diameter of V . The algorithm first
picks an arbitrary vertex s to be the root of the tree, and then chooses an initial
partitioning radius 2R0 as follows. Let t be chosen uniformly at random from [0, 1],
and set R0 = (∆/2)·exp(−t ln r). The algorithm then proceeds as in Figure 1. At each
point in the construction, we take an existing partition of the vertices Ū and refine it to
Ḡ. (Ḡ is not necessarily a strict refinement of Ū .) Each set Gi ∈ Ḡ has a distinguished
member gi with the property that every v ∈ Gi has d(v, gi) ≤ 2R. Similarly each
Ui ∈ Ū has a member ui such that every v ∈ Ui has d(v, ui) ≤ 2Rold = 2rR. The tree
we construct is denoted by T .

Remark. The algorithm as presented in Figure 1 is only weakly polynomial. But,
by constraining R to be ≤ R0/n

2, we can obtain a strongly polynomial algorithm at
the expense of O(1/n) additive factor in the performance ratio.

Analysis. It is immediate from the description of the algorithm that it will return
a ZST, since each vertex is reached after the same number of levels, and the edges
in each level are of identical cost. To analyze the cost of the tree produced by this
algorithm, we observe the following lemma.

Lemma 4.1. Each time a new partition G is created the number of sets returned
in the partition is at most nV (R).

Proof. Let G = {G0, . . . , Gm−1}. We induct on m. If m = 1, there is nothing
to prove. Otherwise, consider the n = nV (R) sets S1, S2, . . . , Sn of radius R that
cover all the terminals V . Let Sj be the set that contains g0. Since G0 contains all
vertices within radius 2R from g0, it must contain all of Sj . Let V ′ = V \G0. Now,
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certainly, nV (R) ≥ 1 + nV ′(R). But by induction, since the sets G1, G2, . . . , Gm−1

are the result of a valid execution of the partitioning algorithm on V ′, it follows that
m− 1 ≤ nV ′(R), and so the claim follows. Note that the claim also follows from the
standard analysis for the p-center problem [10, 11, 12].

Thus, the total cost of connecting each gi to some uj is at most 2Rold · n(R) ≤
2rR · n(R). The expected cost of the tree, therefore, can be seen as bounded by the
integral ∫

2rR · n(R)dµ.

Here, µ is the probability measure of the algorithm using balls of radius 2R. Now,
recall that once the initial value R0 for R is chosen, we know that all balls used in
the algorithm will have radius 2R0/r

i for some integer i. Note that R0 is a random
variable given by (∆/2)r−t, where t is chosen uniformly in [0, 1]. By inverting the
expression for R0 as a function to t, note that the probability that R0 lies in a small
range [x, x+ dx] is

ln(x+ dx)− ln(x)

ln(r)
=

ln(1 + dx/x)

ln(r)
=

dx

x ln(r)
.

Thus, the integral above is

∫ ∆/2

0

2r

ln(r)
· n(R)dR.

By our lower bound, the algorithm produces a tree that is at most 2r/ ln(r) times
the optimal cost. A simple calculation shows that this is minimized when r = e, and
hence we have the following theorem.

Theorem 4.2. The above algorithm achieves an expected approximation ratio of
2e.

The basic randomization technique we employed in the algorithm for choosing R0

has been used previously in [9, 18].
Relative costs of minimum Steiner trees and zero skew trees. Using the lower

bound we developed above, one can show that for n equally spaced terminals on a
line, the optimal zero skew tree has Θ(log n) times the cost of the minimum Steiner
tree. We now give a short proof that this is, asymptotically, the largest possible gap.
For purposes of simplicity, we do not attempt to optimize the constants in the proof.

Theorem 4.3. For a set V of n points in a metric space M , let St(V ) denote
the cost of the minimum Steiner tree for V , and let ZST(V ) denote the minimum cost
of a zero skew tree for V . Then ZST(V ) ≤ (4e lnn+ e) · St(V ).

Proof. Recall that for a number R, n(R) denotes the minimum number of balls
of radius R needed to cover the terminals in V . We claim that for any R, n(R) ≤
2St(V )/R.

To prove the claim, begin with an optimal Steiner tree and convert it into a trav-
eling salesperson tour {vi1 , . . . , vin} of length at most 2St(V ), by doubling the edges
and finding an Eulerian tour. We now construct a set S ⊆ V as follows. We initially
include vi1 . Proceeding inductively, suppose S currently consists of {vi1 , . . . , vip}.
Let q denote the minimum index greater than p for which the length of the subtour
from vip to viq is strictly greater than R; we add viq to S and continue. At the
end of this procedure, we observe that |S| ≤ 2St(V )/R, since the distance along the
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traveling salesperson tour between consecutive elements of S is at least R. Moreover,
an arbitrary element vij ∈ V is within distance R of vit , where t is the maximum
index less than or equal to j for which vit ∈ S; thus if we center a ball of radius R at
each element of S, the resulting collection of balls covers V . The claim follows, since
n(R) ≤ |S| ≤ 2St(V )/R.

Applying the claim, and using the fact that St(V ) ≥ ∆, we have

ZST(V ) ≤ 2e

∫ ∆/2

0

n(R)dR

= 2e

∫ ∆/2n

0

n(R)dR+ 2e

∫ ∆/2

∆/2n

n(R)dR

≤ 2e

(
∆

2n

)
n+ 4e

∫ ∆/2

∆/2n

St(V )

R
dR

≤ e∆ + 4e · St(V )

∫ ∆/2

∆/2n

dR

R

= e∆ + 4e · St(V ) · lnn
≤ (4e lnn+ e) · St(V ).

Derandomizing the algorithm. We briefly explain how the algorithm can be de-
randomized. Note that the only randomization used by the algorithm is in the initial
choice of t, while setting R0 = (∆/2) · exp(−t ln r). In the description of Algorithm
Connect-Centers, the step where gi is picked from S may be implemented arbitrar-
ily; assume that this is implemented by some arbitrary, but fixed rule. We claim
that the algorithm produces at most O(n2) combinatorially distinct trees and each
of these can be produced by running the algorithm for O(n2) carefully chosen values
of t. In order to see this, consider the kth iteration of Algorithm Connect-Centers
(where iterations are numbered from 0 onwards). In this iteration, the value of
R = (∆/2) · exp(−(t + k) ln r). Note that the choices of the algorithm depend only
on which distances are at most 2R = ∆ · exp(−(t + k) ln r). If for two values of t,
the set of distances that are less than 2R is the same for all iterations, then the trees
produced must have the same structure (since the choices made by the algorithm are
exactly the same). Consider the distance between two vertices u and v. There is a
unique value tuv ∈ [0, 1) such that d(u, v) = ∆ · exp(−(tuv + k) ln r), where k is an
integer. Consider the set T of tuv values for every pair of vertices u, v. (We also add
0 and 1 to T .) T can be easily determined and has O(n2) values. Further, for any
t strictly between any two consecutive values (t1, t2) in T , the structure of the tree
produced by the algorithm is exactly the same. It follows that the structure of the
tree can be determined by running the algorithm for any t ∈ (t1, t2). The edge costs
can be set to the lowest possible value for t in this range, i.e., by pretending that we
ran the algorithm for t = t2. If we run this procedure for every pair of consecutive
values in T , the best tree produced is at least as good as the expected cost of the
randomized algorithm.

5. Bounded skew clock routing. We now present a constant-factor approx-
imation algorithm for the bounded skew clock routing problem. The algorithm pro-
ceeds in two phases. First, we construct a Steiner tree spanning V which we fragment
into subtrees. Second, we connect these subtrees using a modification of Algorithm
Connect-Centers.
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We first construct a Steiner tree T ′ spanning V . To do this, we use the currently
best known approximation algorithm for Steiner trees in general metric spaces due to
[20]. In case the terminals are in the plane, we can use a polynomial time approxima-
tion scheme (PTAS) for Steiner trees [1], with an approximation ratio of 1+ ε for any
ε > 0. Let W ⊆ V be a maximal subset of terminals such that the distance between
any two of them in T ′ is at least s. W can be chosen by a greedy algorithm.

Lemma 5.1.

|W | ≤ 2cost(T ′)/s.

Proof. For v ∈W , let Bv be a ball of radius s/2 about v, distances being computed
in the metric induced by the tree T ′. Then, for u, v ∈ W , Bu ∩ Bv = ∅. Now, the
Steiner tree T ′ has a path Pv of length s/2 within each ball Bv. (Here, Pv could
include a fractional part of an edge.) The sum of the lengths of the paths Pv is at
most cost(T ′). Hence, the number of paths (and therefore, the number of vertices in
W ) is at most 2cost(T ′)/s.

For each v ∈W , we construct a tree Tv rooted at v, such that the distance from v
to every vertex in Tv is at most s. To do this, we order the vertices in W arbitrarily,
say W = {v1, . . . , vk}. Now, we assign every vertex in V to the closest vertex in W ,
breaking ties in favor of vertices with smaller indices. Here distances are computed
in T ′. Note that every vertex in V is within a distance of at most s from some vertex
in W (by the maximality of W ). For v ∈ V , let c(v) denote the vertex in W that it is
assigned to; let Pv denote the path in T ′ from v to c(v). The length of Pv is at most
s.

Lemma 5.2. For v1 	= v2, if c(v1) 	= c(v2), the paths Pv1 and Pv2 are edge
disjoint.

Proof. Suppose Pv1 and Pv2 share an edge. An easy case analysis shows that this
contradicts the choice of either c(v1) or c(v2).

For vertex v ∈ W , let S(v) denote the set of vertices assigned to it. Let Tv be
the subtree of T ′ that spans S(v); in other words, Tv = ∪u∈S(v)Pu. Then Lemma 5.2
implies that the subtrees Tv are disjoint. Clearly, we also have the following lemma.

Lemma 5.3. ∑
v∈W

cost(Tv) ≤ cost(T ′).

Also, the distance from v to every vertex in Tv is at most s.
Now we describe how to modify Algorithm Connect-Centers using the subtrees

Tv constructed above to produce the final tree with skew at most s. We execute
Algorithm Connect-Centers, but stop the process of construction of the tree at the
last step when R < s for the first time (i.e., we stop before a value for R smaller
than s is used to create a partition). Let Rf be the final value of R (so Rf < s). At
this time, Ū is a partition of V such that every vertex in Ui is at a distance at most
2rRf from ui. Let T be the partial tree constructed by the algorithm so far. We will
connect each of the subtrees Tv to the tree T in the following way: For v ∈W , let iv
be such that v ∈ Uiv . Connect Tv to the tree T by adding an edge of weight 2rRf
from v to uiv . It is easy to see that the tree so constructed has skew at most s.

Now, we shall analyze the cost of the tree we obtain. Let C1 be the cost of the
tree that the algorithm constructs until R < s for the first time. Let C2 be the total
cost of all the edges from vertices v ∈W to uiv . Let C3 be the total cost of the trees
Tv for v ∈W .
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Then, by the previous analysis,

E[C1] ≤ 2r

ln r

∫ ∆/2

s

n(R)dR.

Also,

C3 ≤ cost(T ′).

Now,

E[2rRf ] = 2

∫ rs

s

1

ln r
dx

=
2(r − 1)s

ln r
.

Hence,

E[C2] = |W | ·E[2rRf ]

= |W |2(r − 1)s

ln r

≤ 4(r − 1)

ln r
cost(T ′).

Let OPTST be the cost of the optimal Steiner tree on the set of terminals. Since
the Steiner tree T ′ is constructed using the algorithm of [20], this guarantees that

cost(T ′) ≤
(

1 +
ln 3

2

)
OPTST .

Let OPT be the cost of the optimal clock tree with skew at most s. Then, we have
two lower bounds for OPT. Using the lower bound given in section 3,

OPT ≥
∫ ∆/2

s

n(R)dR.

OPT ≥ OPTST .

Now, we can bound the expected cost of the tree we obtain in terms of OPT as
follows:

E[C1 + C2 + C3] ≤
(

2r

ln r
+

(
1 +

ln 3

2

)(
1 +

4(r − 1)

ln r

))
OPT.

The approximation ratio is optimized by choosing r ≈ 1.775, which gives an approxi-
mation ratio of at most 16.1065.

6. Planar zero skew clock routing. We now present a constant-factor ap-
proximation algorithm for the planar ZST problem. In the planar case we refer to
vertices as points.

Let R∗ be the smallest radius of an L1 ball that encloses all the terminals. We
first find a center point r such that every terminal is within an L1 distance of R∗ from
r. We now construct a square S of side 2R0 centered at r. The value R0 is chosen by
selecting t uniformly and at random from [0, 1] and setting R0 = R∗ · 2t. The square
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Fig. 2. The first few levels of an H-tree.

S is then subdivided into four equal-sized squares S1, S2, S3, S4. The squares Si are
called the children of S, and S is called the parent of each Si. The center of S is
connected to the centers of each Si by an H-shaped structure. We proceed recursively
in each Si, dividing each into four equal squares and so on, so long as there is at
least one point in the square. This produces a tree that we refer to as an H-tree (see
Figure 2.)

This tree spans all the terminals. In fact, we construct only the subtree of the
H-tree that spans all the terminals. To do this, we ensure that the tree construction
proceeds only inside squares that contain at least one terminal. At any point in
the execution of the algorithm, consider a square S produced by the algorithm and
subdivided into S1, S2, S3, S4. Then the center of S is connected to the center of Si,
and the tree construction proceeds recursively in Si only if Si contains a terminal.
Also, we stop the recursive subdivision when the squares that the algorithm constructs
have side lengths smaller than R∗/n2. At this stage, we connect the centers of all
squares to the terminals inside them by edges of length R∗/n2.

In order to analyze the cost of the tree returned by the algorithm, we associate,
with each square S constructed by the algorithm, the cost of the connection from the
center of S to the center of the parent of S. Thus, the charge to a square of side 2x is
2x. Note that when the algorithm terminates, the cost of connecting the n terminals
to the centers of their corresponding squares is n · R∗/n2 = R∗/n. Since the cost of
the optimal ZST is at least 2R∗, this is at most 1/n times the optimal cost. We ignore
this cost in our calculations, and in fact, the algorithm can be modified so that this
cost is not incurred.

Let n(x) be the minimum number of L1 balls of radius x required to cover the
terminals. Let n′(y) be the number of squares of radius y produced by the algorithm.
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Lemma 6.1.

n′(2x) ≤ 4n(x).

Proof. Consider a grid with the center point r as the origin, produced by
equispaced horizontal and vertical lines such that the distance between consecutive
lines is 2x. The squares of side 2x produced by the algorithm are precisely the squares
in this grid that contain at least one terminal. Consider the optimal partitioning of
the terminals into n(x) L1 balls of radius x. Each L1 ball in the partition intersects
at most four squares in the grid. Thus there can be at most 4n(x) squares in the grid
that contain at least one terminal.

Since the algorithm constructs squares of side lengths in the range [0, 2R∗], the
expected cost of the tree is bounded by

∫ 2R∗

0

n′(y) · y · dµ.

Here, dµ is the probability that the algorithm constructs squares with side length in
the range [y, y + dy]. Hence dµ = dy/(y ln 2). The expected cost is thus bounded by

∫ 2R∗

0

n′(y)
ln 2

dy =

∫ R∗

0

n′(2x)
ln 2

2dx

≤
∫ R∗

0

8

ln 2
n(x)dx.

Hence, the expected cost of the tree produced by the algorithm is at most 8/ ln 2 ≈
11.54 times the optimal cost.

Theorem 6.2. The above algorithm achieves an expected approximation ratio of
8/ ln 2.

The algorithm can be derandomized easily by carefully choosing a set of O(n2)
values of R0 in the range [R∗, 2R∗], running the algorithm for each of them, and
returning the best tree produced. The details are similar to those in the derandom-
ization of the algorithm in section 4.

7. Planar-embeddable bounded skew clock routing. We now give a con-
stant factor approximation algorithm for creating planar-embedded s-skew trees. We

apply the lower bound of section 3, namely, OPT ≥ ∫ R∗

s
n(R)dR.

Our strategy will be similar to the bounded skew case for general metrics. We
construct the zero skew tree as in the previous section but stop when the sides of the
squares become smaller than s/2. We will then connect the points in each square to
the center using a tree whose cost is comparable to the minimum spanning tree (MST)
for the point set and has radius at most s. We will separately bound the cost of both
the truncated ZST and the trees within each square to within a constant factor of
OPT.

We present a deterministic version of the algorithm here. Let R0 be the unique
value in [R∗, 2R∗) of the form 2ts, where t is integral. Let Ri = 2t−is. Enclose the
point set in a box of side 2R0. We iteratively divide the square as before into four
squares, but we stop after t+1 iterations, when the side of the resulting square has size
s/2. We then build a zero skew H-tree terminating at the centers of every populated
square of size s/2. We will now connect the points within each square to the center.
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Fig. 3. New edges added to each box.

We first construct an MST connecting all the points in the point set. We divide
this MST into pieces using the ZST built above. Recall that the ZST includes a single
edge into the center of each square. We cut each edge in the MST at points where
it intersects existing edges in the ZST, or boundaries of the squares of side s/2. We
augment the MST edges within each square to produce a connected planar graph, by
adding the new edges shown in Figure 3. This results in a connected graph within
each square of side s/2, from which we take any spanning subtree.

We apply the following result (see [2, 16]).
Lemma 7.1. Given any ε > 0 and point set in the plane with radius r, and

spanning tree T with cost c rooted at p, there exists a polynomial time algorithm to
find a spanning tree T ′ with radius r′ ≤ (1 + ε)r and cost c′ ≤ (1 + 1/ε)c.

We run this algorithm for ε = 1 on each square of side s/2, and attach the resulting
spanning tree to the ZST at the center of the square.

Now, notice that the cost of the resulting structure has two components, each
of which we bound separately. First, the edges of the ZST and the additional edges
of Figure 3 are bounded by five times the cost of the ZST. We can bound the cost
of the ZST using techniques similar to those of the previous section, with the caveat
that rather than bounding n′(x) in terms of n(x/2), we instead bound it in terms of
n(x/4).

8. Hardness of zero skew clock routing.
Theorem 8.1. The zero skew clock routing problem for general metric spaces is

NP-hard.
Proof. The reduction is from set cover. Let [n] = {1, 2, . . . , n}. A set cover

instance consists of an integer k, and m sets S1, . . . , Sm such that each Si is a subset
of [n]. We are required to determine if there exist k sets Si1 , . . . , Sik such that

[n] ⊆ ⋃kj=1 Sij . Given an instance I of set cover, we define an instance of the zero
skew clock routing problem as follows. We first construct a weighted graph G from
the instance I: G has a vertex s, vertices x1, . . . , xm (one corresponding to each set),
and vertices y1, . . . , yn (one corresponding to each element of [n]) and an edge from
xi to yj iff j ∈ Si; such an edge has length 1. Also, every xi is connected to s by
an edge of length 1/n. Consider the zero skew clock routing problem for the set of
terminals {y1, . . . , yn} in the metric space induced by distances in G. If k′ is the
minimum number of sets in the instance I required to cover [n], it is easy to show
that the optimal solution to the zero skew clock routing problem is n+ k′/n.

9. Open questions. The complexity of the planar ZST problem is still open.
We do not know if the problem is NP-hard.

Since our algorithm can be thought of yielding a clock tree topology, it will be
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interesting to see how it performs in practice, especially when combined with the
DME technique.
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Abstract. Coxeter’s classification of the highly symmetric geodesic domes (and, by duality,
the highly symmetric fullerenes) is extended to a classification scheme for all geodesic domes and
fullerenes. Each geodesic dome is characterized by its signature: a plane graph on twelve vertices
with labeled angles and edges. In the case of the Coxeter geodesic domes, the plane graph is the
icosahedron, all angles are labeled one, and all edges are labeled by the same pair of integers (p, q).
Edges with these “Coxeter coordinates” correspond to straight line segments joining two vertices of
Λ, the regular triangular tessellation of the plane, and the faces of the icosahedron are filled in with
equilateral triangles from Λ whose sides have coordinates (p, q).

We describe the construction of the signature for any geodesic dome. In turn, we describe how
each geodesic dome may be reconstructed from its signature: the angle and edge labels around each
face of the signature identify that face with a polygonal region of Λ and, when the faces are filled
by the corresponding regions, the geodesic dome is reconstituted. The signature of a fullerene is the
signature of its dual. For each fullerene, the separation of its pentagons, the numbers of its vertices,
faces, and edges, and its symmetry structure are easily computed directly from its signature. Also,
it is easy to identify nanotubes by their signatures.
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1. Introduction. By a fullerene, we mean a trivalent plane graph Φ = (V,E, F )
with only hexagonal and pentagonal faces. It follows easily from Euler’s formula that
each fullerene has exactly 12 pentagonal faces. In this paper, we work with the duals to
the fullerenes: geodesic domes, i.e., triangulations of the sphere with vertices of valence
5 and 6. It is in this context that Coxeter [3], Caspar and Klug [2], and Goldberg
[7] parameterized the geodesic domes/fullerenes that include the full rotational group
of the icosahedron among their symmetries. These highly symmetric geodesic domes
are obtained by filling in each face of the icosahedron with a fixed equilateral triangle
inscribed in Λ, the regular triangular tessellation of the plane. Coxeter’s classification
boils down to classifying the equilateral triangles of Λ.

Our plan is to extend Coxeter’s approach to other plane graphs with 12 vertices,
filling in their faces with regions from Λ such that the original 12 vertices are the
vertices of valence 5 in the resulting geodesic dome. These special planar graphs
with 12 vertices will be called signature graphs. The signature graph along with the
labeling of the edges and angles that determines just how the faces are to be filled in
will be called the signature of the resulting geodesic dome.

Let Φ = (V,E) be any graph with a set of edge weights, ω : E → R
+. The

structure graph of the weighted graph Φ, ω is the union of all shortest spanning trees
of Φ. Now let Γ = (V,E, F ) be a geodesic dome and let P denote the set of the 12,
5-valent vertices of Γ. The first step in constructing the signature graph of Γ is to
construct the complete graph on the vertex set P and assign to each of its edges the
distance between its endpoints, as vertices in Γ. This weighted graph is called the
first auxiliary graph of Γ and is denoted by A1(Γ). The second step is to construct
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the structure graph of A1(Γ). This graph is called the second auxiliary graph of Γ
and is denoted by A2(Γ). This graph, A2(Γ), has a natural drawing on the sphere but
may admit crossing edges. To eliminate any crossings, we make a slight alteration in
the weight function and construct the structure graph of A2(Γ) with this new weight
function to get a third graph. This third graph also has a natural drawing on the
sphere and it admits no crossings. The plane graph consisting of this third graph
and its natural planar embedding is called the signature graph of Γ and is denoted by
S(Γ). Each edge of S(Γ) may be identified with a line segment joining two vertices in
Λ. This identification leads to a labeling system for the edges and angles of S(Γ). The
signature graph of Γ along with this labeling is called the signature of Γ. We should
note that Coxeter’s approach has been generalized to some other triangulations of the
sphere by Fowler, Cremona, and Steer [4] and by Fowler and Cremona [5] using an
entirely different labeling system.

Each geodesic dome Γ is completely determined by its signature. Using the sig-
nature of Γ as a blueprint, one can construct a polygonal region or a set of polygonal
regions in Λ with sides corresponding to the edges of S(Γ) and then glue them together
to reconstruct Γ. Since all signature graphs of geodesic domes have exactly 12 vertices
and since any planar graph admits only a finite number of distinct planar embeddings,
there are only a finite number of plane graphs which could be the signature graph of
a geodesic dome. This leads to a partition of the collection of all geodesic domes into
a finite number of classes each corresponding to a different signature graph. We may
label the angles of a given signature graph in a finite number of ways and we may
label the edges with variables in a finite number of ways. Hence, within each class, we
have a finite number of families. Each family corresponds to a signature graph with
labeled angles and with variable labels on the edges. Each choice of the variables,
satisfying an included set of equalities and inequalities, will then yield the signature
of a specific geodesic dome or fullerene. The geodesic domes described by Coxeter
form such a family.

We develop the signature in a more general setting defining it for each plane
triangulation, that is for each plane graph with only triangular faces. To carry out
these tasks, we will need several tools. We start our investigation with a short section
on the basic properties of structure graphs followed by an extensive development of
the “geometry” of Λ.

2. Structure graphs.
Lemma 1. Let Θ be the structure graph of the weighted graph Φ, ω.

i. If u, v, w are vertices of a 3-circuit in Φ with ω({u,w}) < ω({v, w}) and
ω({u, v}) < ω({v, w}), then the edge {v, w} is not in Θ.

ii. Deleting the edges of maximum weight from Θ disconnects Θ.
iii. If the edges of Θ of maximum weight are deleted from Θ, then each of the re-

sulting components is the structure graph of the corresponding vertex induced
weighted subgraph of Φ.

iv. If Ω is any connected subgraph of Θ, then deleting the edges of maximum
weight from Ω disconnects Ω.

Proof. Let Φ = (V,E) and Θ = (V, F ).
Part i. Suppose that the edge e = {v, w} is in Θ and let (V, T ) be a shortest

spanning tree of Φ containing e. Delete e from (V, T ). The vertex u is either in the
component of (V, T − e) which contains v or in the component which contains w. If it
is in the component containing v, then (V, T − e+ e′), where e′ = {u,w}, is a shorter
spanning tree; if u is in the component containing w, then (V, T − e + e′′), where
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e′′ = {u, v}, is a shorter spanning tree. Since both possibilities contradict the fact
that (V, T ) is a shortest spanning tree, our supposition must be false.

Part ii. Let m denote the maximum among the weights of the edges of Θ and let
e = {v, w} be an edge of Θ with weight m. Let (V, T ) be a shortest spanning tree of
Φ which contains e. Delete e from (V, T ). We show that each edge in the cutset of
the edges of Θ joining the two components of (V, T − e) has weight m. Let e′ be any
edge of Θ with an endpoint in each of the two components. Thus (V, T − e + e′) is
also a spanning tree of Φ. This new tree has weight ω(T ) −m + ω(e′), where ω(T )
denotes the sum of the weights of the edges in T . Since (V, T ) is a shortest spanning
tree ω(T ) ≤ ω(T )−m+ ω(e′) or m ≤ ω(e′). But, ω(e′) ≤ m; hence e′ has weight m.

Part iii. Let m denote the maximum weight of the edges in Θ and let U be the
vertex set of a component of the subgraph of Θ obtained by deleting all edges of
weight m. Let Φ′ = (U,G) and Θ′ = (U,H) be the subgraphs of Φ and Θ induced by
U . We show that Θ′ is the structure graph of Φ′. Let (V, T ) be a shortest spanning
tree of Φ and let (U, T ′) be the subgraph of this tree induced by U . We assert that
(U, T ′) is a shortest spanning tree of Φ′.

Suppose that (U, T ′) is not connected. If e is any edge of Θ′ joining two compo-
nents of (U, T ′) and e′ is any edge in T − T ′ incident to one of these components, we
have that ω(e) < m = ω(e′) and that (V, T − e′ + e) is a shorter spanning tree of Φ.
Thus (U, T ′) is a spanning tree of Φ′. Let (U, T ′′) be any shortest spanning tree of
Φ′. Then (V, T −T ′ +T ′′) is a spanning tree of Φ and ω(T ′′) ≤ ω(T ′). It follows that
ω(T ′′) = ω(T ′), that (U, T ′) is a shortest spanning tree of Φ′ and that (V, T −T ′+T ′′)
is a shortest spanning tree of Φ. Thus Θ′ is the union of the shortest spanning trees
of Φ′.

Part iv. We proceed by induction on the number of vertices of Φ. Let Ω be
any connected subgraph of Θ. If the maximum weight of the edges in Ω equals
the maximum weight of the edges in Θ, then, by part ii, deleting the edges of this
maximum weight disconnects Ω. If the maximum weight of the edges in Ω is less than
the maximum weight of the edges in Θ, then Ω is a subgraph of the structure graph of
the smaller weighted graph Φ′ induced by the vertex set of the component containing
Ω of the graph obtained by deleting all edges of maximum weight from Θ. We may
now apply the induction hypothesis.

3. The regular triangular tessellation of the plane. Consider Λ, the regu-
lar triangular tessellation of the plane. We think of Λ as the infinite plane graph with
all vertex valences 6 and all face valences 3. The automorphisms of this graph corre-
spond with the congruences of Λ as a geometric object in the plane: the translations,
rotations, reflections, and glide reflections that map Λ onto Λ. Two vertex sets of Λ
are said to be congruent if there is an automorphism of Λ which maps one onto the
other. By a segment of Λ we simply mean a pair of vertices of Λ and we visualize a
segment as the straight line segment joining the two vertices. To each segment which
does not coincide with a “line” of the tessellation, we assign Coxeter coordinates (p, q)
as follows: select one endpoint of the segment to be the origin; take the edge of the
graph to the right of the segment as the unit vector in the p direction; take the edge
of the graph to the left of the segment as the unit vector in the q direction; finally,
assign to the segment the coordinates of its other endpoint in this coordinate system.
If the segment coincides with a “line” of the tessellation, that segment is assigned the
single Coxeter coordinate (p), where p is the number of edges of Λ in the segment. In
Figure 1, we illustrate this definition by giving the Coxeter coordinates assigned to
the sides of several different regions in Λ. The length of a segment σ with endpoints
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v and w is defined to be the graph-theoretic distance between the endpoints in the
graph Λ; it is denoted by δ(v, w) or |σ|. Collected in the next lemma are several
observations about this labeling of segments. The proofs are straightforward.

Lemma 2. Let σ denote a segment with endpoints v and w and let (p, q) [or (p)]
denote its Coxeter coordinates as computed from v.

i. The Coxeter coordinates of σ computed from w are also (p, q) [(p)].
ii. p and q are positive integers (p is a positive integer).
iii. |σ| = p+ q (|σ| = p).
iv. The segments σ, with Coxeter coordinates (p, q), and σ′, with Coxeter coor-

dinates (p′, q′), are congruent if and only if either p′ = p and q′ = q or p′ = q
and q′ = p. Furthermore, p′ = p and q′ = q if and only if σ′ is the image of
σ under a rotation or translation of the tessellation and p′ = q and q′ = p if
and only if σ′ is the image of σ under a reflection or glide reflection of the
tessellation.

v. The segments σ, with Coxeter coordinate (p), and σ′, with Coxeter coordinate
(p′), are congruent if and only if p′ = p. Furthermore, any two segments with
coordinates (p) are images of one another under both a translation or rotation
and a reflection or glide reflection.
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Fig. 1.

We are particularly interested in angles. Much of the information about an angle
is coded in the Coxeter coordinates of its sides, but not all. Suppose that we have two
segments forming an angle at a common endpoint v; denote them, in clockwise order,
by σ and σ′, denoting their Coxeter coordinates by (p, q) and (p′, q′), respectively.
The missing information is the multiple of 60 degrees between the edge from v along
which p is measured and the edge along which p′ is measured. This multiple is easily
seen to be the number of edges from v which lie between the two segments. Hence, we
define the type of the angle between two segments with a common endpoint v to be the
number of edges from v which lie between the two segments. Segments with Coxeter
coordinates of the form (p) coincide with an edge; in this case, the edge contributes 1

2
to each of the types of the angles on either side of the segment. These definitions are
illustrated in Figure 1 and the next lemma lists some useful properties of angle type.

Lemma 3.

i. Given segments α, β, and γ in clockwise order around a common endpoint,
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the type of the angle between α and γ is the sum of the types of the angles
between α and β and between β and γ.

ii. Given segments σ1, σ2, . . . , σn with a common endpoint, the sum of the types
of the angles between them is 6.

iii. Given an n-gon with angle types A1, A2, . . . , An, we have
A1 + · · ·+An = 3n− 6.

Proof. Part i follows directly from the definition of angle type, and part ii follows
directly from part i.

Turning to part iii, consider a triangle with vertices labeled vA, vB , vC in clockwise
order with corresponding angle types A, B, and C. Let α denote the segment opposite
vA; β, the segment opposite vB ; and γ, the segment opposite vC . For any segment
σ with Coxeter coordinates (p, q), let θσ denote the measure, in degrees, of the angle
between the segment and the lattice edge in the direction along which p is measured;
note that θσ is independent of the endpoint of σ at which it is measured. For a segment
with Coxeter coordinate (p), define θσ to be 30◦. We observe that, in degrees, the
measure of the angle at vA is 60A− θβ + θγ ; see Figure 2. Similarly, the measure of
the angle at vB is 60B− θγ + θα and the measure of the angle at vC is 60C− θα+ θβ .
Summing the measures of these three angles gives 60A + 60B + 60C = 180 or A +
B + C = 3.

Since each n-gon can be partitioned into n − 2 triangles, the result follows from
this special case and part i.
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Fig. 2.

Our next task is to explore the structure of Λ in the neighborhood of a seg-
ment. We start by characterizing shortest paths in Λ and certain shortest paths in an
arbitrary plane triangulation Γ. To do this, we introduce some additional terminology.
Let v = v0, v1, . . . , vn = w be any path from v to w in Λ or any v, w-path in Γ such
that v1, . . . , vn−1 are 6-valent. Consider the vertex vi, i = 1, . . . , n− 1, and consider
the vertices adjacent to vi clockwise from vi−1. If vi+1 is in the first position, we say
the path takes a sharp left turn at vi; vi+1 in the second position corresponds to a left
turn; vi+1 in the fourth position corresponds to a right turn; vi+1 in the fifth position
corresponds to a sharp right turn; otherwise we say the path continues straight on
at vi.
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Fig. 3.

First, observe that if there is a sharp right (sharp left) turn at vi, then v =
v0, v1, . . . , vi−1, vi+1, . . . , vn = w is a shorter v, w-path. This is pictured at the left in
Figure 3. Next, suppose that the path takes a right (left) turn at vi, then continues
straight on to vj , where it takes another right (left) turn, pictured at the right in
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Figure 3. Let ui be the vertex adjacent to vi−1, vi, vi+1; then let uk be the vertex
adjacent to uk−1, vk, vk+1, for k = i + 1, . . . , j − 1 (see Figure 3). Again we see that
we have a shorter v, w-path:

v = v0, v1, . . . , vi−1, ui, . . . , ui−1, vi+1, . . . , vn = w.

Now suppose that we have a v, w-path Π in Λ which makes no sharp turns and in
which the turns alternate between left and right. One easily verifies that this is a
shortest v, w-path. We have the following lemma.

Lemma 4. Let Π denote a shortest path in Λ or a shortest path in a plane
triangulation Γ that has only 6-valent interior vertices. Then Π makes no sharp turns
and consecutive turns alternate between left and right. Furthermore, a path in Λ
which makes no sharp turns and in which the turns alternate between left and right is
a shortest path between its endpoints.

Consider a segment σ in Λ with endpoints v and w and Coxeter coordinates
(p, q). From this lemma, we easily see that all shortest paths from v to w lie in the
parallelogram with antipodal vertices v and w and with sides parallel to the p and q
directions. Furthermore, all v, w-paths in this parallelogram using only edges in the
p or q directions are shortest v, w-paths. We call these the family of shortest paths
associated with the segment σ and denote this family of paths and the parallelogram
containing them by Gσ.
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Now construct the hexagonal circuit Hv about v spanned by the vertices at a
distance of p+ q from v and let Hv denote the finite subgraph of Λ bounded by Hv.
Define Hw and Hw similarly. Let Hσ = Hv ∩ Hw and denote its bounding circuit
by Hσ. We have pictured the various regions and boundaries of this construction
in Figure 4. In drawing this picture, we have made some assumptions, namely that
0 < q < p. If q = p, the picture is the same but with the segment vertical and, if
q > p, the picture is the mirror image of this picture with the p and q labels reversed.
Hσ is a hexagon with opposite sides parallel and equal in length. The points v and
w are antipodal on this boundary dividing the sides containing them into segments
of length p and q. If σ has Coxeter coordinate (p), Hσ consists of the union of two
equilateral triangles with the given segment as the common side. In this case, Hσ is
a rhombus with sides of length p and may be visualized by letting q = 0 in Figure 4.
Some easily checked but useful properties of this configuration are listed in the next
lemma.
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Lemma 5.

a. Let the segment σ, with endpoints v and w and Coxeter coordinates (p, q), be
given and let Gσ, Hσ, Hσ, Hv, and Hw be defined as above.
(i) The collection of shortest v, w-paths in Λ is the collection of all v, w-paths

in the parallelogram Gσ using only edges in the p or q directions.
(ii) For any vertex u ∈ Hσ, δ(u, v) ≤ |σ| and δ(u,w) ≤ |σ| with strict

inequality in both cases whenever u ∈ Hσ −Hσ.
b. Let the segment σ, with endpoints v and w and Coxeter coordinate (p), be

given and let Gσ, Hσ, Hσ, Hv and Hw be defined as above.
(i) Gσ = σ, i.e., σ is the only shortest v, w-path in Λ.
(ii) For any vertex u ∈ Hσ, δ(u, v) ≤ |σ| and δ(u,w) ≤ |σ| with strict

inequality in both cases whenever u ∈ Hσ −Hσ.
While the graph distance function δ plays an important role in our development,

a second distance function will be needed. If the segment σ has Coxeter coordinates

(p, q), we define the refined length of σ to be p + q + |p−q|
p+q+1 and denote it by ‖σ‖;

if σ has Coxeter coordinate (p), we define ‖σ‖ = p + p
p+1 . For example, the Coxeter

coordinates of a segment which has length 5 must be one of (5), (4, 1), (3, 2), (2, 3), or
(1, 4) and the refined length of this segment will be 55

6 , 5 1
2 , 5 1

6 , 5 1
6 , or 51

2 , respectively.

Let σ have Coxeter coordinates (p, q) [(p)]; then ‖σ‖ = |σ| + |p−q|
p+q+1 (‖σ‖ =

|σ| + p
p+1 ). Since 0 ≤ |p−q|

p+q+1 < 1 (0 < p
p+1 < 1), |σ| ≤ ‖σ‖ < |σ| + 1. It follows

that |σ| = �‖σ‖�. And from this we can conclude that if ‖σ‖ = ‖σ′‖, then |σ| = |σ′|.
Finally, suppose that σ′ has Coxeter coordinates (p′, q′) and that ‖σ‖ = ‖σ′‖. Then
p+ q = p′ + q′ and |p− q| = |p′− q′|. It follows that either p′ = p and q′ = q or p′ = q
and q′ = p. We conclude that if ‖σ‖ = ‖σ′‖, then σ and σ′ are congruent segments.
The converse is clearly true. Leaving the special case that σ and σ′ have Coxeter
coordinates (p) and (p′) to the reader, we have the following lemma.

Lemma 6. For segments σ and σ′,
i. |σ| ≤ ‖σ‖ < |σ|+ 1;
ii. |σ| = �‖σ‖�;
iii. if ‖σ‖ = ‖σ′‖, then |σ| = |σ′|;
iv. if |σ| < |σ′|, then ‖σ‖ < ‖σ′‖;
v. σ and σ′ are congruent if and only if ‖σ‖ = ‖σ′‖.

4. The signature of a plane triangulation. Let Γ be a finite plane trian-
gulation and let P denote the set of all vertices of Γ with valence different from 6.
Define the first auxiliary graph of Γ to be the complete graph A1(Γ) = (P,K) and,
for each {v, w} ∈ K, define ω1({v, w}) to be the distance between v and w in Γ.
Let A2(Γ) = (P,E) be the structure graph of A1(Γ), ω1. A2(Γ) is called the second
auxiliary graph of Γ. We wish to investigate the geometry of Γ in the neighborhood
of an edge of A2(Γ). Let {v, w} be an edge in A2(Γ) and select a shortest path from
v to w in Γ. By Lemma 1, part i, we conclude that there is no vertex u ∈ P so that
both the distance from u to v and the distance from u to w are less than ω1({v, w}).
In particular, all of the vertices (other than v and w) on this or any shortest path
joining v and w have valence 6. Now consider this path as a subgraph of Γ. Since
every vertex interior to this path has valence 6, we can trace a copy of this path in
Λ such that the turns at each interior vertex are the same on the path and its copy.
Label the corresponding ends of the copy by v and w. Then, by Lemma 4, this copy
is a shortest v, w-path in Λ and may be identified with a segment σ in Λ as pictured
in Figure 4.
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Now consider the mapping from our path in Γ into Λ. We wish to extend this
mapping to as large a region of Γ as is possible. Since both Λ and Γ are triangulations,
we can extend this map to all vertices and edges which complete a triangle with one
edge on the path or are adjacent to one vertex interior to the path. We continue to
extend the domain of this map outward from the path by including adjacent vertices
of degree 6. In view of Lemma 1, part i and Lemma 5, parts a(ii) and b(ii), we see
that this mapping may be extended to a region of Γ which is mapped onto Hσ. We
may think of the hexagonal region Hσ, pictured in Figure 4, as a region in Γ with the
understanding that some of the vertices on the boundary may belong to P . We will
call such a region a hexagonal region of Γ and we will use the same notation for this
region and its various subsets as is used for their images in Λ.

Using this construction, each edge {v, w} of A2(Γ) may be identified with a
segment in a hexagonal region of Γ. However, this identification depends on the
choice of a shortest v, w-path in Γ. If σ is the segment associated with a given
v, w-path, then any of the paths in Gσ will give the same hexagonal region. But
Γ is a finite planar graph and perhaps there is another shortest v, w-path running
“around the back.” This can indeed happen, in which case we would have another
segment σ′ associated with the edge {v, w} in A2(Γ) and another hexagonal region
Hσ′ in Γ with v and w on its boundary. When this occurs we will add another
v, w-edge to A2(Γ) associated with σ′. Thus A2(Γ), as amended, is a multigraph
and we label each edge with the Coxeter coordinates of the segments associated with
that edge. Note, if σ and σ′ are the segment associated with multiple edges, then
|σ| = |σ′|.

We may actually draw this amended A2(Γ) on the sphere by superimposing it
on the given drawing of Γ: for each edge of A2(Γ), draw in the associated segment σ
as it appears in Hσ. If these segments do not cross, this will be a planar embedding
of A2(Γ). Unfortunately, some of the edges of this drawing of A2(Γ) may cross. We
solve this problem by replacing the weight function ω1 with the weight function ω2:
for each edge e in A2(Γ), let σe denote its associated segment and let ω2(e) = ‖σe‖.
The structure graph of A2(Γ) with weight function ω2 is called the signature graph
of Γ and is denoted by S(Γ). We must keep in mind that S(Γ) could actually be
a multigraph. However, we will continue to abuse notation and call it simply the
signature graph of Γ. Since S(Γ) is obtained from A2(Γ) by simply deleting some
of its edges, S(Γ) inherits a natural drawing in the plane, and conveniently we have
deleted enough edges to eliminate all crossings.

Lemma 7. For a plane triangulation Γ, the drawing of S(Γ) on the sphere de-
scribed above is a planar embedding.

Proof. Let Γ be a plane triangulation and consider the drawing of S(Γ) described
above. Suppose that, in this drawing, the segments σ and σ′ with endpoints {v, w}
and {v′, w′}, respectively, cross. Denote the Coxeter coordinates of the segments by
(p, q) and (p′, q′), respectively. (We leave to the reader the similar but simpler cases
where one or both of the segments have a single Coxeter coordinate.) Assume that
‖σ‖ ≥ ‖σ′‖; hence, |σ| ≥ |σ′| as well. We have drawn the hexagonal region of Γ about
σ in Figure 5.

Since they belong to P , the vertices v′ and w′ cannot lie in the interior of Hσ.
Select a shortest v′, w′-path associated with the segment σ′ and consider the intersec-
tion of this path with Hσ. This intersection contains a subpath which crosses σ. Let
r and s denote the endpoints of this subpath, so that the clockwise order of the four
points around Hσ is v, r, w, and s.
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First, suppose that r lies on the section of the boundary from v3 to w while s
lies on the boundary from w to v7. In this case, w lies on a shortest r, s-path and,
hence, on a shortest v′, w′-path, which is impossible. Likewise, the possibility that r
lies between v and v3 while s lies on the boundary from v to v7 can be eliminated.

Next, suppose that r lies on the section of the boundary from v1 to v3 while s
lies on the boundary from v5 to v7. In this case, |σ| ≥ |σ′| ≥ δ(r, s) ≥ p + q = |σ|
and equality must hold throughout. But equality can hold only if {v′, w′} = {r, s} =
{v1, v7} or {v′, w′} = {r, s} = {v3, v5}, and both options have already been excluded.

We conclude that one of r and s lies on the top boundary of Hσ and the other on
the bottom boundary of Hσ. Thus we again have |σ| ≥ |σ′| ≥ δ(r, s) ≥ p + q = |σ|,
and again equality must hold throughout. Thus {v′, w′} = {r, s} and we are free to
assume r = v′ and s = w′.

Note that the segments joining v to v4 and w to v8 are reflections of σ and hence
have the same refined length as σ. Now, if v′ were to lie between v4 and w, we easily
see that the refined lengths from v′ to v and v′ to w are both less than ‖σ‖, violating
Lemma 1, part i. If v′ were to lie between v3 and v4, the refined length from v′ to
v would be greater than ‖σ‖, and ‖σ′‖ would be even larger, violating our original
assumption. All that remains is the case where v′ lies between v1 and v while w′ lies
between w and v5. Again one can easily see that, in this case, ‖σ′‖ > ‖σ‖, violating
our original assumption.

We may now give the formal definition of the signature a plane triangulation Γ. It
is the signature graph S(Γ) with the planar embedding given by the natural drawing
of it superimposed on Γ, with its edges labeled by the Coxeter coordinates of the
associated segments and its angles labeled by the angle types given by the drawing
on Γ. We illustrate this definition with an example of a geodesic dome on 62 vertices
(the dual fullerene has 120 vertices).

In Figure 6, the geodesic dome is pictured in the plane and is therefore somewhat
distorted. The 5-valent vertices are circled and 6 segments of the signature are drawn
in as double lines (note that two of them pass through vertices of valence 6). The
remaining 14 segments of the signature all have length 1 and join adjacent 5-valent
vertices. The signature graph is then redrawn on the left in Figure 7 with the segment
and angle labels: the two lobes are identical and, to minimize clutter, we have included
the angle labels only in the top lobe and the edge labels only in the bottom lobe.

The natural question to ask is, Does the signature of a plane triangulation uniquely
determine that plane triangulation? Basically we are asking if it is true that the faces
of the signature can be filled in consistent with the edge and angle labels in only one
way. In the next section, we show that the answer is “yes” for geodesic domes. For
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now, we simply continue with this example. On the right in Figure 7, we have drawn
the faces of the signature in Λ with several of the segments identified. To build a
three-dimensional model of Γ, simply cut along the unidentified segments and make
the identifications indicated by the vertex labels.

5. The signature of a fullerene. The first part of the problem posed in the
last section is to rebuild a plane triangulation from its signature. This boils down to
filling in each face of the signature with a region from Λ that is consistent with the
segment and angle labels of that face. The second part of the problem is to show
that this can be done in only one way. The natural approach to filling in the faces
is to select a face of the signature and then simply reconstruct its boundary in Λ
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as prescribed by its segment and angle labels: denote the segments by σ1, . . . , σk in
clockwise order around the face; draw a segment σ′

1 in Λ congruent to σ1; draw in a
segment σ′

2 congruent to σ2 sharing an endpoint so that the angles between σ1 and
σ2 and σ′

1 and σ′
2 have the same type; and so on. Ultimately this is precisely what

we will do; but at the outset it is not even clear that this “dead reckoning” approach
will result in a closed polygonal region of Λ. To aid in our investigation we introduce
some additional notation. Following Brinkmann, Friedrichs, and Nathusius [1], we
define an (m,k)-patch to be a plane graph such that

• all faces are k-gons, except for one n-gon,
• the boundary of the n-gon is an elementary circuit and is called the boundary

of the patch,
• all vertices not on the boundary have valence m while those on the boundary

have valence at most m.
For a simple example of a (6,3)-patch, consider any region of Λ bounded by an elemen-
tary circuit. For a more complicated example, consider a long narrow region which
curves around and overlaps itself. For the (6,3)-patch, we consider the overlapping
portions of the region to be distinct. Now let Γ be a geodesic dome and consider a
face of S(Γ). Replace each segment σ in the boundary of this face by a shortest path
joining its endpoints that lies in Gσ. If the angle between consecutive segments σ and
σ′ is small, Gσ and Gσ′ may overlap. In this case, we select the paths in Gσ ∪Gσ′ so
that they do not intersect. Next, label the vertices and edges on these paths clock-
wise around the face; vertices and edges which lie on paths corresponding to segments
that bound the face on two sides are labeled twice, once from each side. Considering
doubly labeled vertices and edges as two distinct vertices or edges, we have associated
a (6,3)-patch with the given face.

By a drawing of a (6,3)-patch, ∆, in Λ, we mean a graph homomorphism from
∆ into Λ such that distinct triangular faces sharing a common edge are mapped onto
distinct triangular faces sharing a common edge. Up to an automorphism of Λ, a given
(6,3)-patch has a unique drawing in Λ: select any triangular face of ∆ and map into
Λ; this mapping extends uniquely to its neighboring triangular faces and then to their
neighbors, etc., until the entire patch is drawn. Let ∆ be a (6,3)-patch with boundary
Ω and let v0, . . . , vn−1, vn = v0 be the vertices of Ω in cyclic order around the patch.
The cyclic sequence of valences ρ(v0), . . . , ρ(vn−1, ρ(vn) = ρ(v0) is called the boundary
code for Ω. Note that, by the definition of (m, k)-patch, 2 ≤ ρ(vi) ≤ 6, for each
i = 1, . . . , n. Given the boundary code of ∆, we may inductively draw this boundary
in Λ: in Λ, select any two adjacent vertices v′0 and v′1 to be the images of v0 and v1;
once the edge {v′i−1, v

′
i} has been drawn, let v′i+1 be the ρ(vi)th vertex adjacent to

v′i counting counterclockwise starting with v′i−1 and draw in {v′i, v′i+1}. At each step,
the drawing of this circuit must match with the boundary of the appropriate drawing
of the entire patch ∆. Thus, the drawing of Ω in Λ is unique up to an automorphism
of Λ and depends only on the boundary code for Ω.

Now let ∆ be a (6,3)-patch associated with a face of the signature of a geodesic
dome Γ, as constructed above, and draw its boundary in Λ. The image of the boundary
may then be partitioned into paths corresponding to the segments in S(Γ) from which
they came. Clearly, the endpoints of each such path define a segment in Λ with the
same Coxeter coordinates its corresponding segment in S(Γ). Replacing these paths
by segments in Λ, results in a (perhaps overlapping) polygonal region of Λ bounded
by segments corresponding to the segments bounding the given face. Furthermore,
the angle labels match. We have proved the following lemma.
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Lemma 8. Up to an automorphism of Λ, the polygonal boundary of the face
of the signature of a plane triangulation has a unique drawing in Λ with the same
sequence of Coxeter coordinates and angle types.

The next question is, Is the polygonal region of a face of the signature of a
geodesic dome uniquely determined by its boundary? X. Guo, P. Hansen, and M.
Zheng [8] constructed two distinct (3, 6)-patches with the same boundary sequence
and his example is easily altered to produce two distinct (6, 3)-patches with the same
boundary. We say that a boundary sequence is ambiguous if there exist two distinct
(6, 3)-patches with the same boundary sequence. We say that the face of the signature
of a plane triangulation is ambiguous if there exist two distinct polygonal regions with
the boundary of that face. The next lemma follows at once from Lemma 8.

Lemma 9. A geodesic dome with a signature that admits no ambiguous faces is
uniquely determined by its signature.

If the drawing of the boundary of a (6,3)-patch is an elementary circuit, then its
interior is uniquely determined and the patch is not ambiguous. Hence the drawing
of an ambiguous (6,3)-patch in Λ must be self-overlapping. The drawings of faces of
triangulations with vertices of valence more than 6 may well be self-overlapping and
possibly ambiguous. In the remainder of this section, we sketch the proof that a face
of the signature of a geodesic dome cannot yield a self-overlapping region when drawn
in Λ thereby verifying:

Theorem 1. A geodesic dome is uniquely determined by its signature.
The basic idea is that a face of the signature of a geodesic dome cannot curve

back in itself far enough to overlap. Rather than looking at all possible faces of the
signature of a geodesic dome, we consider the single face of a shortest spanning tree
of the geodesic dome. This is the union of all of the faces of the signature and, if its
drawing is not self-overlapping, none of the faces can have self-overlapping drawings.
As a prototype self-overlapping face of a shortest spanning tree, consider the region
pictured in Figure 8. There are several features to observe. First, since a spanning
tree has 11 segments, this face is bounded by 22 segments. Second, in order to turn
back on itself as pictured here, the face must have several angles of types greater than
3 (e.g., A, B, and C).
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We start by eliminating the possibility of some angle types. The arguments we
include here are very geometric and will be carried out in Λ. They will be valid in
the geodesic dome by virtue of the fact that they will be carried out in a region of Λ
corresponding to the union of overlapping hexagonal regions of signature segments in
the geodesic dome.

Lemma 10. The signature of a geodesic dome admits no angles of types 1
2

or 4 1
2 . A shortest spanning tree of a geodesic dome admits no angles of types 0, 1

2 , or
4 1

2 . Furthermore, the vertices at angles of types 4 and 3 1
2 in a shortest spanning tree

have valence 2 while angles of type 5 occur only at pendant vertices.
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Proof. Let Γ be a geodesic dome and let segments σ with endpoints v and w and
τ with endpoints u and v be segments in S(Γ). Assume that the type T of the angle
between these two segments is 0 or 1

2 and that |σ| ≥ |τ |. Since u cannot lie interior
to the hexagonal region of σ, it must lie on the top boundary of Hσ as illustrated in
Figure 9. We observe that the distance between u and w is less than the distance
between v and w. Thus, both σ and τ can belong to S(Γ) only if they have the same
refined length. If T = 1

2 , this is impossible since their Coxeter coordinates are (p, q)
and (p + q). Thus S(Γ) does not have an angle of type 1

2 . S(Γ) will include both σ
and τ with T = 0 if τ has Coxeter coordinates (q, p). But in this case, the segment
joining u and w would be considered by the shortest spanning tree algorithm before
σ and τ and at most one of σ and τ could belong to a shortest spanning tree.

Since the types of the angles at a vertex in S(Γ) or a shortest spanning tree must
sum to 5, an angle of type 41

2 is excluded. In a shortest spanning tree, an angle of
type 4 or type 31

2 can only occur at a vertex of valence 2 across from a vertex of type
1 or type 11

2 and an angle of type 5 is excluded from a shortest spanning tree unless
it is a pendant vertex.
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There are three basic ways in which an overlap could occur: as the result of
a broad curve like that pictured in Figure 8, a broad curve in conjunction with a
pendant vertex, or as the result of several pendant vertices. We consider each of these
possibilities in turn.

The edges at each vertex of Λ divide the neighborhood about that vertex into six
sectors. We label these sectors with the integers mod six starting with 0 at the bottom
and working clockwise around the vertex; see Figure 10. Fix a shortest spanning tree
and let σ0 and σ1 be segments of the tree with a common endpoint v1. Suppose that,
moving clockwise around the tree (counterclockwise around the face), we encounter σ0

followed by σ1. Suppose further that the type of the angle the segments make at v1 is
T1 (an integer) and that σ0 approaches v1 through sector 0; then σ1 leaves v1 through
sector T1. We have illustrated this with an angle of type 4 on the left in Figure 10. If
T1 were not an integer, say 3 1

2 , then σ1 would leave along the edge separating sectors
3 and 4 or σ0 could enter along the edge separating sectors 0 and 1 while σ1 leaves
through sector 4. If σ1 leaves v1 through sector T1, it approaches its other endpoint
through sector T1 − 3. Hence, if we have a path which is a section of the boundary
σ0, v1, . . . , vk, σk with angle type Ti at vi and if σ0 approaches v0 through sector 0,
then σk approaches vk+1 through sector (

∑k
1 Ti) − 3k, (if (

∑k
1 Ti) − 3k = T + 1

2 ,
σk approaches vk+1 along the edge separating sectors T and T + 1). This number,

(
∑k

1 Ti)−3k, is called the excess of the path. In order to yield a self-overlapping region,
this section of the boundary must make a complete clockwise change of direction and
approach vk+1 through sector 3 or higher. That is, its excess must be at least 3:

(
∑k

1 Ti)−3k ≥ 3 or (
∑k

1 Ti) ≥ 3k+3. Hence we must have several angles of type 4 or
3 1

2 along a portion of the tree. Since angles of types 31
2 and 4 occur only at vertices

of valence 2 in our shortest spanning tree, it is not surprising that the “worst case
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scenario” is that our shortest spanning tree is a simple path. So think of a subpath of
our tree along which the angles have types 4, 31

2 , and 3. We investigate this subpath
by considering the angles on the other side of the path.

We are interested in constructing a path in our shortest spanning tree of length k
so that the sum of the types of the angles along this path is at most 5k − (3k + 3) =
2k−3. In Figure 11, we have drawn an angle of type 1 at vertex v0. Around the vertex
v−1, we have constructed a hexagon; any vertex in this hexagon has its distance to
v−1 less than |σ0|. Thus v1 is outside (or on) the hexagon; were it inside, the segment
joining v−1 to v1 would have been selected in place of σ0 or σ1 when constructing
the shortest spanning tree. If the next segment, σ2 (from v1 to v2), were to make an
angle of type 1, it would either (1) force v2 to lie in the hexagon; (2) force σ2 to be so
long that it completely crosses the hexagon; (3) force σ2 to be so short that it never
intersects the hexagon. In the first case, we have the previous contradiction. In the
second case, v2 is closer to v−1 than to v1, resulting in another contradiction. The
third case is impossible since v2 must lie outside the corresponding hexagon around
v1. The same argument will exclude an angle of type 11

2 . Thus, the angle at v1 is
of type at least 2. At this point we note that the angle at v0 would be of type 11

2
if σ1 were horizontal. And the above arguments would still preclude the angle at v1
being of type 1. However, two successive angles of type 1 1

2 are possible. We continue
considering the case of angles of integer type and simply note that our arguments can
be adapted to the cases involving angles of fractional type.
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In Figure 12, we have added σ2 with an angle of type 2 at v1 and σ3 with an
angle of type 2 at v2. Neither of these aid in our goal of a path with type sum 2k− 3.
It would seem that the only way to make a sharp, type 1 turn to the left is to first
pull away from the hexagon and then turn toward it but not into it. To pull away,
we could include a type 3 angle; but this would nullify the initial type 1 angle in
the sum. The only other option is to make a segment like σ3 much longer than the
side of the hexagon. However, this won’t work either. For example, the distance
between v3 and v−1 must be as long or longer than |σ0|, |σ1|, |σ2|, and |σ3|; otherwise
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the segment joining v3 and v−1 would have been added to the shortest spanning tree
before the longest of those segments. In short, adding a long segment at an angle
of type 2 increases the size of the “forbidden hexagon” about v−1 for all subsequent
vertices. We conclude that, as we move along a section of the boundary of the face
in either direction from a vertex of type 1, we must encounter a vertex of type 3 or
more before we may encounter a second vertex of type 1. A similar conclusion holds
when fractional types are considered. Hence, we can never achieve a path with type
sum at most 2k − 3 nor one with type sum at least 3k + 3 (excess 3 or more) using
only nonpendant vertices.
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Fig. 12.

So the next question is, Can we get a little extra back curvature at a pendant
vertex? The answer is “yes, but far too little for an overlap.” We illustrate this by
assuming that v−1 has valence 5. This is also pictured in Figure 12. As one can see,
the face does turn back on itself—but not sharply enough to self-intersect. Because
the vertices of the spanning tree have valence 5 in Γ, we have that the outside angle
at v−1 is of type 1. If the two copies of segment σ1 were extended to intersect, their
outside angle would be of type 2 and the two copies of σ2 make an angle of type 3.
So, at each step away from v−1, the two boundary paths are pulling away from one
another and we conclude that no overlapping can occur near the pendant vertices.

The only remaining question is whether several pendant vertices could yield an
overlap. Here there are many cases to consider. By a branch, we mean a single edge
along with one of the components that its deletion yields. A branch with k vertices
yields a section of the boundary with 2k edges and 2k − 1 vertices; see Figure 13
below. We can easily compute the excess of this entire section of the boundary path
of the face: the sum of all angle types at these 2k − 1 vertices is 5k; so the excess
along the entire path is 5k − 3(2k − 1) = 3 − k < 3. The natural question to ask is,
Could a subpath have a higher excess?
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Among all possible subpaths of the face boundaries of branches, consider those
with largest possible excess. Suppose that v is a pendant vertex of the branch and
is interior to the subpath of the face boundary. Let T, 5, T ′ be the angle types of
the three vertices on the subpath centered at v. These three vertices contribute
T +5+T ′− 9 = T +T ′− 4 to the excess of the path. Now delete this pendant vertex
from the branch and adjust the subpath accordingly. The three vertices are replaced
by a single vertex of type T +T ′ which contributes T +T ′−3 to the excess. Thus the
smaller branch has a subpath with a larger excess. We have carried out this reduction
on the branch in Figure 13 and recorded the result in Figure 14. We conclude that
the branches with a subpath having a largest possible excess have just two pendant
vertices and that the subpath with largest possible excess runs from one pendant
vertex to the other. Checking our examples, we see that the subpath in Figure 13
between the extreme pendant vertices has an excess of 3 while the corresponding
subpath in Figure 14 has an excess of 4.
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As we have noted the sum of the angle types along the entire path around a
branch with k vertices is 5k. Assume that we have a branch with just two pendant
vertices. To make the excess of the subpath that runs from one pendant vertex to the
other as large as is possible, we should make the sum of the types along the outside
of paths from the trivalent vertex to the pendant vertices as small as possible. As
we have already shown, the sum of the types along such a path will be as small as is
possible when we have one angle of type 1 (or two of type 11

2 ) and the rest of type 2.
This smallest sum is then 2(k − 2). So the sum of the angle types along the subpath
joining the two pendant vertices is 5k − 2(k − 2) = 3k + 4 and its excess is 4.

Finally, we note that a pendant vertex gives rise to two sides of an equilateral
triangle along the face boundary. If we add the triangle to the face replacing the two
edges by the third side of the triangle, we get a region of Λ that contains the face.
We note further that making this substitution in the subpath results in decreasing
the excess by 1. Carrying out this reduction throughout the entire face results in a
region containing the face which has the property that no subpath of the boundary
has excess 3 or more and hence is nonoverlapping. Hence the face is nonoverlapping.

6. Using the signature. It follows from Theorem 1 that the signature S(Γ)
of a geodesic dome carries complete information about the geodesic dome Γ and its
fullerene dual. It would be convenient if we could read some of this information di-
rectly from S(Γ). In An Atlas of Fullerenes [6], Fowler and Manolopoulos indicate that
whether or not pentagonal faces are adjacent is an important feature of a fullerene.
Clearly, the relative positions of the pentagonal faces can be read directly from its
signature. Another feature of a geodesic dome/fullerene that can be easily deduced
from its signature is its symmetry structure.

Let the geodesic dome Γ be given. Any automorphism α of Γ must permute the
5-valent vertices, and hence it induces a permutation of the vertices of A1(Γ) which we
also denote by α. Since α preserves distance, it is an automorphism of the weighted
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graph A1(Γ), ω1. It must then map spanning trees of A1(Γ) onto spanning trees of
A1(Γ). It follows that α must map A2(Γ), the structure graph of A1(Γ), onto itself.
Suppose that v and w are vertices in P joined by the segment σ in A2(Γ). Clearly, α
maps the hexagonal region of Γ determined by v and w onto the hexagonal region of
Γ determined by α(v) and α(w). Thus α(σ) is congruent to σ and α preserves refined
length.

Applying the above arguments to A2(Γ), ω2, we conclude that α induces an au-
tomorphism of its structure graph, namely S(Γ). Furthermore, if the original α is an
orientation preserving automorphism of Γ, the induced α is an orientation preserv-
ing automorphism of S(Γ) that maps segments onto segments with the same Coxeter
coordinates and, if the original α is an orientation reversing automorphism of Γ, the
induced α is an orientation reversing automorphism of S(Γ) that maps segments onto
segments with reversed Coxeter coordinates. In both cases α preserves angle types.
Thus we are led to define an automorphism of a signature to be an automorphism of
the signature graph (as a plane graph) that preserves angle types and preserves or
reverses the Coxeter coordinates of the edges, according to whether it is orientation
preserving or orientation reversing.

Now suppose that α is an automorphism of the signature of Γ. Since the edge
and angle labels around a face determine a unique region of Λ up to an automorphism
of Λ, α has a natural extension to an automorphism of Γ. Thus this mapping of the
automorphism group of Γ into the automorphism group of its signature is onto. Is it
one-to-one? Surprisingly, the answer is “not always.” We explore these exceptional
cases next.

Let α and β be automorphisms of Γ which induce the same automorphism on its
signature. Since Γ is a triangulation of the plane, two automorphisms which agree on
a single triangular face agree everywhere. Let v and w be any two vertices in P joined
by an edge in the signature. Then α and β map the hexagonal region determined
by v and w onto the hexagonal region determined by α(v) = β(v) and α(w) = β(w).
If they agree on this hexagonal region, they would agree everywhere. Hence the
hexagonal region must be symmetric and the two images of the v, w-hexagonal region
must be reflections of one another. This is only possible if the edge is of type (p)
or (p, p). Next, suppose that u, v, and w are the vertices of a path of length two in
the signature. Since the image of this path must be invariant under reflection, v has
valence two in S(Γ) and the angles at v are both of type ρ

2 , where ρ is the valence
of v in Γ. It follows that S(Γ) is either a path or a circuit, that its edge labels are
of the forms (p) and (p, p) and that the angle types are equal at each vertex. If Γ
is a plane triangulation with such a signature, one easily sees that both the identity
and the reflection through the line or circuit of its signature induce the identity on
its signature. An example of such a geodesic dome is worked out at the end of this
section. We have proved the following theorem.

Theorem 2. Let Γ be a plane triangulation.
i. If S(Γ) is not a path or circuit with the special labeling described above, then

its automorphism group and the automorphism group of its signature are iso-
morphic.

ii. If S(Γ) is a path or circuit with the special labeling described above, then its
automorphism group is isomorphic to the direct product of the automorphism
group of its signature and the reflection through its signature.

The next question we tackle is, How can we compute the number of vertices, edges
and faces of a plane triangulation from its signature? To answer this question, consider
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a polygonal region with vertices v0, v1, . . . , vn in counterclockwise order around the
region. Fix the coordinate system with v0 at the origin, with the horizontal edge to
the right at v0 as the unit vector in the x direction and the next edge counterclockwise
as the unit vector in the y direction. The x, y-coordinates of the segment directed
from the point v to the point w is simply the coordinates of w minus the coordinates of
v. It should be clear that the x, y-coordinates of a segment can be computed directly
from its orientation and its Coxeter coordinates. Returning to our polygonal region,
the orientations of the bounding segments are determined, in order, by the orientation
of the previous segment and the type of the angle between them. For i = 1, . . . , n,
let (xi, yi) denote the x, y-coordinates of the segment joining vi−1 and vi. It follows

that the coordinates of the vertex vi are (xi, yi) = (
∑i
j=1 xj ,

∑i
j=1 yj). The standard

formula for the area of such a polygonal region is 1
2

∑
1≤i<n(xiyi+1 − xi+1yi). Note

that a unit square in the x, y coordinate system consist of two lattice triangles and
thus the area of the region is equal to the area of

∑
1≤i<n(xiyi+1 − xi+1yi) lattice

triangles. Finally, substituting the x, y values for x, y in this formula gives the area,
in lattice triangles, as ∑

1≤i<j≤n
(xiyj − xjyi).

Using this formula, we compute the area of each face of the signature of a plane
triangulation Γ. The sum t of these areas will then be the number of the triangles or
faces of Γ and the numbers of edges and vertices will be given by the formulas e = 3t

2
and v = t+4

2 .
We close with one more example. This is the signature for one of the families of

fullerenes that arose in our discussion of symmetry. The signature graph consists of a
single path; the angle labels are 5 at the pendant vertices and 2.5 for all other angles;
the segment labels are variables. See Figure 15.

� � � � � � � � � � � �v1 v2 v3 v4 v5 v6 w6 w5 w4 w3 w2 w15 5

2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
(a) (b, b) (c) (d, d) (e) (n, n) (f) (g, g) (h) (i, i) (j)

a + 3b + 2c + 3d + e = f + 3g + 2h + 3i + j

2n + d + e− a− b + f + g − i− j > max{a, 2b, c, 2d, e, 2n, f, 2g, h, 2i, j}

Fig. 15.

In selecting values for the parameters the conditions listed in the figure must be
satisfied. The equality ensures that the face, as laid out in Λ, actually closes. If one
were to carry out this construction for a given set of values, the vertices v1 and w1

could be quite close to one another. In that case, (v1, w1) would be a segment in the
signature of the fullerene we construct. So, in order to make sure that the signature
with which we start is the signature of the fullerene we produce, the inequality must
hold.

Using the formula for area derived above, we may compute the number of triangles
in the geodesic dome or the number of vertices in the fullerene. This number turns
out to be a rather complicated quadratic polynomial in these 11 variables:

2ab + 2ac + 4ad + 2ae + 2bc + 6bd + 4be + 2cd + 2ce + 2de + 2fg + 2fh + 4fi

+ 2fj + 2gh + 6gi + 4gj + 2hi + 2hj + 2ij + (d + e − a − b + f + g − i − j + 4n)s, where
s = a + 3b + 2c + 3d + e = f + 3g + 2h + 3i + j.



614 JACK E. GRAVER

One final observation: The fullerenes in this family are nanotubes. Select any
fullerene in this family, i.e., select values for the parameters that satisfy the equality
and the inequality and note that n can be increased without limit while keeping the
remaining parameters fixed. In general, a nanotube will have a signature containing
an edge cut set consisting of congruent segments that partition the vertices into two
classes of six vertices each and have a parameter that may be enlarged independent
of all other parameters. Our first example, pictured in Figures 6 and 7, is also a
nanotube. The cut set consists of the double edges connecting the vertices labeled e
and f in the right-hand picture of Figure 7. Replace their Coxeter coordinates with
(n, 4) and (4, n); increasing n beyond 2 simply moves the top configuration (vertices
a through e) up and to the right along the line of the tessellation.
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Abstract. Let G be a t-uniform s-regular linear hypergraph with r vertices. It is shown that
the number of independent sets I(G) in G satisfies

log2 I(G) ≤ r

t

(
1 + O

(
log2(ts)

s

))
.

This leads to an improvement of a previous bound by Alon obtained for t = 2 (i.e., for regular
ordinary graphs). It is also shown that for the Hamming graph H(n, q) (with vertices consisting
of all n-tuples over an alphabet of size q and edges connecting pairs of vertices with Hamming
distance 1),

log2 I(H(n, q))

qn
=

1

q
+ O

(
log2(qn)

qn

)
.

The latter result is then applied to show that the Shannon capacity of the n-dimensional (d,∞)-
runlength-limited (RLL) constraint converges to 1/(d + 1) as n goes to infinity.

Key words. regular hypergraphs, Hamming graphs, multidimensional constraints, runlength-
limited constraints
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1. Introduction. For a hypergraph G, let VG and EG, respectively, denote the
set of vertices and set of hyperedges of G, where EG ⊆ {e ⊆ VG : |e| ≥ 2}. For a
vertex v in VG let NG(v) denote the set of vertices that are adjacent to v in G, namely,

NG(v) =
{
v′ ∈ VG \ {v} : {v, v′} ⊆ e for some e ∈ EG

}
,

and let δG(v) = |NG(v)| be the degree of v in G. An independent set in G is a subset
T ⊆ VG such that |e ∩ T | ≤ 1 for all e ∈ EG. The number of independent sets in G
will be denoted by I(G).

A hypergraph G is t-uniform if each hyperedge contains t vertices, and is called
s-regular if each vertex is contained in s hyperedges. If the intersection of any two
hyperedges of G contains at most one vertex, then G is said to be linear. See [2].

The following theorem is the main result of this paper.
Theorem 1.1. Let G be a t-uniform s-regular linear hypergraph with r vertices.

The number of independent sets I(G) in G satisfies

log2 I(G) ≤ r

t

(
1 +O

(
log2(ts)

s

))
.
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The proof of Theorem 1.1 is given in section 2, and in section 3 we present a
generalization of Theorem 1.1 to uniform linear hypergraphs that are not necessarily
regular.

We next present several applications of Theorem 1.1.

1.1. Regular graphs. For the special case of (undirected) regular ordinary
graphs, Theorem 1.1 takes the following form.

Theorem 1.2. For an s-regular graph G with r vertices,

log2 I(G)

r
≤ 1

2
+O

(
log2 s

s

)
.(1)

Theorem 1.2 improves on the error term, O(s0.1), which was previously obtained
by Alon [1] (as shown by Kahn [7], the error term can be further improved to O(1/s)
when the s-regular graph G is bipartite). Unfortunately, (1) is not tight for the
widely conjectured worst-case graph consisting of a disjoint union of complete bipartite
graphs with degree s [1], [7]. Thus, there is still room for improvement.

1.2. Hamming graphs. Let H(n, q) denote the Hamming graph whose vertices
are all indices j ∈ {0, 1, . . . , q−1}n and two vertices are connected by an edge if and
only if they are at Hamming distance 1 apart, i.e., the vertices differ on exactly one
coordinate.

The number, I(H(n, q)), of independent sets in H(n, q) has received some atten-
tion in the literature (I(H(n, q)) is also the number of codes of length n and minimum
Hamming distance ≥ 2 over an alphabet of size q). The case q = 2 is of particular
interest, and H(n, 2) is more commonly known as the binary Hamming hypercube.
The strongest result for q = 2 is due to Korshunov and Sapozhenko [9] (see also [14]),
who show that

I(H(n, 2)) ∼ 2
√

e 22n−1

,

where e is the base of natural logarithms; it readily follows that 2−n log2 I(H(n, 2)) =
1/2 +O(2−n).

As for general q, we have

log2 I(H(n, q))

qn
≥ 1

q
,(2)

since every subset of {j = (j1, j2, . . . , jn) : j1 + j2 + · · · + jn ≡ 0 (mod q)} is an
independent set in H(n, q).

Little seems to be known about how tight the lower bound (2) is when q > 2.
Numerical computations of I(H(n, q)) for q = 2, 3, 4 and small n have been carried
out [4]. We are not aware of any asymptotic analysis of I(H(n, q)) for q > 2 beyond
what we derive here. Specifically, we note that a subset of the Hamming graphH(n, q)
is an independent set if and only if it is also an independent set in the q-uniform, n-
regular, linear hypergraph with the same vertex set as H(n, q) and with hyperedges
being the subsets of vertices of H(n, q) that agree in all but one component. Hence,
by setting r = qn, s = n, and t = q in Theorem 1.1 we obtain the following result.

Theorem 1.3. The number of independent sets in the Hamming graph H(n, q)
satisfies

log2 I(H(n, q))

qn
=

1

q
+O

(
log2(qn)

qn

)
,

for all q.
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1.3. Multidimensional runlength-limited constraints. For any n-tuple of
positive integers m = (m1,m2, . . . ,mn) let Γ be an n-dimensional m1×m2×· · ·×mn

binary array whose entries are indexed by n-tuples of integers

j ∈ {0, 1, . . . ,m1−1} × {0, 1, . . . ,m2−1} × · · · × {0, 1, . . . ,mn−1}.

We say that Γ satisfies the (d,∞)-runlength-limited (RLL) constraint if and only if
for any two indices j and j′ that differ in only one component and differ by less than
d+ 1 in that component, either Γ(j) = 0 or Γ(j′) = 0. That is, every one-dimensional
subarray of Γ satisfies the one-dimensional (d,∞)-RLL constraint. Let A(n, d,m) be
the set of all such arrays. The Shannon capacity of the n-dimensional (d,∞)-RLL
constraint is defined by

C(n, d) = lim
i→∞

log2 |A(n, d,m(i))|∏n
�=1m

(i)
�

(3)

= inf
m

log2 |A(n, d,m)|∏n
�=1m�

,(4)

where m(i) = (m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n ) is any sequence of n-tuples of integers satisfying

min�m
(i)
� → ∞. That the right-hand side of (3) is independent of how the limit is

taken and coincides with (4) follows from subadditivity arguments; see [6], [8].
The value C(n, d) equals the largest coding rate of any encoder (i.e., one-to-

one mapping) from the set of finite unconstrained binary sequences into the set of
(d,∞)-RLL constrained arrays [16]. One-dimensional RLL constraints are common
in magnetic and optical recording channels [10], [11], [15]. The ongoing practical
interest in using multidimensional recording media (see, for example, [5] and [17])
provides the motivation for studying the values of C(n, d) for n greater than 1.

The following facts about C(n, d) are known:
1. C(1, d) = log2 αd, where αd is the positive real root of the polynomial xd+1−
xd − 1 [15, p. 65], [16].

2. C(2, d) ∼ (log2 d)/d (namely, limd→∞ C(2, d) · (d/ log2 d) = 1) [8].
3. 0.5878911617 ≤ C(2, 1) ≤ 0.5878911619 [3], [13], [17].
4. 0.5225 ≤ C(3, 1) ≤ 0.5269 [13].
5. C(n, d) ≥ 1/(d+1) for all n [6], [8]. This follows by further constraining the 1’s

in Γ to have indices j1, j2, . . . , jn satisfying j1+j2+ · · ·+jn ≡ 0 (mod (d+1)).
The last fact, together with the simple observation that C(n, d) is decreasing in n
for fixed d (implied by the infimum-based specification of C(n, d) in (4)), raises the
possibility that C(n, d) decreases with n all the way down to 1/(d+1). We next show
that this is indeed the case.

Let H(n, q) be the Hamming graph as defined in section 1.2 and denote by 1 the
n-tuple consisting of all 1’s. It is not hard to see that the set of locations of 1’s in any
array in A(n, d, (d+ 1)1) corresponds to an independent set in the graph H(n, d+ 1).
The reverse is also true. Hence,

|A(n, d, (d+ 1)1)| = I(H(n, d+ 1)).

On the other hand, we also have the upper bound

C(n, d) ≤ log2 |A(n, d, (d+ 1)1)|
(d+ 1)n

.
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By Theorem 1.3 we thus get the next result.
Theorem 1.4.

lim
n→∞ C(n, d) =

1

d+ 1
.

2. Independent sets in uniform, regular, linear hypergraphs. In this
section we prove Theorem 1.1. Given a hypergraph G and a subset Y ⊆ VG, let GY
be the induced (i.e., maximally connected) subhypergraph of G on the vertices Y ,
that is,

VGY
= Y and EGY

=
{
e ∩ Y : e ∈ EG, |e ∩ Y | ≥ 2

}
.

Let Si(G) be the set of all induced subhypergraphs of G on i vertices, namely,

Si(G) = {GY : Y ⊆ VG, |Y | = i}.
Define fi(G) as

fi(G) = max
H∈Si(G)

I(H).(5)

Note that f1(G) = 2, f|VG|(G) = I(G), fi(G) ≥ fi−1(G) for 1 < i ≤ |VG|, and

fi(G) ≤ 2i.(6)

We also define f0(G) = 1 as standing for the empty independent set in an “empty”
subhypergraph. Let S∗i (G) denote the subset of subhypergraphs in Si(G) that achieve
the maximum in (5). We then have the following simple lemma.

Lemma 2.1. Given a hypergraph G and an integer i in the range 1 ≤ i ≤ |VG|,
let ∆ be a nonnegative integer that satisfies ∆ ≤ δH(v) for some vertex v of some
subhypergraph H ∈ S∗i (G). Then

fi(G) ≤ fi−1(G) + fi−∆−1(G).(7)

Proof. For any subhypergraph H ∈ S∗i (G) and any vertex v ∈ VH , the number
of independent sets I(H) = fi(G) is equal to the sum of the number of independent
sets that contain v and the number of independent sets that do not contain v. The
latter is

I(HVH\{v}) ≤ fi−1(G)

and the former is

I(HVH\({v}∪NH(v))) ≤ fi−δH(v)−1(G).

The lemma follows from the fact that fi(G) is nondecreasing in i.
The idea behind the proof of Theorem 1.1 is to start the recursion (7) with the

bound fi0(G) ≤ 2i0 for some i0 and then proceed by bounding the result of iterating
the recursion (7) up to i = |VG|. The key to obtaining a good final bound is, for each
i, to choose H and v to make ∆ in (7) as large as possible. The extent to which this
can be done depends on the structure of G.

Specializing to uniform, regular, linear hypergraphs, the following lemma provides
a lower bound on the largest possible choice for ∆ for each i.
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Lemma 2.2. Let G be a t-uniform, s-regular, linear hypergraph with r vertices.
Then for every H ∈ Si(G)

max
v∈H

δH(v) ≥ max

{⌈
s
( ti
r
− 1
)⌉
, 0

}
.(8)

Proof. Fix a subhypergraph H ∈ Si(G). We prove the lemma by counting ordered
pairs of adjacent vertices in VH in two different ways. Let

P =
{

(v, v′) ∈ VH × VH : v �= v′ and {v, v′} ⊆ e for some e ∈ EG
}
,

and for every e ∈ EG let βe = |e ∩ VH |. Then |P | = ∑
e∈EG

βe(βe − 1); that is, for
each hyperedge in G we count the number of ordered pairs of elements of VH in that
hyperedge and sum this over all hyperedges. By the linearity of G each ordered pair
is counted only once. Further,

∑
e∈EG

βe = si since each vertex v ∈ VH contributes
to the sum for precisely the s hyperedges that contain it.

Since the function (βe)e∈EG
�→ ∑

e∈EG
βe(βe − 1) is Schur convex [12] in the

variables βe, its minimum value subject to the constraint
∑
e∈EG

βe = si is achieved

when βe is constant-valued.1 And, since |EG| = rs/t, the minimizing βe is si/(rs/t) =
ti/r. Therefore,

|P | ≥ min
βe

∑
e∈EG

βe(βe − 1)

=
rs

t

ti

r

(
ti

r
− 1

)

= si

(
ti

r
− 1

)
.

On the other hand, letting ∆ = maxv∈H δH(v), we clearly have |P | ≤ ∆|VH | = ∆i.
Combining the two bounds on |P | and dividing by i gives (8).

We also need the following two elementary propositions.
Proposition 2.3. The equation xm+1 = xm+1 has only one positive real solution

αm, which is decreasing in m. Further, αm ≤ m1/m for m ≥ 3.
Proof. Write the equation as xm(x− 1) = 1. The left-hand side is nonpositive for

x in the range 0 ≤ x ≤ 1 and monotonically increasing for x ≥ 1, implying that there
is only one solution αm > 1. By definition αmm(αm−1) = 1 so that αm+1

m (αm−1) > 1,
implying, in turn, that αm+1 < αm. Finally, for every m ≥ 3 we have

xm(x−1)|x=m1/m = m
(
m1/m − 1

)
= m

(
e(logem)/m − 1

)
≥ m · logem

m
= logem > 1,

thus implying that αm ≤ m1/m.
Proposition 2.4. Let 0 = m0 < m1 < · · · < m� and 0 = i−1 < i0 < i1 < · · · < i�

be integers such that ij−1 ≥ mj for j = 1, 2, . . . , �, and suppose that the integer
sequence (fi)

i�
i=0 satisfies

fi ≤ fi−1 + fi−mj−1, 1 ≤ i ≤ i�,
1We can obtain a tighter bound on maxv∈H δH(v) by not ignoring the fact that βe is integer-

valued. In this case, the minimizing βe takes on at most two values that differ by 1. The resulting
bound, however, is more complicated and only slightly improves our bounds on the asymptotic
number of independent sets.
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where j = j(i) is the unique index such that (mj ≤) ij−1 < i ≤ ij. Let the real
sequence (gi)

i�
i=0 be defined recursively by g0 = f0 and

gi = αmjgi−1, 1 ≤ i ≤ i�,

where j is such that ij−1 < i ≤ ij and αmj
is the positive real solution of xmj+1 =

xmj + 1. Then fi ≤ gi for all 0 ≤ i ≤ i�.
Proof. We prove by induction on i, where the induction base i = 0 is obvious.

Turning to the induction step, suppose that fi′ ≤ gi′ holds for all 0 ≤ i′ < i and let j
be such that ij−1 < i ≤ ij . Then

fi ≤ fi−1 + fi−mj−1

≤ gi−1 + gi−mj−1(9)

≤ (1 + α−mj
mj

)gi−1(10)

= αmj
gi−1(11)

= gi,

where (9) follows from the induction hypothesis, (10) follows from the definition of gi
and the fact that αmj is decreasing in j (Proposition 2.3), and (11) follows from the
definition of αm.

Proof of Theorem 1.1. Let ∆(i) equal the right-hand side of (8). For j = 0, 1, . . . , �,
let m0 < m1 < · · · < m� be the values taken on by ∆(i) as i increases from 0 to r;
clearly, m0 = 0 and m� = s(t − 1). Denote by ij the largest i for which ∆(i) = mj .
Thus

ij =
⌊(mj

s
+ 1
) r
t

⌋
(12)

and, in particular, i0 = r/t� and i� = r. Since |NH(v)| ≤ i − 1 for every vertex v
in every H ∈ Si(G) and since |NH(v)| ≥ mj for some v when i = ij−1 + 1, we have

ij−1 ≥ mj . Therefore, by Lemma 2.1, the sequence (fi(G))
i�
i=0 with the integers mj

and ij satisfies the assumptions of Proposition 2.4. Hence,

log2 fr(G) = log2 fi�(G)

≤ log2 fi0(G) +

�∑
j=1

(ij − ij−1) log2 αmj

≤ i0 +

�∑
j=1

(ij − ij−1) log2 αmj ,(13)

where αmj is the positive real solution of xmj+1 = xmj + 1 and (13) follows from (6).
Incorporating ij − ij−1 ≤ (mj −mj−1)r/(ts) + 1 (from (12)) and i0 ≤ r/t into (13)
yields

log2 fr(G) ≤ r

t
+

�∑
j=1

(
(mj −mj−1)

r

ts
+ 1
)

log2 αmj

≤ r

t
+

m�∑
m=1

( r
ts

+ 1
)

log2 αm(14)
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≤ r

t
+
( r
ts

+ 1
)(

2 +

m�∑
m=3

log2m

m

)
(15)

≤ r

t
+
( r
ts

+ 1
)(

2 +
log2

2(s(t− 1))

log2 e

)
(16)

≤ r

t

(
1 +O

(
log2(ts)

s

))
,(17)

where (14) follows since αm is decreasing in m, (15) follows since α2 < α1 < 2 and
log2 αm ≤ (1/m) log2m for m ≥ 3 (Proposition 2.3), and (16) follows from the fact
that

∑m�

m=3 1/m ≤ logem� = loge s(t−1). The bound r ≥ m� = s(t−1) justifies (17).
The proof is completed by noting that I(G) = fr(G).

3. Nonregular hypergraphs. In this section, we generalize Theorem 1.1 to
uniform linear hypergraphs that are not necessarily regular.

Given a hypergraph G, let v1, v2, . . . , v|VG| be a labeling of the vertices of G
satisfying δG(v1) ≤ δG(v2) ≤ · · · ≤ δG(v|VG|). For i = 1, 2, . . . , |VG| define

σG(i) =
1

i

i∑
j=1

δG(vj).

That is, σG(i) is the average degree among the i vertices with smallest degrees in G.
Following is a version of Lemma 2.2 for nonregular hypergraphs.
Lemma 3.1. Let G be a t-uniform linear hypergraph with r vertices. Then for all

H ∈ Si(G)

max
v∈VH

δH(v) ≥ max

{⌈
σ(i)

( ti
r

σ(i)

σ(r)
− 1
)⌉
, 0

}
,(18)

where σ(i) = σG(i).
Proof. Replace

∑
e∈EG

βe = si with
∑
e∈EG

βe ≥ iσ(i) and |EG| = rs/t with
|EG| = rσ(r)/t in the proof of Lemma 2.2.

For the case of s-regular hypergraphs σG(i) = s, so Lemma 2.2 is a special case
of Lemma 3.1.

Next we combine Lemma 3.1 with Lemma 2.1 to obtain the following nonregular
counterpart of Theorem 1.1.

Theorem 3.2. Let G be a t-uniform linear hypergraph with r vertices. The
number of independent sets I(G) in G satisfies

log2 I(G) ≤ i0 +
r

t
·O
(

log2(ts)

s21/s

)
(19)

≤ r

t
· s
s0
·
(

1 +O

(
log2(ts)

s1

))
(20)

≤ r

t
· s
s0
·
(

1 +O

(
t log2(ts)

s

))
,(21)

where s = σG(r) is the average degree in G, i0 is the largest i for which iσG(i) ≤ rs/t,
s0 = σG(i0), and s1 = σG(i0 + 1).

Proof. We proceed as in the proof of Theorem 1.1, but this time we let ∆(i) equal
the right-hand side of (18). Also, let 0 = m0 < m1 < · · · < m� = s(t − 1) be the
values taken on by ∆(i) as i ranges from 0 to r.
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Denote by ij the largest i for which ∆(i) = mj ; in particular, for j = 0 we get
that i0 is indeed the largest i for which iσG(i) ≤ rs/t, and for j = � we get i� = r.
We note that σ(i) = σG(i) is nondecreasing in i and hence so is σ(i)(tiσ(i)/(rs)− 1)
for i ≥ i0. Therefore, ij is the largest integer i satisfying

σ(i)

(
ti

r

σ(i)

s
− 1

)
≤ mj

or, equivalently, the largest integer i satisfying

i ≤
(
mj

σ(i)
+ 1

)
rs

tσ(i)
.(22)

This characterization of ij implies that

ij >

(
mj

σ(ij + 1)
+ 1

)
rs

tσ(ij + 1)
− 1.(23)

By (22) and (23) we have, for j ≥ 1,

ij − ij−1 ≤ rs

t

(
mj

(σ(ij))2
− mj−1

(σ(ij−1 + 1))2
+

1

σ(ij)
− 1

σ(ij−1 + 1)

)
+ 1

≤ rs

t(σ(ij))2
(mj −mj−1) + 1(24)

≤ rs

t(σ(i0 + 1))2
(mj −mj−1) + 1(25)

=
rs

ts21
(mj −mj−1) + 1,(26)

where (24) and (25) follow from the fact that σ(i) is nondecreasing in i and that
i0 + 1 ≤ ij−1 + 1 ≤ ij .

Inequality (13) from the proof of Theorem 1.1 applies verbatim here, and incor-
porating the bound (26) on ij − ij−1 yields

log2 fr(G) ≤ i0 +

�∑
j=1

(
(mj −mj−1)

rs

ts21
+ 1

)
log2 αmj

≤ i0 +
r

t
·O
(

log2(ts)

s21/s

)
,(27)

where (27) follows from the same reasoning used to obtain (17): the only difference
is that here r ≥ m� = (t− 1)s ≥ (t− 1)s21/s, which we need to assert that rs/(ts21) is
bounded away from 0.

Turning to (20), by the definition of i0 we get that i0s0 = i0σ(i0) ≤ rs/t, i.e.,
i0 ≤ (r/t)(s/s0). In addition, since σ(i) is nondecreasing in i, we have s0s1 ≤
s21. Combining these two observations with (19) yields (20). Finally, the definition
of i0 also implies that rs1 ≥ (i0 + 1)s1 > rs/t; so, s1 > s/t, which readily leads
to (21).

In general, if more is known about the behavior of σG(i) for i > i0, the O(·)
term in (19) can be improved. We obtained (19) by using the pessimistic bound of
σG(i) ≥ σG(i0 + 1) for i > i0. We do note, however, that (19) is tight to first order
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(the i0 term) for a bipartite graph G in which the degree of any “left” vertex is smaller
than the degree of any “right” vertex. In such a graph, there are necessarily more
left vertices than right vertices and i0 is easily seen to be the number of left vertices,
which in turn is smaller than log2 I(G).
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Abstract. We answer a question raised by Donald E. Knuth and Andrew C. Yao, concerning the
class of polynomials on [0, 1] that can be realized as the distribution function of a random variable,
whose binary expansion is the output of a finite state automaton driven by unbiased coin tosses.
The polynomial distribution functions which can be obtained in this way are precisely those with
rational coefficients, whose derivative has no irrational roots on [0, 1].

We also show, strengthening a result of Knuth and Yao, that all smooth distribution functions
which can be obtained by such automata are polynomials.
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ation

AMS subject classifications. 65C10, 68Q05, 68Q70

DOI. 10.1137/S089548010343106X

1. Introduction. In a 1976 paper, Knuth and Yao laid the foundations for
a complexity theory of probability distribution functions [3]. They defined a com-
putability class of distribution functions that can be “computed” by a random walk
on an edge-labelled graph (this can also be thought of as a finite-state automaton
driven by a sequence of random bits). They called such a graph a finite-state gener-
ator, or f.s.g.

Formally, an f.s.g. is a finite directed graph whose vertices are called states, with
one designated state called the initial state. Some of the edges in the graph are
labelled with output strings, which are finite binary strings. The output of the f.s.g. is
the random sequence of bits α1α2α3 . . . , obtained by performing a simple random
walk on its states, starting from the initial state and writing down sequentially the
output strings that are encountered along the way. We identify the output with the
real-valued random variable 0 ≤ X ≤ 1 whose binary expansion is the output sequence
α1α2α3 . . . , namely

X =

∞∑
n=1

αn
2n
.

A distribution function F (x) supported on [0, 1] (that is, F (0−) = 0 and F (1) = 1)
is called computable by an f.s.g., or just computable, if it can be realized as the
distribution function of a random variable X generated by an f.s.g.

A natural question is to identify all computable distribution functions. Clearly
there is a countable number of such functions, so the class of computable distribution
functions is rather small. However, since the set of such distributions contains many
Cantor-like distributions and other singular distributions which do not have a simple
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description, one soon realizes that this question is (probably) too general to possess
a meaningful answer.

On the other hand, if the discussion is limited to “nice” distributions, e.g., piece-
wise smooth distribution functions, then a beautiful algebraic connection is revealed.
Knuth and Yao showed that if F is a computable distribution function, and F is
real-analytic in an interval (a, b) ⊂ [0, 1], then it must be a polynomial with rational
coefficients there. (Theorem 2 below shows that it is enough to require that F be
smooth in (a, b).) They constructed a family of polynomial distribution functions
which are computable, but left open the question (question (v) on page 427 of [3]) of
precisely which polynomials are distribution functions that can be computed by an
f.s.g. The question was raised again by Yao [5], who gave some necessary conditions.

The purpose of this paper is to show that Yao’s necessary conditions are sufficient.
Our main result is as follows.

Theorem 1. A polynomial Q(x) which is monotone increasing on [0, 1] and
satisfies Q(0) = 0, Q(1) = 1, can be realized as the distribution function of a random
variable that is generated by an f.s.g. if and only if

1. Q(x) has rational coefficients;
2. Q′(x) has no irrational roots in [0, 1].

We prove two additional results. The next theorem further substantiates Knuth
and Yao’s claim that polynomials form the main class of interesting computable dis-
tribution functions, by showing that if a computable distribution function is smooth,
then it is a polynomial. This strengthens Theorem 7.4 of [3], which shows the same
for analytic computable distribution functions.

Theorem 2. Let F be a computable distribution function. If F is infinitely
differentiable on an interval (a, b) ⊂ [0, 1], then F is a polynomial there.

The last theorem investigates some structural properties of f.s.g.’s that compute
nonsmooth distributions. Recall that any distribution function F can be decomposed
into a mixture

F = λFac + (1− λ)Fsing , 0 ≤ λ ≤ 1,(1)

of an absolutely continuous distribution function Fac and a singular distribution func-
tion Fsing (for the purpose of this paper we include the atomic part of F in Fsing;
see also the comment in section 5). λ is determined uniquely, and if 0 < λ < 1,
namely if F is not purely singular or absolutely continuous, then Fac and Fsing are
also determined uniquely (otherwise, one of them is trivially not).

Theorem 3. Let F (x) be a computable distribution function, let F = λFac +
(1 − λ)Fsing be the decomposition of F as in (1), and assume that 0 < λ < 1. Then
λ is rational, and Fac and Fsing are both computable.

In the proof of Theorem 3 it is shown that, essentially, the contributions to the
absolutely continuous and singular parts, respectively, come from different parts of
the f.s.g. which do not interact.

Remarks. The above definition of an f.s.g. is a slight variation on those of [3, 5] but
is easily seen to be equivalent, in the sense that the class of computable distribution
functions is the same. In [3, 5] it was required that the outdegree of each vertex in
the graph be 2 (this restriction is natural when an f.s.g. is interpreted as a coin-
tossing automaton). In section 3 below, we use another equivalent variation on the
f.s.g. model.

Our paper was inspired by the recent work of Mossel and Peres [4], which deals
with questions somewhat similar to ours. Mossel and Peres characterize the class
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of functions f : (0, 1) → (0, 1) for which there exists a finite-state automaton whose
input is a sequence of random bits with bias p and whose output is a single random bit
with bias f(p). Those functions are precisely the rational functions of p with rational
coefficients.

Structure of the paper. In the next section we prove Theorem 1. The “only if”
part was already proved in [3] and [5]. For the “if” part, we rely essentially on Knuth
and Yao’s construction involving the order statistics of uniform random variables. It
is amusing that order statistics should play a distinguished role in this problem, and
that in fact by taking scalings and rational mixtures of polynomials constructed using
order statistics, one obtains the most general class of constructible polynomials.

In section 3 we prove Theorem 3. In section 4 we prove Theorem 2. In section 5
we give an example of a computable distribution function which is absolutely contin-
uous but whose density is everywhere locally unbounded, and discuss related open
problems.

2. Proof of Theorem 1. It will be convenient, in the proof of Theorem 1, to deal
with density functions rather than cumulative distribution functions. Let D be the set
of piecewise polynomial density functions on [0, 1]. Let C be those elements q(x) ∈ D
such that the corresponding cumulative distribution function Q(x) =

∫ x
0
q(t)dt is com-

putable. The elements of C are called computable (piecewise polynomial) densities.
The following theorem summarizes Knuth and Yao’s constructions of computable

densities.
Theorem 4 (see [3]). (i) If 0 ≤ a < b ≤ 1 are rational, then the uniform density

on [a, b] is computable.
(ii) If 0 ≤ a < b ≤ 1 are rational, then the density

f(x) =
(n+ 1)!

k!(n− k)!(b− a)n+1
(x− a)k(b− x)n−k1[a,b](x)

of the (k + 1)th order statistic of n + 1 independent random variables distributed
uniformly on [a, b] is computable.

(iii) If f1, f2, . . . , fn are computable densities, then any rational mixture of the
form f =

∑n
i=1 aifi, where 0 < ai ∈ Q,

∑
i ai = 1, is also computable.

Let q ∈ D be a polynomial density function such that Q(x) =
∫ x
0
q(t)dt satisfies

the conditions of Theorem 1. In terms of q, this simply means that q has rational
coefficients, and no irrational roots in [0, 1]. Our aim is to show that q is computable.
Let 0 = r0 < r1 < r2 < · · · < rk−1 < rk = 1 be the roots of q in [0, 1], together with
0 and 1 if they are not roots. In view of Theorem 4(iii), it is enough to show that
each of the densities

qi(x) =
1∫ ri+1

ri
q(t)dt

q(x)1[ri,ri+1](x), i = 0, 1, 2, . . . , k − 1

(the density q conditioned on the interval [ri, ri+1]), is computable. This is because q
is then a mixture of the qi with rational coefficients.

Now fix i, 0 ≤ i ≤ k − 1. qi is a density that is 0 outside the interval [ri, ri+1].
Inside this interval, qi has the form

qi(x) = c(x− ri)j(ri+1 − x)lh(x),(2)

where c ∈ Q∩ (0,∞), j, l ≥ 0, and h(x) is a polynomial with rational coefficients that
is strictly positive on [ri, ri+1], and integrates to 1 there. Our claim now relies on the
following result.



DISTRIBUTIONS COMPUTABLE BY RANDOM WALKS ON GRAPHS 627

Proposition 1. h(x) can be expressed as a rational mixture (a convex combina-
tion with rational coefficients) of polynomials which have the form

c(x− t1)v1(x− t2)v2 · · · (x− tm−1)
vm−1(−x+ tm)vm(3)

for some rational ri ≤ t1 < t2 < · · · < tm ≤ ri+1 and which integrate to 1 on
[ri, ri+1]—the constant c takes care of this and is therefore necessarily rational. The
powers v1, v2, . . . , vm above must be even, with the exception that if t1 = ri, then v1
can be odd, and if tm = ri+1, vm can be odd (this is why the last term in (3) is written
differently from the other terms).

Proposition 1 implies our claim that qi is computable. To see this, let f be a
polynomial density on [ri, ri+1] which has the form (3) (note that not only h, but also
qi is a mixture of such polynomials, by (2)). We prove that f is computable by showing
that its restriction to each subinterval [tj , tj+1] (normalized to have integral 1) is a
computable density. On [tj , tj+1], write f as

f(x) = c [(x− tj) + (tj − t1)]v1 [(x− tj) + (tj − t2)]v2 · · · (x− tj)vj

·(tj+1 − x)vj+1 [(tj+1 − x) + (tj+2 − tj+1)]
vj+2 · · · [(tj+1 − x) + (tm − tj+1)]

vm .

Now expand out the products, observing that tj − t1, tj − t2, . . . , tj − tj−1, tj+2 −
tj+1, . . . , tm − tj+1 are all positive rational numbers. This gives a representation of
f as a rational mixture of polynomials proportional to (x− tj)α(tj+1− x)β ; hence by
Theorem 4(ii), (iii), the restriction of f to [tj , tj+1] is computable.

Our goal is now to prove Proposition 1. We start by discussing how a nonnegative
polynomial density on an interval can be represented as a convex combination of
polynomial densities which are not necessarily rational.

Lemma 1. Let Cn[a, b] be the closed convex set of nonnegative polynomials of
degree at most n on an interval [a, b] that integrate to 1 there. Then Cn[a, b] is a
compact set, and its extreme points are precisely the polynomials in Cn[a, b] of degree
exactly n which have the form (3) for some a ≤ t1 < t2 < · · · < tm ≤ b and positive
even v1, v2, . . . , vm (again, with the exception that if t1 = a, v1 can be odd, and if
tm = b, vm can be odd).

As was indicated to us by a referee, a proof of Lemma 1 appears in the 1953
paper by Karlin and Shapley [1, Theorem 9.2, p. 28]. We include the proof here for
completeness.

Proof. Recall that a bounded closed set within a finite-dimensional normed space
is compact. The space of n-degree polynomials is finite-dimensional, and it can be

equipped with the norm defined by ||f || = ∫ b
a
|f(x)|dx. The set Cn[a, b] is bounded

with respect to this norm (all of its elements have norm 1), and it is obviously closed;
hence it is compact.

Now let f ∈ Cn[a, b] be a polynomial of degree n with all n roots (counting
multiplicities) in the interval [a, b] (the evenness of the multiplicities is automatic from
the nonnegativity requirement), and suppose f = αg+(1−α)h, where g, h ∈ Cn[a, b]
and 0 < α < 1. From positivity we have that wherever f vanishes, g and h must
also vanish with at least the same order, so they share the same n roots as f and are
therefore equal to it, since they are both of degree at most n and integrate to 1. Thus
f is an extreme point of Cn[a, b].

Conversely, if f ∈ Cn[a, b] does not have n roots in the interval [a, b], then it can
be represented as

f(x) = c(x− t1)v1(x− t2)v2 · · · (−x+ tm)vm · g(x) =: w(x) · g(x),
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where a ≤ t1 < t2 < · · · < tm ≤ b, the sum of the multiplicities degw =
∑
i vi

is strictly less than n, the constant c > 0 is chosen so that g ∈ Cn[a, b], and g
has no roots in [a, b]. Now, either of two cases must hold: if g is a constant, then
deg f = degw < n, and then

f(x) =

(∫ b

a

t− a
b− af(t)dt

)⎛
⎝
(∫ b

a

t− a
b− af(t)dt

)−1
x− a
b− a f(x)

⎞
⎠

+

(∫ b

a

b− t
b− af(t)dt

)⎛
⎝
(∫ b

a

b− t
b− af(t)dt

)−1
b− x
b− af(x)

⎞
⎠

represents f as a convex combination of two unequal polynomials in Cn[a, b]. Other-
wise, deg g ≥ 1, in which case, letting ε = minx∈[a,b] g(x), the equation

f(x) =

(∫ b
a
w(t)(g(t)− ε)dt

2

)
· w(x)(g(x)− ε)∫ b

a
w(t)(g(t)− ε)dt

+

(∫ b
a
w(t)(g(t) + ε)dt

2

)
· w(x)(g(x) + ε)∫ b

a
w(t)(g(t) + ε)dt

represents f as a convex combination of two polynomials in Cn[a, b] which (because
deg g ≥ 1) are not equal. Therefore f is not an extreme point of Cn[a, b].

Proof of Proposition 1. First, note that it is enough to show that h(x) can be
expressed as a mixture of polynomials of the form (3), without insisting on a rational
mixture: this is since for a linear system of equations with rational coefficients, the
set of rational solutions is dense in the set of real solutions.

Now, the idea of the proof is to first use Lemma 1 to represent h(x) as a convex
combination of polynomials of the form (3), with ri ≤ t1 < t2 < · · · < tm ≤ ri+1 not
necessarily rational. The ti’s are then slightly perturbed to make them rational.

Proposition 1 follows from the three lemmas below as follows. First, note that
since h(x) has no roots, it is actually an interior point of Cn[ri, ri+1], where n = deg h
(we consider Cn[ri, ri+1] as a subset of the affine vector space of polynomials of degree
at most n that integrate to 1 on [ri, ri+1]). By Lemma 2, this implies that h(x) is
also in the interior of the convex hull of some finite set P of polynomials of the
form (3). According to Lemma 3 the polynomials in P may be perturbed slightly
while maintaining h(x) in the interior of their convex hull. Finally, Lemma 4 implies
that these perturbations can be chosen so that the roots of the polynomials become
rational.

Lemma 2. For a set B, denote by B◦ the interior of B. Let K be a compact
convex body in a finite-dimensional vector space V , and let n = dim(V ). Then for
every interior point x ∈ K◦ there exist extreme points y1, . . . , ym of K such that
x ∈ Conv◦(y1, . . . , ym). The number of points, m, is at most 2n.

Lemma 3. Let x, y1, . . . , yn be points in a finite-dimensional vector space V .
Suppose that x ∈ Conv◦(y1, . . . , yn). Then there exists a neighborhood U of 0 ∈ V
with the following property. If z1, . . . , zn ∈ V satisfy zi − yi ∈ U for all i, then
x ∈ Conv◦(z1, . . . , zn).
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Lemma 4. The set of extreme points in Cn[ri, ri+1], all of whose roots are rational,
is dense in the set of extreme points of Cn[ri, ri+1] (with the obvious topology).

Lemmas 3 and 4 are obvious; hence we prove only Lemma 2. Note that the
bound 2n on the number of required extreme points in Lemma 2 is tight, as can be
seen by taking x = 0 and K = Conv(±e1, . . . ,±en).

Proof of Lemma 2. Assume that K◦ �= ∅, so that there will be something to
prove. Without loss of generality, assume that x = 0. We choose a basis y1, . . . , yn
for V whose elements are extreme points of K, as follows.

Take y1 to be any extreme point of K (y1 �= 0). Having chosen y1, . . . , yi for
i < n, we set Hi = span(y1, . . . , yi). Since K contains a neighborhood of 0, it cannot
be contained in Hi. Therefore there exists an extreme point yi+1 of K, satisfying
yi+1 /∈ Hi (for example, there exists an extreme point maximizing the convex function
dist(·, Hi), where dist is computed according to some norm on V . Recall that a convex
function defined on a closed convex body always attains its maximum on some extreme
point). This process obviously yields a basis for V .

Take z to be the intersection of the boundary of K with the ray {t · (−y1 − y2 −
· · · − yn) : t > 0}. Obviously, the convex hull of y1, . . . , yn, z contains a neighborhood
of 0. Now let Hz be an affine hyperplane supporting K at z. The intersection of K
with Hz is a convex body in a vector space of dimension ≤ n − 1, and therefore by
Carathéodory’s theorem (see [2]) z is a convex combination of at most n extreme points
yn+1, . . . , ym in it. Since these are also extreme points of K, and since, obviously,
Conv(y1, . . . , yn, z) ⊆ Conv(y1, . . . , ym), the proof is complete.

3. Proof of Theorem 3. In the next two sections, we slightly modify our model
of f.s.g.’s to an equivalent model. In the modified model, the outgoing edges are
labelled with transition probabilities, which are arbitrary rational numbers in (0, 1]
(and which sum to 1 for any given state). The random walk which is performed is
then a weighted random walk with these transition probabilities. We also require
every edge to be labelled with a single output bit.

The equivalence of the two models is simple, and was noted in [3, pp. 421–422].
Let S be the set of states of such a modified f.s.g. An alternative description of

the f.s.g. is in terms of the matrix of transition probabilities, which we denote by

A = (ps→s′)s,s′∈S .

A is a Markov transition matrix with rational entries, and is decomposed as the sum
of two substochastic matrices with rational entries

A = A0 +A1,

where A0 has nonzero entries for those edges whose output label is “0” and A1 has
nonzero entries for those edges with output label “1.” Specifying the f.s.g. is equivalent
to specifying the matrices A0, A1 and the initial state s0.

Let F = λFac + (1− λ)Fsing be as in Theorem 3, and suppose that S is the set of
states of a given f.s.g. that computes F , with initial state s0 ∈ S. For any state s ∈ S,
let F s be the distribution function generated by the same f.s.g. with the initial state
replaced by s. Thus, F = F s0 . Thinking of the F s as measures on [0, 1], we denote
for any Borel subset B ⊂ [0, 1]

F (B) =

∫
B

dF (x).
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A state s ∈ S is said to be of absolutely continuous (a.c.) type if F s is an absolutely
continuous measure. Call s of singular type (or just singular) if F s is a singular
measure. Call s pure if it is either absolutely continuous or singular.

Lemma 5. 1. If s ∈ S is pure, and s′ ∈ S is a state such that there exists a path
in the graph of the f.s.g. leading from s to s′, then s′ is pure and of the same type
as s.

2. If the graph of the f.s.g. is strongly connected (namely, there is a path from any
state to any other state), then all the states are pure (and are therefore of the same
type by part 1).

Proof. Let µ = (F s)s∈S be the vector-valued measure whose coordinates are the
measures F s. The definition of the f.s.g. and the measures F s can be translated into
the following system of equations satisfied by µ: for any Borel subset B ⊂ [0, 1] and
any state s ∈ S,

F s(B) =
∑
s

0−→s′

ps→s′F
s′(2B ∩ [0, 1]) +

∑
s

1−→s′

ps→s′F
s′((2B − 1) ∩ [0, 1]),

with s
α−→ s′ meaning that s has an outgoing edge to s′, labelled by the output bit α.

In matrix notation, this can be written as

µ(B) = A0µ(2B ∩ [0, 1]) +A1µ((2B − 1) ∩ [0, 1]),(4)

where µ is thought of as a column vector.
Now let s be an a.c. state, and let s′ be a state such that s

α−→ s′, with α being
either 0 or 1. Then for any Borel set B ⊂ [0, 1] which has Lebesgue measure 0, we
have

0 = F s((B + α)/2) ≥ ps→s′F
s′(B).(5)

Therefore F s
′

is also a.c. Similarly, if s is singular, then, taking C ⊂ [0, 1] a set of
Lebesgue measure 0 such that F s(C) = 1, and B = [0, 1] \ (2C − α), again (5) holds.
This proves that s′ is singular.

For part 2 of the lemma, observe first that (4) uniquely determines a vector
µ = (F s)s∈S of probability measures on [0, 1]—this is equivalent to saying that the
output of the f.s.g. is a well-defined random variable. Now, for any state s ∈ S,
let F s = λ(s)F sac + (1 − λ(s))F ssing be the decomposition of F s into a mixture of an
a.c. probability measure and a singular probability measure. We claim that, when the
graph of the f.s.g. is strongly connected, the coefficients λ(s) in these decompositions
are all equal. This is because, by (4), λ(s) is a harmonic function on this (finite)
graph and is therefore constant (take as the subset B in (4) the union of the supports
of all the measures F ssing).

So if 0 < λ = λ(s) < 1, then we have shown that

µ = λµac + (1− λ)µsing,

where µac and µsing are vector-valued measures, each coordinate of which is a prob-
ability measure. But then, both µac and µsing are easily seen to be solutions of (4),
and therefore we have found two different (in fact, mutually singular) solutions to (4),
in contradiction to the fact that (4) has exactly one solution. Therefore λ must be 0
or 1, and all the states are pure.

Corollary. λ = λ(s0) is rational, and F s0ac , F s0sing are computable.



DISTRIBUTIONS COMPUTABLE BY RANDOM WALKS ON GRAPHS 631

Proof. The states of the f.s.g. decompose into strongly connected components.
Call a strongly connected component terminal if it has no edges going out to other
strongly connected components. Clearly, with probability one the random walk on the
states must end up in a terminal component. Looking at a terminal component as a
sub-f.s.g., Lemma 5 implies that its states must be pure, since the measures Fs for the
sub-f.s.g. are the same as for the original one. Call a strongly connected component
with pure states either a.c. or singular, according to the type of its states.

The above discussion leads to an identification of the mixture coefficient λ(s0):
it is simply the probability that the random walk eventually ends up in one of the
a.c. terminal components. This probability is clearly rational, as it can be represented
as the solution of a (well-posed) system of linear equations with rational coefficients.
From the discussion it is also easy to see how to build an f.s.g. that computes Fac:
simply delete any edges going into singular components, and renormalize the transition
probabilities so that the sum of the probabilities of outgoing edges for any state
is 1. (In other words, the new f.s.g. is the old f.s.g. conditioned never to go into
a singular component.) A similar construction replacing the words “singular” and
“a.c.” computes Fsing.

4. Proof of Theorem 2. Let F be a distribution function, computable by a
given f.s.g. with state set S and initial state s0, which is infinitely differentiable on an
interval (a, b) ⊂ [0, 1]. Let x ∈ (a, b) be a dyadic number, i.e., of the form x = k/2m

for some integers m ≥ 1, 0 ≤ k < 2m. For every n ≥ m, we shall apply (4) n times
repeatedly, starting with the set

B =

[
x, x+

1

2n

]
.

Some notation will help: if the binary expansion of x is x = 0.α1α2 . . . αn (the last
n−m digits are 0), and for α ∈ {0, 1} we denote by Tα the set operation

Tα(C) = 2C − α, C ⊂ [0, 1],

then applying (4) successively gives the vector equation string

µ(B) = Aα1
µ(Tα1

(B)) = Aα1
Aα2

µ(Tα2
◦ Tα1

(B)) = · · ·
= Aα1

Aα2
. . . Aαn−1

Aαn
µ(Tαn

◦ · · · ◦ Tα1
(B))

= (Aα1
Aα2

. . . Aαm−1
Aαm

)(Aαm+1
. . . Aαn

)µ([0, 1])

= (Aα1Aα2 . . . Aαm−1Aαm)An−m0 µ([0, 1]) =: AxA
n−m
0 µ([0, 1]) = AxA

n−m
0 1.

Here, 1 is the vector of all ones (1)s∈S , and Ax is, as above, the matrix with rational
entries obtained by multiplying A0’s and A1’s corresponding to the m bits in the
binary expansion of x. Taking the s0th coordinate in the above equation, we obtain

F (B) = F

(
x+

1

2n

)
− F (x) = 1�

s0AxA
n−m
0 1,(6)

where 1s0 is the state vector all of whose coordinates are 0 except the s0th coordinate,
which is 1. Now observe that, since F is infinitely differentiable at x, then for any j
the left-hand side of (6) has the asymptotic expansion as n→∞

F

(
x+

1

2n

)
− F (x) = F ′(x) · 1

2n
+
F ′′(x)

2
· 1

22n
+ · · ·+ F (j)(x)

j!
· 1

2jn
+O

(
1

2(j+1)n

)
.
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For the right-hand side, on the other hand, we can write down a complete expansion
in terms of the eigenvalues λ1, λ2, . . . , λl of the matrix A0: clearly it must be of the
form

l∑
i=1

ciλ
n
i pλi(n)

for some constants ci and polynomials pλi(t) derived from x, the matrices Ax, A0, and
the vectors 1s0 ,1 (the polynomials pλi

appear when A0 is not diagonalizable).
Equating the two expansions as n→∞, we conclude the following.
Lemma 6. At any dyadic x ∈ (a, b), F can have at most |S| nonzero derivatives.
The proof of Theorem 2 will be complete once we prove the following simple

lemma.
Lemma 7. Let F be an infinitely differentiable function on an interval (a, b),

and let D ⊆ (a, b) be a dense subset, such that in every point x ∈ D, F has at most
l nonzero derivatives. Then F is a polynomial on (a, b) of degree at most l.

Proof. Suppose for the sake of contradiction that F is not a polynomial of degree
at most l. Then there exists a point x ∈ (a, b), where its (l + 1)th derivative is
nonzero. By continuity, there exists a subsegment (al+1, bl+1) ⊆ (a, b) where the
(l + 1)th derivative of F is nonzero.

The lth derivative is strictly monotone on (al+1, bl+1), and hence it crosses zero
at most once. Hence there is a subsegment (al, bl) ⊆ (al+1, bl+1), where both the
lth derivative and the (l + 1)th derivative are nonzero. Continuing by induction,
one obtains an interval (a1, b1) ⊆ (a, b), where all derivatives up to order (l + 1) are
nonzero. This is a contradiction to the assumption that F has at most l nonzero
derivatives in every point of D (since D ∩ (a1, b1) �= ∅).

5. Open problems. Several natural questions arise from the paper:
1. Our proof of Theorem 1, which is presented in a somewhat abstract form, can

easily be translated into an algorithm for constructing an f.s.g. that computes
a given polynomial distribution function F . The resulting algorithm, however,
seems to generate extremely large f.s.g.’s, as a function of the degree of the
given polynomial and the denominators of its coefficients.
It is interesting to determine the complexity class of finding the smallest
f.s.g. that computes a given polynomial. Another interesting question is to
give a sharp bound on the number of states required to compute a polynomial
of given parameters.

2. One may consider the same questions that are discussed here, in the case of
pushdown automata. Partial results in this direction are given in [5].

3. It may be of interest to investigate the computable distribution functions
among the absolutely continuous (and not necessarily smooth) distributions.
This class contains some peculiar specimens, such as the distribution com-
puted by the f.s.g. in Figure 1 below. This distribution is absolutely contin-
uous, yet its density function is nowhere locally bounded.

4. A sufficient condition for the distribution function F computed by a given
f.s.g. to be a.c. is that any terminal component of the graph (considered as
a sub-f.s.g.) outputs a uniform distribution on [0, 1] starting from any of its
states. Is this condition necessary?

5. Characterize all the atomic computable distributions.
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Fig. 1. An f.s.g. generating a nowhere bounded density.
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Abstract. We study the following rather generic communication/coordination/computation
problem: In a finite network of agents, each initially having one of the two possible states, can
the majority initial state be computed and agreed upon by means of local computation only? We
study an iterative synchronous application of the local majority rule and describe the architecture of
networks that are always capable of reaching the consensus on the majority initial state of its agents.
In particular, we show that, for any truly local network of agents, there are instances in which the
network is not capable of reaching such a consensus. Thus, every truly local computational approach
that requires reaching a consensus is not failure-free.
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1. Introduction. Attempting to solve a complex problem by a simultaneous
coordinated activity of local agents is an idea that arises naturally in a variety of con-
texts. For example, this idea is fundamental in frameworks as diverse as distributed
computing and neural networks. While methods of local computation and decision-
making are often effective in dealing with complex tasks, the successful implementa-
tion of such methods often raises a new breed of problems related to coordination and
communication of local agents.

In this paper we study the following rather generic communication/coordination/
computation problem: In a finite network of agents, each initially having one of the two
possible states, can the majority initial state be computed and agreed upon by means
of local computation only? Our simple model assumes bidirectional communication
between agents (agent i knows agent j’s state if and only if agent j knows agent i’s
state) and a synchronous, discrete time, democratic local decision-making procedure
(an agent changes its state at time t + 1 if and only if the majority of agents it
communicates with are in the opposite state at time t). We describe the architecture
of networks that are always capable of reaching the consensus on the majority initial
state of its agents. In particular, we show that, for any truly local network of agents,
there are instances in which the network is not capable of reaching such a consensus.
Thus, every local computational approach that requires reaching consensus among
agents’ results is not failure-free.

A precise formulation of the model will be given in the next section. Informally,
the vertices of a graphG = (V,E) represent the agents, and the edges ofG represent all
(bidirectional) communication links between pairs of agents. Initially, at time t = 0,
each agent is in one of the two possible states, e.g., colored red or blue (voted Yes or
No, having value 0 or 1, . . . ). Then the local majority rule is applied synchronously
and iteratively as follows: An agent has different colors at time t and t+1 if and only

∗Received by the editors May 23, 2002; accepted for publication (in revised form) October 20,
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extended abstract form in [31].
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if the agent’s color at time t is not a majority color in the agent’s neighborhood in G
at time t. We call this discrete time, memoryless, synchronous dynamic process the
local majority process on G.

The local majority process (and some of its natural extensions) has been studied
in frameworks as diverse as social influence [19, 11, 5, 38, 39, 40] and neural networks
[18, 17, 15, 16]. Recently, the local majority process has reappeared (under the name
polling process) in several papers motivated by certain distributed computing prob-
lems [36, 2, 10, 9, 20, 21, 22, 27, 32, 33]. In fact, Peleg [35] points out several areas
of distributed computing in which our model could be relevant.1 These are areas
that revolve around the idea of eliminating the damage caused by failed processors,
or at least restricting their influence, by maintaining replicated copies of crucial data
and performing a simple voting procedure among the participating processors when-
ever faults occur, with the goal of adopting the values stored at the majority of the
processors as the correct data. Relevant work can be found in classical problems of
agreement and consensus [1, 26, 3, 8], system-level diagnosis [42, 34, 6], distributed
database management [4, 23], quorum systems [14, 12, 41, 37, 43], and fault-local
mending [25, 24].

To see a concrete example, suppose that all processors in a distributed network
collectively store some value and suppose that this value is distorted in some of the
processors (distortions could be due to various reasons, even due to a fundamental
imprecise nature of floating point operations). The goal is to restore the correct
value in all of the processors by means of local communication only, in particular, by
triggering the local majority process. For example, if stored distortions are due to a
rounding error (rounding up or down), a desirable feature would be for all processors
to accept the rounded value which is stored in the majority of processors. Which
network structures allow for successful restoration of the (global) majority value in
all of the processors?

A natural question to ask is, When does the local majority process ensure that all
agents reach a consensus on the initial majority state? We will say that G is a majority
consensus computer (m.c.c.) if, for any set of initial states (there are 2n such sets),
the local majority process simultaneously brings all agents into the state that was
the initial majority state. Note that, according to the local majority process, once all
agents are in the same state, no agent will change its state ever after. All of the recent
papers dealing with the local majority process and its modifications [36, 2, 10, 9, 20, 21,
22, 27, 32, 33] investigated how poorly the local majority process (and its variations)
could miscalculate the initial majority (on a specific class of graphs).2 In contrast to
these results, we are interested in graphs which are immune to miscalculations in the
local majority process—the focus of this paper is on m.c.c.’s and the investigation of
their structure.

Since being an m.c.c. is seemingly a very strong property, one would expect that
a sort of an impossibility theorem holds. As will be shown, the situation is not that
simple, and the full characterization of m.c.c.’s remains an open problem. However,
our results demonstrate in several ways that the nonlocality is an inherent property

1We believe that the potential applicability of the local majority process goes beyond classical
distributed computing problems. For example, anyone interested in data aggregation by means of
local computation/communication only should be interested in this model (at least as a starting
point towards possible more complex models).

2For example, Berger [2] has shown that for every n there exists a G on at least n vertices and
the set of states such that only 18 vertices are in one state and the rest are in the other, yet the local
majority process forces all vertices to simultaneously end up in the initial minority state.
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of every m.c.c. Thus, reaching a consensus on the majority is a truly nonlocal task in
the sense that a natural local computation procedure is failure-free only if computing
local majority is essentially as complex as computing global majority.

As already mentioned, the local majority process is precisely formulated in the
next section. Furthermore, we review some known properties of the model and for-
mally define the class of graphs that we call m.c.c.’s. We end section 2 by stating and
proving several basic properties of m.c.c.’s.

In section 3 we explore the structure of m.c.c.’s. For example, in this section we
show that every such m.c.c. must have a trivial min-cut, a nonunique max-cut, and a
diameter of at most four, and show that for any vertex v in an m.c.c. the set of vertices
that are neighbors of v or neighbors of the neighbors of v is a majority-making set
(i.e., has more than half of the vertices of G).

In section 4 we study highly connected graphs, i.e., those with the minimum
degree of n − 3, and show that if such a graph is an m.c.c., then there must exist a
“truly global” vertex, which we call a master (that is, a vertex connected to every
other vertex in the graph). Furthermore, we give full characterization of m.c.c.’s with
δ(G) ≥ n−3 and present an algorithm to decide whether or not a given such graph is
an m.c.c. Also, we show that there exist m.c.c.’s on n vertices, where n is odd, with
exactly k masters for every positive k except for k = (n− 3)/2.

Some generalizations of our model and relaxations of the definition of m.c.c. are
presented and discussed in section 5. This section includes emulation results showing
how our model can be used to study seemingly more complex models.

In section 6 we discuss some assumptions of our model and try to illustrate why
our model is a natural one to study.

We close the paper with a brief summary of our results and directions for further
research.

2. Democratic consensus computers. A standard graph theoretic notation
is used throughout the paper. Cardinality of the set S is denoted by |S| and the
complement of the set is denoted by Sc. G = (V,E) denotes an undirected, simple,
finite graph G with the vertex set V , |V | = n, and the edge set E (i.e., E ⊆ {S ⊆ V :
|S| = 2}). We say that the vertices u and v are adjacent or neighbors in G if and only if
{u, v} ∈ E. The neighborhood of a vertex v in the set S ⊆ V is the set of the neighbors
of v that are in S, NS(v) := {s ∈ S : {v, s} ∈ E}. Note that NS(v) = NV (v)∩S. The
degree of a vertex v in S, denoted degS(v), is the number of neighbors of v that are
in S, i.e., degS(v) = |NS(v)|. In the rest of the text, we will omit the subscript when
S = V ; i.e., we will refer to NV (v) as N(v) and to degV (v) as deg(v). The maximum
degree of a vertex in G is denoted by ∆, where ∆ = ∆(G) = max{deg(v) : v ∈ V },
and the minimum degree is denoted by δ, where δ = δ(G) = min{deg(v) : v ∈ V }.

Given a pair of nonempty S, T ⊆ V , let E(S, T ) = {{s, t} ∈ E : s ∈ S, t ∈ T}.
Recall that G = (V,E) is bipartite with bipartition S ∪ Sc = V if E(S, Sc) = E.
A pair of nonempty sets S, Sc defines an (S, Sc)-cut represented by E(S, Sc). A
cut is trivial if either S or Sc is a one element set. An (S, Sc)-cut is a min-cut
if |E(S, Sc)| ≤ |E(T, T c)| for all pairs of nonempty sets T, T c ⊂ V . Similarly, an
(S, Sc)-cut is a max-cut if |E(S, Sc)| ≥ |E(T, T c)| for all pairs of nonempty sets
T, T c ⊂ V .

A graph H = (V ′, E′) is a subgraph of G, denoted H ⊆ G, if V ′ ⊆ V and
E′ ⊆ E. We also use the notation G \ H = (V,E \ E′). The following graphs on
n vertices are denoted in the standard way: the complete graph Kn, the path Pn,
and the cycle Cn. A Kk ⊆ G is a clique (or a k-clique) in G. The complement
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of G is denoted by Gc = (V,Ec) = Kn \ G. G is connected if, for every pair of
vertices u, v ∈ V , there exists a path P ⊆ G containing both u and v. Otherwise,
G is disconnected. A connected component H of G is a maximal connected subgraph
H ⊆ G. The distance between two vertices u and v in G, denoted dist(u, v), is the
smallest k for which there exists Pk+1 ⊆ G containing both u and v (this might
not be defined in a disconnected graph). The diameter of a connected graph G is
diam(G) = max{dist(u, v) : u, v ∈ V }.

Some nonstandard terminology follows: A vertex v is a master if deg(v) = n− 1
(i.e., v is adjacent to every other vertex). We also say that v is a k-master if deg(v) =
n − 1 − k (i.e., v is adjacent to all but k other vertices). Note that 0-master and
master are equivalent notions, and we will use them interchangeably throughout the
rest of the text.

In our model, all agents and communication links in the system are represented
by a graph G in a natural way. That is, the vertices of G are in a one-to-one corre-
spondence with the agents, and the edges of G correspond to an adjacency relation
among the agents.

A coloring of the graph G, ct : V → {0, 1} defines an assignment of binary values
(colors) to the vertices of G at time t. We use the notation ctv := ct(v) to denote
the color of a vertex v at time t. The notation sum(ct) :=

∑
v∈V c

t
v will also be

useful. A color assigned to more than |V |/2 vertices at a time t is called the majority
color of the coloring ct and denoted by maj(ct). Thus, maj(ct) = 1 if and only if
sum(ct) > n/2, and maj(ct) = 0 if and only if sum(ct) < n/2. Note that maj(ct) is
not defined if |V | is even and ct defines an equipartition of V , i.e., if sum(ct) = n/2.
A coloring ct is a consensus if it is constant, i.e., if all the vertices of G have the
same binary values (colors). Thus, ct is a consensus if and only if ctv = maj(ct) for all
v ∈ V . We will sometimes abuse the notation and write ct = 0 or ct = 1 for consensus
in color 0 and 1, respectively. Another abuse of notation is (1 − ct) denoting the
coloring obtained from ct by changing the color of every vertex; i.e., for every v ∈ V
and coloring ct, (1− ct)(v) = 1− ct(v).

Note that in our model, ct(v) corresponds to the state of an agent, represented
by v, at time t.

The main object of our study is the local majority process LMP (G, c0), a discrete
time process on G that is based on the iterative application of the local majority
rule. The process is completely defined by G and the initial coloring c0. For every
t = 0, 1, 2, . . . , the coloring ct+1 is derived by applying the local majority rule on N(v)
for each vertex in G:

ct+1
v =

{
ctv if |{w ∈ N(v) : ctw = ctv}| ≥ |N(v)|/2,

1− ctv if |{w ∈ N(v) : ctw 	= ctv}| > |N(v)|/2.
(2.1)

The local majority rule simply states that, at the next discrete time step, the color
assigned to a vertex v will be the color of the majority of its neighbors. Note that
an even degree vertex will retain its color whenever exactly half (or more) of its
neighbors have the same color. The above rule also implies that the local majority
rule is executed simultaneously for all the vertices. The change from ct to ct+1 is
called a global update of G at time t+ 1, while the change of the color of a particular
vertex v from ctv to ct+1

v is called a local update. We say that there is a majority switch
at time t+ 1 if maj(ct) 	= maj(ct+1).

Note that if ct is a consensus, then ct+k = ct for all positive integers k. If, for
some positive integer t, ct is a consensus, then we say that G reaches consensus for
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t = 6

t = 2

t = 7

t = 0 t = 1 t = 3

t = 5 t = 4

Fig. 2.1. An example of a local majority process that reaches consensus, but not in the initial
majority.

c0. If G reaches consensus ct for coloring c0 and ct = maj(c0), then we say that the
LMP (G, c0) correctly computes the initial majority and that G admits a majority
consensus for the initial coloring c0. See Figure 2.1 for an example of LMP (G, c0) in
which a consensus is reached but the initial majority is computed incorrectly.

A graph G is an m.c.c. if, for every coloring c0, LMP (G, c0) correctly computes
the initial majority. In other words, G is an m.c.c. if G admits majority consensus
for all of the 2n possible initial colorings. Note that for every graph with an even
number of vertices there exists a c0 where maj(c0) is not defined. Thus, G can be an
m.c.c. only if it has an odd number of vertices. Therefore, throughout the rest of the
paper we assume that n is odd.

Our first observation about m.c.c.’s is the following proposition.

Proposition 2.1. Let G be an m.c.c. and let c0 be an initial coloring of G.
Then there are no majority switches for LMP (G, c0); i.e., maj(ct) = maj(c0) for
t = 0, 1, 2, . . . .

Proof. The local majority process reaches consensus on maj(c0) and on maj(d0)
for the initial colorings c0 and d0 = ct, respectively, because G is an m.c.c. Since
dt

′
= ct+t

′
, maj(ct) = maj(d0) = maj(c0).

The related research in the area of neural networks and models of social in-
fluence was geared towards finding properties of the local majority process rather
than towards finding specific graphs (i.e., network architectures) having certain de-
sirable properties. In particular, we use results about the behavior of the sequence
c0, c1, c2, . . . . There are only 2n possible colorings, and ct+1 is a function of G and ct;
thus the sequence c0, c1, c2, . . . must become periodic; i.e., there exist positive integers
t0 and k such that ct+k = ct for every t ≥ t0. Obviously, the period k and t0 are not
larger than 2n. Somewhat surprisingly, the period can be only one or two and the
minimal such t0 is always smaller than |E|. We first state the original result from the
neural network literature3 and then show how this result applies to our model.

3Theorem 2.2 is not the most general result. Many variations can be found in a rather compre-
hensive collection of results related to dynamic behavior of neural and automata networks by Goles
and Martinez [16]. The period is either one or two property holds in models beyond the symmetric
neural network model. For example, dynamical systems with more general threshold functions and
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(a) (b)

(c) (d)

Fig. 2.2. Examples of the local majority process. (a) Complete graph reaches majority consensus
after one iteration, (b) infinite process alternating between two colorings, (c) reaching consensus in
the minority value, and (d) process ending in a nonconsensus coloring.

Theorem 2.2 (Goles and Olivos [18]; Goles [15]). Let A = [aij ] be an n×n matrix
and b ∈ Rn. For any c0 ∈ {0, 1}n define a dynamic process by ct+1

i = p[Act − b]i,
where p(x) = 1 if x ≥ 0 and p(x) = 0 if x < 0.

If A is symmetric, there exists t0 such that ct = ct+2 for all t ≥ t0. Furthermore,
if A is integer valued and b = 1

2A(1, . . . , 1)T has no integral coordinates, then t0 can
be chosen so that t0 ≤ |(

∑
i,j |aij |)− n|/2.

Corollary 2.3. Consider the sequence c0, c1, c2, . . . defined by the local majority
process on G with initial coloring c0, LMP (G, c0). Then there exists t0 ≤ |E| such
that ct = ct+2 for every t ≥ t0.

Proof. Let A be a slightly modified adjacency matrix of G; i.e., let A = [auv] be
defined with

auv =

⎧⎨
⎩

1 if {u, v} ∈ E,
1 if u = v and deg(v) is even,
0 otherwise.

It is straightforward to check that, for any c0, a dynamic process from Theorem 2.2
with A as defined is exactly LMP (G, c0). Note that A is a zero-one symmetric
matrix: auv = avu since {u, v} = {v, u}. Further note that

∑
u,v |auv| = 2|E| +

|{v : deg(v) is even}|. Thus, t0 from Theorem 2.2 can be chosen so that t0 ≤
(2|E|+ |{v : deg(v) is even}| − n)/2 ≤ |E|.

Many of our results will be based on the “period is at most two” property. See
Figure 2.2 for examples of various outcomes of a one-step application of the local
majority process on graphs. Note that consensus on any value might not be possible
and the process could be infinite with either period one or two, as examples (b) and (d)
illustrate.

Next we show that a monotonicity property with respect to the structure of the
coloring holds in the local majority process. As the next lemma shows, if at time t the
color of some set of vertices is changed from 1− i to i and colors of all other vertices
remain the same, then, at any later time t′ ≥ t the number of vertices of color i is at
least as large as it would be without the change that was executed at time t.

allowing for more than two possible colors are studied in [38, 39, 40], while sufficient conditions for
the property in the case of LMP on infinite graphs were studied in [29, 28, 30].
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Lemma 2.4. Let Vi(c
t) = {v ∈ V : ctv = i}, i = 0, 1, where ct is a coloring of G =

(V,E). If there exists i ∈ {0, 1} and colorings ct and dt
′

such that Vi(c
t) ⊆ Vi(d

t′),
then Vi(c

t+k) ⊆ Vi(dt′+k) for k = 0, 1, 2, . . . .

Proof. The proof is by induction on k. If k = 0, there is nothing to prove.
Suppose Vi(c

t+k) ⊆ Vi(d
t′+k). We have to show that, for every v ∈ V , ct+k+1

v =
i ⇒ dt

′+k+1
v = i. It follows from the assumption that N(v) ∩ Vi(ct+k) ⊆ N(v) ∩

Vi(d
t′+k) and, in particular, ct+kv = i ⇒ dt

′+k
v = i. Hence, if ct+k+1

v = i because
|N(v)∩Vi(ct+k)| > |N(v)|/2, then |N(v)∩Vi(dt′+k)| > |N(v)|/2 also, and dt

′+k+1
v = i.

If ct+k+1
v = i because ct+kv = i and |N(v) ∩ Vi(ct+k)| = |N(v)|/2, then dt

′+k
v = i and

|N(v) ∩ Vi(dt′+k)| ≥ |N(v)|/2, which shows that dt
′+k+1
v = i.

According to the definition, in order to check whether G is an m.c.c., one would
have to check whether G admits majority consensus for all 2n possible initial colorings
c0. However, because of the monotonicity property described in Lemma 2.4, it suffices
to consider only colorings c0 such that sum(c0) = (n + 1)/2 (there are

(
n

(n+1)/2

)
=

O(2n/
√
n) such colorings).

Theorem 2.5. Suppose G admits majority consensus for any coloring c0 such
that sum(c0) = (n+ 1)/2. Then G is an m.c.c.

Proof. By symmetry, if G admits majority consensus for all c0 with maj(c0) =
1, then G admits majority consensus for all c0 with maj(c0) = 0 also (because
maj(1− c0) = 1−maj(c0) = 1).

Let d0 be a coloring with maj(d0) = 1, i.e., sum(d0) ≥ (n + 1)/2. Thus, there
exists a coloring c0 with sum(c0) = (n + 1)/2 such that c0 and d0 satisfy conditions
of Lemma 2.4 with i = 1 (e.g., construct c0 from d0 by changing the color of any
sum(d0)− sum(c0) vertices w such that d0

w = 1). Since G admits majority consensus
for c0, using the terminology of Lemma 2.4, there exists t such that V1(c

t) = V and,
by the lemma, V1(c

t) ⊆ V1(d
t). Therefore, dt is a consensus with maj(dt) = 1, which

shows that G admits majority consensus for d0.

Remark. Unfortunately, it is not true that adding an edge to or deleting an edge
from an m.c.c. G preserves the property “majority concensus computer.” In other
words, if G is an m.c.c., G + e might not be. Similarly, if G is not an m.c.c., G − e
could be. For example, consider

(Kn)
c ⊂ Kn \ Pn−1 ⊂ Kn \ P(n+1)/2 ⊂ Kn,

where n is odd. We later show that (Kn)
c is not an m.c.c. (Corollary 3.3), Kn \Pn−1

is an m.c.c. (Theorem 4.13), Kn \ P(n+1)/2 is not an m.c.c. ((b) of Proposition 3.1),
and that Kn is an m.c.c. ((a) of Proposition 3.1). Thus, the graph property “majority
concensus computer” is not monotone in the sense that addition or deletion of an edge
in G does not preserve the property.

We close this section by showing that masters in G compute majority instantly,
i.e., the color of a master at time t+1 is maj(ct). In general, the larger the difference
between the majority and minority color of ct, the smaller the degree of v needed to
ensure ct+1

v = maj(ct). Recall that a vertex v is a k-master if deg(v) = n− (k + 1).

Proposition 2.6. If v is a master in G, then ct+1
v = maj(ct). More generally,

if v is a k-master in G and |sum(ct)− n/2| ≥ (k + 1)/2, then ct+1
v = maj(ct).

Proof. Note that |{w ∈ V : ctw = 1 − maj(ct)}| ≤ deg(v)/2 implies ct+1(v) =
maj(ct) (at time t, at most half of v’s neighbors have color 1−maj(ct); if each of the
two colors is the color of exactly half of v’s neighbors, then no other vertex has color
1−maj(ct) and, in particular, ctv = maj(ct), and the local majority process ensures
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ct+1
v = ctv = maj(ct)). In order to complete the proof, note that |sum(ct) − n/2| ≥

(k + 1)/2 is equivalent to |{w ∈ V : ctw = 1−maj(ct)}| ≤ (n− (k + 1))/2.

3. Structural properties. Let’s start by presenting a class of graphs that are
m.c.c.’s and a class of graphs that are not m.c.c.’s.

Proposition 3.1.

(a) A graph G with more than n/2 masters is an m.c.c.
(b) A graph G with exactly (n− 1)/2 masters is not an m.c.c.
Proof. First suppose thatG has more than n/2 masters. Then, by Proposition 2.6,

for any c0 and any master v ∈ V , c1v = maj(c0). It follows that maj(c1) = maj(c0).
Thus, c2v = maj(c1) = maj(c0) (the first equality follows from Proposition 2.6 with
t = 1). Also, c2w = maj(c0) because masters are the majority of w’s neighbors and,
as already observed, c1v = maj(c0) for every master v. Hence, c2 is the consensus in
color maj(c0), and (a) follows.

In order to prove (b), let G be a graph with exactly (n − 1)/2 masters and let
c0v = 0 if v is master and c0w = 1 if v is not a master. Note that maj(c0) = 1. Every
w ∈ V that is not a master is connected to all (n− 1)/2 masters (all having color 0 at
time t = 0) and is connected to at most (n+1)/2−2 = (n−3)/2 vertices that are not
masters (w is not connected to itself and to at least one more vertex u because w is
not a master; u is not a master either because it is not connected to w). Thus, c1w = 0
and maj(c1) = 0 	= maj(c0). Hence, by Proposition 2.1, G is not an m.c.c.

Next we give a characterization of m.c.c.’s that indicates a way towards a static
representation in the form of existence of a particular partition of the vertices of G.

Theorem 3.2. G is not an m.c.c. if and only if at least one of the following
holds:

(a) There exists a coloring c0 such that maj(c0) 	= maj(c1).
(b) There exists a partition of V into four sets A0, A1, B0, B1 satisfying the fol-

lowing:
1. |B0||B1| = 0⇒ |A0||A1| ≥ 1.
2. For every v ∈ V and i = 0, 1,

v ∈ Ai ⇒ degAi
(v)− degA1−i

(v) ≥ |degBi
(v)− degB1−i

(v)|.
3. For every v ∈ V and i = 0, 1,

v ∈ Bi ⇒ degB1−i
(v)− degBi(v) > |degAi(v)− degA1−i(v)|.

Proof. SupposeG is not an m.c.c. IfG admits a consensus for every possible initial
coloring c0, there must exist d0 for which G does not admit a majority consensus; i.e.,
there exists a coloring d0 and t such that dt is a consensus and maj(d0) 	= maj(dt).
Obviously, in the sequence d0, d1, . . . , dt, there exists t′ < t such that maj(dt

′
) 	=

maj(dt
′+1). Thus, (a) holds for c0 := dt

′
.

Thus, we may assume that there exists c0 for which G does not admit a consensus.
By Corollary 2.3 there exists t such that ct = ct+2. For i = 0, 1 define Ai := {v ∈ V :
i = ctv = ct+1

v } and Bi := {v ∈ V : i = ctv 	= ct+1
v }. Note that A0, A1, B0, B1 partition

V and that item 1 must hold since neither ct nor ct+1 is a consensus. Since for every
v ∈ Ai, ctv = ct+1

v ,

degAi
(v) + degBi

(v) ≥ degA1−i
(v) + degB1−i

(v).

Similarly, for every v ∈ Ai, ct+1
v = ct+2

v implies (because {w : ct+1
w = i} = Ai ∪B1−i)

degAi(v) + degB1−i(v) ≥ degA1−i(v) + degBi(v).
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These two inequalities imply item 2. In the same manner, it follows that for every
v ∈ Bi, ctv 	= ct+1

v implies

degA1−i
(v) + degB1−i

(v) > degAi
(v) + degBi

(v)

and that ct+1
v 	= ct+2

v implies

degAi
(v) + degB1−i

(v) > degA1−i
(v) + degBi(v).

Hence, item 3 follows from these two inequalities.
Conversely, suppose that (a) holds. Then, by Proposition 2.1, G is not an m.c.c.
Finally, suppose that (b) holds. Define c0v := i for v ∈ Ai∪Bi, i = 0, 1. Note that

item 3 implies that either none or both sets B0 and B1 must be nonempty (otherwise,
if Bi is not empty and B1−i is empty, the left-hand side of inequality in item 3 would be
less than or equal to zero for a v ∈ Bi, thereby automatically violating the inequality).
If both B0 and B1 are empty, item 1 implies that both A0 and A1 are not empty.
Hence, in either case, c0 is not a consensus because Ai∪Bi 	= ∅ for i = 0, 1. Note that
item 2 implies c1v = c0v for v ∈ Ai and that item 3 implies that c1v 	= c0v for v ∈ Bi,
i = 0, 1. Furthermore, item 2 also implies that c2v = c1v for v ∈ Ai, and item 3 implies
that c2v 	= c1v for v ∈ Bi, i = 0, 1. Hence, c2 = c0 and the sequence c0, c1, c2, . . . never
admits a consensus. Thus, G is not an m.c.c.

Theorem 3.2 indicates possible ways of adding edges to G that is not an m.c.c. so
that the new graph is still not an m.c.c. For example, if (b) holds for G and if there
exists four edges defining a 4-cycle

E′ := {(w, x), (x, y), (y, z), (z, w)}

such that E′ ∩ E = ∅, then it is straightforward to check that (b) holds for G′ =
(V,E ∪ E′) provided that one of the following is true: (i) w, x ∈ A0 and y, z ∈ A1;
(ii) w, x ∈ B0 and y, z ∈ B1; (iii) w ∈ A0, x ∈ B0, y ∈ A1, and z ∈ B1.

Special cases of Theorem 3.2 help identify large classes of graphs that are not
m.c.c.’s and provide insight into the structure of graphs that are m.c.c.’s.

Corollary 3.3. Let G be bipartite or disconnected. Then G is not an m.c.c.
Proof. For a disconnected G, let A0 	= V be one of G’s connected components

and set A1 = V \A0, B0 = B1 = ∅. For a connected bipartite graph with bipartition
B0 ∪ B1 = V , set A0 = A1 = ∅. Note that items 1–3 from (b) in Theorem 3.2 hold.
Thus, G is not an m.c.c.

Corollary 3.4. Let G be an m.c.c.
(a) Every min-cut in G is trivial.
(b) G does not have a unique max-cut.
Proof. First note that if (S, Sc) is a nontrivial min-cut, then for every v ∈ S,

degS(v) ≥ degSc(v), and for every v ∈ Sc, degSc(v) ≥ degS(v) (if not, then (S, Sc) is
not a min-cut since the cut (S∪{v}, Sc \{v}) has fewer edges). Thus, setting A0 = S,
A1 = Sc, and B0 = B1 = ∅ gives a partition from Theorem 3.2(b). Hence, G is not
an m.c.c.

Similarly, note that in a unique max-cut (S, Sc) for every v ∈ S, degS(v) <
degSc(v), and for every v ∈ Sc, degSc(v) < degS(v) (if not, then (S, Sc) is not a
unique max-cut since the cut (S ∪ {v}, Sc \ {v}) has at least as many edges). Thus,
setting B0 = S, B1 = Sc, and A0 = A1 = ∅ gives a partition from Theorem 3.2(b).
Hence, G is not an m.c.c.
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The last corollary indicates that m.c.c.’s are highly connected graphs (in the
sense that having only trivial min-cuts and many max-cuts could be taken as a good
indication of a high level of connectivity). The following theorem and its corollary
provide another confirmation of this claim.

Theorem 3.5. Let G be an m.c.c. Then for every v ∈ V ,∣∣∣∣∣∣
⋃

w∈N(v)∪{v}
N(w)

∣∣∣∣∣∣ ≥ (n+ 1)/2.(3.1)

Proof. First, note that we can assume that G is connected (by Corollary 3.3) and
that n > 2.

Suppose (3.1) does not hold for some v ∈ V . Let u ∈ V be a vertex of the
minimum degree among all vertices v for which (3.1) is violated. Let c0 be a coloring
such that c0v = 1 for every v ∈ ⋃w∈N(u)∪{u}N(w) and such that sum(c0) = (n+1)/2.

Note that c0u = 1 and that maj(c0) = 1. Let d0 be such that d0
v 	= c0v if and only

if v = u (i.e., the only difference between c0 and d0 is in the color of u). Note that
sum(d0) = (n− 1)/2, and thus

maj(d0) = 0 	= 1 = maj(c0).(3.2)

Observe that for all v /∈ N(u) ∪ {u}, w ∈ N(v) implies that c0w = d0
w, and hence

c1v = d1
v. Further observe that c1u = d1

u = 1 because the color of all neighbors of u is 1
in both c0 and d0 (and u has at least one neighbor since G is connected). Finally,
observe that by the choice of u and the fact that G is connected and n > 2, deg(v) ≥ 2
for all v ∈ N(u). Since the color of all neighbors of v other than u is 1 in both c0

and d0, it follows that c1v = d1
v for v ∈ N(u). Hence, c1 = d1 and thus, because of

(3.2), either maj(c1) 	= maj(c0) or maj(d1) 	= maj(d0). In either case, it follows from
Proposition 2.1 that G is not an m.c.c.

The theorem shows that m.c.c.’s are nowhere truly local since the second neigh-
borhood of any vertex contains a majority of the vertices of V . Hence, the local
majority process always reaches a consensus on the initial majority color only if the
local majority rule is nowhere local. Hence, the theorem can be viewed as a sort of
impossibility result.

Corollary 3.6. If G is an m.c.c., then diam(G) ≤ 4 and ∆(G) ≥ √(n− 1)/2 �.
Proof. The proof follows immediately from (3.1) because for any two vertices

u, v ∈ V , ⎛
⎝ ⋃
w∈N(u)∪{u}

N(w)

⎞
⎠⋂

⎛
⎝ ⋃
w∈N(v)∪{v}

N(w)

⎞
⎠ 	= ∅

and because |⋃w∈N(v)∪{v}N(w)| ≤ 1 + ∆(G) + ∆(G)(∆(G)− 1).

We conjecture that a much stronger statement is true (this was confirmed to hold
for n ≤ 13 by an exhaustive search method).

Master conjecture. Every m.c.c. contains a master.
This is a rather strong conjecture because it implies that a necessary condition

for reaching majority consensus is the existence of a vertex connected to all the other
vertices, thereby annihilating any notion of local computation. In the next section
we’ll show that the master conjecture holds for graphs G with δ(G) ≥ n−3. Note that,
intuitively, such graphs should be considered as prime candidates for a counterexample
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to the conjecture since all of the vertices in these graphs are either masters or very
close to being masters (i.e., 0-masters, 1-masters, or 2-masters). Thus, our result that
the master conjecture holds for graphs with δ(G) ≥ n − 3 provides strong evidence
for the truth of the master conjecture.

4. The case of δ(G) ≥ (n − 3). In this section, graphs with minimum degree
(n− 3) are studied. We first show that every m.c.c. G with exactly (n− 3)/2 master
vertices has δ(G) ≥ (n − 3). (Note that determining whether a graph with at least
(n− 1)/2 masters is an m.c.c. is straightforward and does not depend on the degrees
of the nonmaster vertices; cf. Proposition 3.1.) Then we turn to analysis of general
graphs G with δ(G) ≥ n− 3. We show that every such m.c.c. must have at least one
master vertex; i.e., the master conjecture holds for G with δ(G) ≥ n−3. Furthermore,
we give a complete characterization of m.c.c.’s with δ(G) ≥ n − 3. We close the
section by demonstrating that, for every n and positive k 	= (n− 1)/2, there exists an
m.c.c. whose number of masters is exactly k.

Theorem 4.1. Let G be an m.c.c. with (n− 3)/2 master vertices. Then δ(G) ≥
(n− 3).

Proof. Let G be an m.c.c. with (n−3)/2 masters. Let M be the set of master ver-
tices inG (so |M | = (n−3)/2). LetN = V \M andK = {v : (n−3) ≤ deg(v) < (n−1)}.

Claim 1. |K| ≥ 2.
Proof of Claim 1. Consider the partition P0 = M and P1 = V \ P0. For v ∈ P0,

set c0v = 0, and for v ∈ P1, set c0v = 1. Note that maj(c0) = 1. Since P0 = M ,
by Proposition 2.6, for v ∈ P0, c

1
v = maj(c0) = 1. Since G is an m.c.c., we have

maj(c0) = maj(c1). Hence, the set {v ∈ P1 : c1v = 1} contains at least (n + 1)/2 −
(n − 3)/2 = 2 vertices. We now show that c1v = 1 if and only if v ∈ K. For a vertex
v ∈ P1, c

1
v = 1 if and only if degP0

(v) ≤ degP1
(v). Since degP0

(v) = |P0| = (n− 3)/2,
degP1(v) ≥ (n−3)/2. Therefore deg(v) = degP0

(v)+degP1
(v) ≥ (n−3)/2+(n−3)/2 =

(n− 3), i.e., v ∈ K.
Claim 2. For all v ∈ N , degK(v) ≤ |K| − 2.
Proof of Claim 2. For contradiction, assume there exists vi ∈ N such that

degK(vi) > |K|−2. Then consider the partition P0 = M ∪{vi}, and P1 = V \P0. Set
c0v = 0 for v ∈ P0, and c0v = 1 otherwise. For v ∈M , c1v = maj(c0) = 1. Similarly, for
all v ∈ P1 \K, c1v = 0 since deg(v) < n− 3 (by definition) and degM (v) = (n− 3)/2.
Now there are two cases.

(i) vi ∈ N\K. As deg(vi) < n−3 (by definition) and degM (v) = (n−3)/2, we have
c1vi = 0. For a vertex v ∈ K, c1v = 0 if and only if (v, vi) ∈ E because n−3 ≤ deg(v) <
n− 1 and degP0

(v) = (n− 1)/2. Thus, sum(c1) = |M |+ |K| − degK(vi). Noting that
degK(vi) > |K| − 2, we have sum(c1) < (n− 3)/2 + |K| − |K|+ 2 = (n+ 1)/2.

(ii) vi ∈ K. Now (n− 3) ≤ deg(vi) < (n− 1). Since vi ∈ K, degK(vi) > |K| − 2
implies that vi is adjacent to all the other vertices in K, i.e., degK(vi) = |K| − 1.
For a vertex v ∈ K \ vi, c1v = 0 if and only if (v, vi) ∈ E since deg(v) < n − 1
and degP0(v) = (n − 1)/2. Then sum(c1) = |M | + c1vi + (|K| − 1) − degK(vi) ≤
|M |+ 1 + (|K| − 1)− (|K| − 1) = (n− 1)/2.

Thus maj(c1) = 0 	= 1 = maj(c0) in both (i) and (ii), which is a contradiction
since G is an m.c.c.

Claim 3. Let v1, v2 ∈ K be vertices that are not adjacent. Then both v1 and v2
must be adjacent to all the vertices in N \K.

Proof of Claim 3. For contradiction, assume there exists a vertex v3 ∈ N \K that
is not adjacent to v1. Note that deg(v1) = n−3, and degK(v1) = |K|−2. Consider the
partition P0 = M ∪ v1, and P1 = V \ P0. Set c0v = 0 if v ∈ P0, and c0v = 1 otherwise.
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For v ∈ M , c1v = 1. Also, note that c1v1 = 0, since degP0
(v1) = (n − 3)/2, and

deg(v1) = n− 3. Similarly, for v ∈ K \ v1, c1v = 0 if and only if (v, v1) ∈ E. Therefore
sum(c1) = |M |+(|K|−1)−degK(v1) = (n−3)/2+(|K|−1)− (|K|−2) = (n−1)/2.
This is a contradiction since G is an m.c.c.

We complete the proof of Theorem 4.1 by now showing that the size of the set
N \ K is zero; i.e., every vertex in N belongs to K. Any vertex v ∈ K must have
degK(v) < |K|−1 from Claim 2. Claim 3 implies that v is adjacent to all the vertices
in N \K, which implies that each vertex in N \K is adjacent to all the vertices in
K. This is in contradiction to Claim 2, and therefore either the size of the set K is
zero or the size of the set N \K is zero. From Claim 1, K is nonempty, and hence
the set N \K must be empty.

Now we turn our attention to graphs G with δ(G) ≥ n − 3 and characterize
m.c.c.’s. A direct consequence of Proposition 2.6 is that the only colorings c0 for
which G with δ(G) ≥ n− 3 might not admit a majority consensus are the tight ones,
i.e., c0 such that sum(c0) = (n+ 1)/2. (The case sum(c0) = (n− 1)/2 is symmetric.)

Proposition 4.2. If δ(G) ≥ n− 3, then G admits majority consensus for every
coloring c0 such that sum(c0) ≥ (n+ 3)/2.

Proof. Note that every v ∈ V is either a master, a 1-master, or a 2-master. Thus,
by Proposition 2.6, c1v = maj(c0) for every v ∈ V .

If δ(G) ≥ n−3, thenGc has a very simple structure since ∆(Gc) = (n−1)−δ(G) ≤
(n − 1) − (n − 3) = 2. In other words, a connected component of Gc is a single
vertex, a path, or a cycle. The decomposition of Gc into its connected components
H1 = (V1, E

c
1), H2 = (V2, E

c
2), . . . , Hm = (Vm, E

c
m)4 will be used throughout this

section and we will often abuse the notation and identify V (H) with H whenever
such notation is unambiguous (e.g., we will often say that the connected components
of Gc define a partition of V ).

Another convenient property of G with δ(G) ≥ n − 3 is that every vertex in
G is either a master, a 1-master, or a 2-master. Thus, the following lemma gives
a complete Boolean formula representation of local updates for colorings ct with
sum(ct) = (n+ 1)/2.

Lemma 4.3. Let ct be a coloring such that sum(ct) = (n+ 1)/2.
(a) If v is a master, then ct+1

v = 1.
(b) If v is a 1-master, then ct+1

v = 1 − ctvctw, where w is the unique vertex not
adjacent to v.

(c) If v is a 2-master, then ct+1
v = 1− ctuctw, where u and w are the two vertices

not adjacent to v.
Proof. Since maj(ct) = 1, (a) follows directly from Proposition 2.6.
If v is a 1-master, then V \N(v) = {v, w}, so

|{u ∈ N(v) : ctu = 1}| = n+ 1

2
− ctv − ctw.

Note that ct+1
v = 0 if and only if |{u ∈ N(v) : ctu = 1}| < |N(v)|/2 = (n − 2)/2

(deg(v) = n − 2 is odd, so a tie is impossible). But the last inequality holds if and
only if ctv = ctw = 1. Thus, (b) holds.

Similarly, if v is a 2-master, then V \N(v) = {v, u, w}, so

|{u ∈ N(v) : ctu = 1}| = n+ 1

2
− ctv − ctu − ctw.

4In other words, Vi, i = 1, . . . ,m, are pairwise disjoint, V1∪· · ·∪Vm = V , and Ec
1∪· · ·∪Ec

m = Ec.
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Fig. 4.1. The auxiliary graphs (bottom) corresponding to the various connected components of
Gc (top).

First suppose ctv = 0. Then, ct+1
v = 0 if and only if |{u ∈ N(v) : ctu = 1}| ≤

|N(v)|/2 = (n − 3)/2, and this is true if and only if ctu = ctw = 1. Thus, (c) holds if
ctv = 0. Finally, suppose ctv = 1. Then, ct+1

v = 0 if and only if |{u ∈ N(v) : ctu = 1}| <
|N(v)|/2 = (n−3)/2 and, again, this is true if and only if ctu = ctw = 1. Thus, (c) also
holds if ctv = 1.

This lemma allows us to track the action of the local majority process on G. We
define an auxiliary graph AG = (V,E(AG)). Edges of AG are defined by formulas
from Lemma 4.3(b) and (c):

E(AG) = {{v, w} : dG(v) = n− 2, {v, w} /∈ E(G)}
∪

{{u,w} : ∃v, dG(v) = n− 3, {v, u}, {v, w} /∈ E(G)}.
Thus, E(AG) is in one-to-one correspondence with the set of all vertices of G which
are not masters. Note that AG has a rather simple structure (see Figure 4.1 for
an illustration): all of its connected components are cycles, each corresponding to a
connected component of Gc as follows (this is a direct consequence of the definition
of AG):

• If a connected componentH ⊂ Gc is a path, say v1, v2, . . . , vl (i.e., {vi, vi+1} ∈
E(Gc), i = 1, . . . , l − 1), then V (H) defines a cycle CH that is a connected
component in AG.
If l is even, then the adjacent vertices in CH are

v1, v2, v4, v6, . . . , vl−2, vl, vl−1, vl−3, . . . , v3, v1.

(Note that if l = 2 for some H, AG becomes a multigraph, with CH being a
cycle of length 2.)
If l is odd, then adjacent vertices in CH are

v1, v2, v4, v6, . . . , vl−1, vl, vl−2, vl−4, . . . , v3, v1.

• If a connected component H ⊂ Gc is an odd cycle v1, v2, . . . , v2k+1, v1 (i.e.,
{vi, vi+1} ∈ E(Gc), i = 1, . . . , 2k + 1, and {v2k+1, v1} ∈ E(Gc)), then V (H)
defines a cycle CH that is a connected component in AG:

v1, v3, . . . , v2k+1, v2, v4, . . . , v2k, v1.
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• If a connected component H ⊂ Gc is an even cycle v1, v2, . . . , v2k, v1 (i.e.,
{vi, vi+1} ∈ E(Gc), i = 1, . . . , 2k, and {v2k, v1} ∈ E(Gc)), then V (H) defines
two disjoint cycles CH = C1H ∪C2H that are connected components in AG:

v1, v3, . . . , v2k−1, v1 and v2, v4, . . . , v2k, v2.

Lemma 4.4. Let ct be a coloring such that sum(ct) = (n + 1)/2. Let H be a
connected component of Gc on l vertices, l ≥ 2. Let S = {v ∈ H : ctv = 1}. Then

|{v ∈ H : ct+1
v = 1}| ≥ l − |S|.(4.1)

Furthermore, the equality holds in (4.1) if and only if one of the following holds:
(i) |S| = 0, (ii) |S| = l, (iii) H is an even cycle and ctv 	= ctw whenever {v, w} ∈
E(Gc).

Proof. First note that, by Lemma 4.3 and by the definition of AG,

|{v ∈ H : ct+1
v = 1}| =

∑
v∈H

ct+1
v =

∑
{u,w}∈CH⊂AG

(1− ctuctw) = |H| −
∑

{u,w}∈CH⊂AG
ctuc

t
w.

Thus, it remains to show that

|S| ≥
∑

{u,w}∈CH⊂AG
ctuc

t
w.(4.2)

Note that ∑
{u,w}∈CH⊂AG

ctuc
t
w = |{{u,w} ∈ EAG(CH) : u,w ∈ S}| = |E(CH [S])|,

where CH [S] denotes the induced subgraph of CH , i.e., the maximal subgraph of CH
on the vertex set S ⊂ V (CH).

If |S| = 0, |E(CH [S])| = 0, and (4.2) holds with equality. Thus, (4.1) holds with
equality.

If |S| = l, then CH [S] = CH and |E(CH [S])| = |E(CH)| = l since CH is a cycle
or a union of two disjoint cycles. Thus, if |S| = l, (4.1) also holds with equality.

If H is an even cycle, then CH = C1H ∪ C2H . Furthermore, S = V (C1H) or
S = V (C2H) if and only if vertices of H are colored alternately along the cycle H (i.e.,
as described in (iii) in the statement of the lemma). In either case, |E(CH [S])| = |S|
and (4.1) again holds with equality.

If neither (i) nor (ii) nor (iii) holds, then CH [S] contains an acyclic component,
and any possible cyclic component of CH must be a cycle.5 Thus, |E(CH [S])| ≤ |S|−1
and

|{v ∈ H : ct+1
v = 1}| ≥ l − |S|+ 1.(4.3)

Several simple consequences of this lemma will be useful in the analysis that
follows. For example, if a connected component H of Gc that is not an isolated vertex
is monochromatic for some ct, then every vertex in H will switch color.

Lemma 4.5. Let ct be a coloring of G, δ(G) ≥ n−3, such that sum(ct) = (n+1)/2.
Let H = (VH , EH) be a connected component of Gc with |VH | ≥ 2. Suppose that
ctv = ctw for every v, w ∈ VH . Then ct+1

v = 1− ctv for every v ∈ VH .

5In fact, the only possibility for a cyclic component is when H is an even cycle.
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Proof. Let |VH | = l. If ctv = 1 for all v ∈ VH , then the result follows from
Lemma 4.4 with |S| = l. If ctv = 0 for all v ∈ VH , then the result follows from
Lemma 4.4 with |S| = 0.

The next lemma presents an opposite scenario: If colors assigned by ct, sum(ct) =
(n + 1)/2, alternate along an even cycle that is a connected component of Gc, then
no vertex on that cycle will switch color.

Lemma 4.6. Let ct be a coloring of G, δ(G) ≥ n−3, such that sum(ct) = (n+1)/2.
Let C2k ⊂ Gc be a connected component in Gc. Suppose the colors assigned by ct

alternate along the cycle: If u is adjacent to v in C2k, then ctu = 1 − ctv. Then
ct+1
v = ctv for every v ∈ C2k.

Proof. Every v ∈ C2k is a 2-master and, by Lemma 4.3(c), ct+1
v = 1 − ctuctw =

1− (1− ctv) because in C2k, v is adjacent to both u and w.
The preceding lemmas indicate a way to construct c0 yielding a complete switch,

i.e., c1 = 1− c0. Obviously, all masters must be colored with a minority color in order
to switch. If all the other connected components of Gc are monochromatic (with
some even cycles possibly being colored as described in the previous lemma), and if
the resulting coloring c0 is a tight majority coloring on G (i.e., sum(ct) = (n+ 1)/2),
then, as shown in the next lemma, c1 = 1 − c0 (except on the even cycles, where
ct+1 = ct), and G is not an m.c.c.

Lemma 4.7. Let δ(G) ≥ n − 3. Let H1 = (V1, E
c
1), H2 = (V2, E

c
2), . . . , Hm =

(Vm, E
c
m) be the connected components of Gc. Suppose there exist i and j, 1 ≤ i <

j ≤ m, such that
(i) |Vk| = 1⇒ k ≤ i,
(ii) m ≥ k > j ⇒ Hk is an even cycle,
(iii) |V1|+ |V2|+ · · ·+ |Vi|+ 1 = |Vi+1|+ · · ·+ |Vj |.

Then G is not an m.c.c.
Proof. For v ∈ Vk, set c0v = 0 if k ≤ i and set c0v = 1 if i < k ≤ j. If j < k ≤ m,

then the remaining vertices lie on even cycles in Gc. Color each Hk alternately, i.e.,
as described in Lemma 4.6. Note that, by (iii),

|{v ∈ V : c0v = 0}| =

i∑
k=1

|Vk|+ 1

2

m∑
k=j+1

|Vk|

=

(
j∑

k=i+1

|Vk|
)
− 1 +

1

2

m∑
k=j+1

|Vk|

= |{v ∈ V : c0v = 1}| − 1.

Thus, sum(c0) = (n+ 1)/2 and maj(c0) = 1.
If v is a master, c1v = maj(c0) = 1 = 1 − c0t (the last equality holds because

{v} = Hk for some k and k ≤ i by (i)). If v is not a master, then v ∈ Hk for some
k ≤ m such that |Hk| ≥ 2. If k ≤ j, then c1v = 1 − c0v by Lemma 4.5. If k > j, then
c1v = c0v by Lemma 4.6. Therefore, c1v = 1 − c0v if v ∈ V1 ∪ · · · ∪ Vj and c1v = c0v if
v ∈ Vj+1 ∪ · · · ∪ Vm. Thus,

|{v ∈ V : c1v = 1}| =

i∑
k=1

|Vk|+ 1

2

m∑
k=j+1

|Vk|

=

(
j∑

k=i+1

|Vk|
)
− 1 +

1

2

m∑
k=j+1

|Vk|

= |{v ∈ V : c1v = 0}| − 1.
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So, maj(c1) = 0 	= maj(c0) and G is not an m.c.c. by Proposition 2.1.
For any k = 0, 1, . . . , (n − 1)/2, it is straightforward to construct a G with k

masters satisfying the conditions of Lemma 4.7. For example, if k = 0, take G
such that connected components of Gc are P(n−1)/2 and P(n+1)/2. If k > 0, G such
that connected components of Gc are masters in G, Pk+1, and Cn−2k−1 is such an
example. Thus, there exist G with δ(G) ≥ n−3, which are not m.c.c.’s, having exactly
k masters for every k < (n+ 1)/2. (Recall that, by Proposition 3.1, every G with at
least (n+ 1)/2 masters is an m.c.c.)

A similar construction to that of Lemma 4.7 yields a class of graphs with a unique
master that are not m.c.c.’s.

Lemma 4.8. Let δ(G) ≥ n − 3 and let v0 be the unique master in G. Let
H1 = {v0}, H2 = (V2, E

c
2), . . . , Hm = (Vm, E

c
m) be the connected components of Gc.

Suppose there exist i and j, 1 ≤ i ≤ j ≤ m, such that
(i) m ≥ k > j ⇒ Hk is an even cycle,
(ii) |V2| + |V3| + · · · + |Vi| = |Vi+1| + · · · + |Vj | (assuming the empty summation

on both sides of the equation when i = j = 1).
Then G is not an m.c.c.
Proof. Define c0 as in the proof of Lemma 4.7 except for v0. Set c0v0 = 1. Observe

that c1v = 1− c0v for v ∈ V2 ∪ · · · ∪ Vj (by Lemma 4.5), that c1v0 = maj(c0) = 1 = c0v0
(by Proposition 2.6), and that c1v = c0v for v ∈ Vj+1 ∪ · · · ∪ Vm (by Lemma 4.6).
Note that sum(c1) = (n + 1)/2 because of (ii). Repeating the same observation,
we get c2v = 1 − c1v = 1 − (1 − c0v) = c0v for v ∈ V2 ∪ · · · ∪ Vj (by Lemma 4.5),
c2v0 = maj(c1) = 1 = c0v0 (by Proposition 2.6), and c2v = c1v = c0v for v ∈ Vj+1∪· · ·∪Vm
(by Lemma 4.6). Thus c2 = c0, and c0, c1, c2, . . . is periodic with period at most two.
Since c0 is not a consensus, G is not an m.c.c.

For example, Kn \Cn−1 is not an m.c.c. because it satisfies the conditions of the
lemma with i = j = 1 and m = 2.

In order to prove that the master conjecture holds in the case δ(G) ≥ n − 3, we
need yet another lemma. In what follows we will say that v1, v2, . . . , vk form a path
Pk if vi is adjacent to vi+1 for i = 1, . . . , (k− 1). Similarly, we will say that v1, . . . , vk
form a cycle Ck if v1, . . . , vk form a path Pk ⊆ Ck and v1 is adjacent to vk.

Lemma 4.9. Let ct be a coloring of G, δ(G) ≥ n−3, such that sum(ct) = (n+1)/2.
Let v1, v2, . . . , vk form H ⊂ Gc, a connected component in Gc on k ≥ 3 vertices.
Suppose that there exists a j < k/2 such that ctvi = i mod 2 for i ≤ 2j + 1. If
2j + 1 < k, also suppose that ctvi = ctv2j+2

for i > 2j + 1.

Then ct+1
vi = ctvi for i ≤ 2j + 1 and ct+1

vi = 1− ctvi for i > 2j + 1.
Proof. Since δ(G) ≥ n− 3, H is a path or a cycle. Using Lemma 4.3(b) and (c),

observe that ct+1
vi = ctvi for i ≤ 2j + 1 (since each vi such that ctvi = 0 has both

nonneighbors of color 1, while each vi such that ctvi = 1 has at least one nonneighbor
of color 0) and that ct+1

vi = 1− ctvi for i > 2j + 1 (if ctv2j+2
= · · · = ctvk = 0, then each

such vi has a nonneighbor of color 0; if ctv2j+2
= · · · = ctvk = 1, then each such vi has

all nonneighbors of color 1 because ctv1 = ctv2j+1
= 1).

Theorem 4.10. Let G be a graph such that δ(G) ≥ n − 3. If G is an m.c.c.,
then G contains a master.

Proof. Suppose G does not contain a master. We’ll show that G is not an m.c.c.
Let H1 = (V1, E

c
1), H2 = (V2, E

c
2), . . . , Hm = (Vm, E

c
m) be the connected components

of Gc. Since G does not contain a master, |Vl| ≥ 2, l = 1, . . . ,m. Choose an index i
such that

|V1|+ · · ·+ |Vi| ≤ (n− 1)/2 < |V1|+ · · ·+ |Vi|+ |Vi+1|.
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If |V1|+ · · ·+ |Vi| = (n−1)/2, then the conditions of Lemma 4.7 are satisfied with
i and with j = m. Therefore, in this case, G is not an m.c.c.

For the rest of the proof we may assume that |V1| + · · · + |Vi| < (n − 1)/2. We
may also assume that |V1|+ · · ·+ |Vi−1|+ |Vi|+ (|Vi+1|/2) > (n− 1)/2. (If not, then
(|Vi+1|/2)+ |Vi+2|+ |Vi+3|+ · · ·+(|Vm|) > (n−1)/2 and we could map l to m+1− l;
i.e., Hl becomes Hm+1−l, l = 1, . . . ,m.) Note that these imply that |Vi+1| ≥ 3.

Let v1, v2, . . . , vk form Hi+1 and let

j = (n− 1)/2− (|V1|+ · · ·+ |Vi−1|+ |Vi|).(4.4)

Note that j < k/2. Set

c0v =

⎧⎪⎪⎨
⎪⎪⎩

0 v ∈ V1 ∪ V2 ∪ · · · ∪ Vi,
p mod 2 vp, p = 1, . . . , 2j + 1,

1 vp, p = 2j + 2, . . . , k,
1 v ∈ Vi+2 ∪ Vi+3 ∪ · · · ∪ Vm.

Note that sum(c0) = (n + 1)/2. By Lemma 4.5, c1v = 1 − cv for every v /∈ Vi+1. By
Lemma 4.9, c1vi = 1 − c0vi for i = 2j + 2, . . . , k and c1vi = c0vi for i = 1, . . . , 2j + 1.
Thus, only j vertices colored by 0 and only j + 1 vertices colored by 1 do not switch
color. Hence, sum(c1) = |V1| + · · · + |Vi| + (j + 1) = (n − 1)/2 + 1 = (n + 1)/2 (the
second equality follows from (4.4)).

Repeating the same argument for

c1v =

⎧⎪⎪⎨
⎪⎪⎩

1 v ∈ V1 ∪ V2 ∪ · · · ∪ Vi,
p mod 2 vp, p = 1, . . . , 2j + 1,

0 vp, p = 2j + 2, . . . , k,
0 v ∈ Vi+2 ∪ Vi+3 ∪ · · · ∪ Vm,

we conclude that c2 = c0. Thus, c0, c1, c2, . . . has period two. Therefore, G is not an
m.c.c.

Next we turn to G, δ(G) ≥ n − 3, which contain masters. Because of Proposi-
tion 3.1, the only remaining cases are graphs with k masters, k = 1, 2, . . . , (n− 3)/2.
We have already demonstrated two conditions that would immediately classify such
G as not being an m.c.c. (Lemmas 4.7 and 4.8). As the next theorem shows, these
are the only two obstacles.

Theorem 4.11. Let G, δ(G) ≥ n − 3, contain exactly k masters, 1 ≤ k ≤
(n − 3)/2. G is not an m.c.c. if and only if G satisfies conditions of Lemma 4.7 or
conditions of Lemma 4.8.

Proof. We only have to prove necessity. (Sufficiency follows from Lemmas 4.7
and 4.8.) We will show that, for any c0, G either admits a majority consensus for c0

or satisfies conditions of either Lemma 4.7 or Lemma 4.8. By Proposition 4.2 we may
assume sum(c0) = (n+ 1)/2.

Let H1, H2, . . . , Hl be the connected components of Gc that are not isolated ver-
tices. Let c0 be a coloring of G, sum(c0) = (n+ 1)/2. For i = 0, 1 define

m(i) = |{v ∈ G : v is a master, c0v = i}|

and

hj(i) = |{v ∈ Hj : c0v = i}|,
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j = 1, . . . , l. Note that k = m(0)+m(1), |Hj | = hj(0)+hj(1), (n+1)/2 = sum(c0) =

m(1) +
∑l
j=1 hj(1) and that (n− 1)/2 = m(0) +

∑l
j=1 hj(0).

Furthermore, for j = 1, . . . , l, let αj = 0 if Hj satisfies (i), (ii), or (iii) from
Lemma 4.4; otherwise let αj = 1. In this notation, by Lemma 4.4, we have

|{v ∈ Hj : c1v = 1}| ≥ |Hj | − hj(1) + αj = hj(0) + αj .

Thus, taking into account that c1v = 1 for every master v (Proposition 2.6),

sum(c1) ≥ m(0) +m(1) +

l∑
j=1

(hj(0) + αj).

Thus,

sum(c1)− sum(c0) ≥ m(1) +m(0) +

l∑
j=1

hj(0) +

l∑
j=1

αj − sum(c0)

≥ m(1) + (n− 1)/2 +

l∑
j=1

αj − (n+ 1)/2

≥ m(1)− 1 +

l∑
j=1

αj .

Therefore, sum(c1) < sum(c0) if and only if m(1) = 0 and αj = 0 for all j = 1, . . . , n.
Also, in this case, sum(c1) = (n − 1)/2; i.e., G is not an m.c.c. since maj(c1) = 0 	=
1 = maj(c0). Note that conditions of Lemma 4.7 are satisfied; list all components of
Gc as follows: Start with all masters and continue with all H such that c0v = 0 for
all v ∈ H; then continue by listing all H such that c0v = 1 for all v ∈ H; if there are
remaining components, these must be even cycles colored alternately along the cycle
by c0.

If sum(c1) > sum(c0), then sum(c1) ≥ (n+3)/2 and, therefore, G admits major-
ity consensus for c1 by Proposition 4.2 (and thus for c0 also since maj(c0) = maj(c1)).

Therefore, we may assume that sum(c1) = sum(c0) = (n+1)/2. This also means
that we may assume that

1−m(1) =

l∑
j=1

αj .

Since the right-hand side is nonnegative, m(1) = 0 or m(1) = 1. Note that we may
assume that m(1) = 1. (Otherwise, we can replace c0 with c1 and, since sum(c1) =
(n+ 1)/2 with αj unchanged, we can ensure that m(1) 	= 0.)

Because m(1) = 1, we know that every αj = 0; i.e., Hj either is colored monochro-
matically by c0 or is an even cycle colored alternately by c0. If, in addition, m(0) = 0,
G has only one master and the conditions of Lemma 4.8 are satisfied; list all com-
ponents of Gc as follows: Start with the unique master, continue with all H such
that c0v = 0 for every v ∈ H, and then continue by listing all H such that c0v = 1 for
every v ∈ H; if there are any vertices in H left, these must be even cycles colored
alternately.
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Therefore, it remains to consider the case sum(c0) = sum(c1) = (n + 1)/2,
m(1) = 1, m(0) ≥ 1, and αj = 0 for every Hj . Note that

sum(c2) = m(0) +m(1) +

l∑
j=1

hj(1) ≥ 1 +m(1) +

l∑
j=1

hj(1)

= 1 + sum(c0) = (n+ 3)/2.

Thus, by Proposition 4.2, c3 is a consensus in color 1.
Remark. The proof of Theorem 4.11 shows that if G, with δ(G) ≥ n − 3, is

an m.c.c., then c3 is the majority consensus; i.e., the local majority process reaches
consensus in at most three steps.

Theorem 4.12. Let G be a graph with k masters and with δ(G) ≥ n − 3.
G is not an m.c.c. if and only if one of the following holds: (i) k = 0, (ii) k =
(n−1)/2, (iii) G satisfies the conditions of Lemma 4.7, (iv) G satisfies the conditions
of Lemma 4.8.

Proof. The proof follows by Theorem 4.10, Proposition 2.6, and Theorem
4.11.

Note that Theorem 4.11 can be used to define various classes of m.c.c.’s and non-
m.c.c.’s. We close this section by observing just one additional class of m.c.c’s that
was mentioned in section 2.

Theorem 4.13. Let k ≥ 1, k 	= (n− 1)/2. There exists an m.c.c. with exactly k
masters. In particular, Kn \ Pn−k is an m.c.c.

Proof. If k ≥ (n + 1)/2, the result follows from Proposition 3.1. If 1 ≤ k ≤
(n − 3)/2, the connected components of the complement of G = Kn \ Pn−k are k
single element components corresponding to masters in G and Pn−k. Note that G
does not satisfy the conditions of Lemma 4.7 or Lemma 4.8. Thus, by Theorem 4.11,
G is an m.c.c.

Finally, checking if the conditions of Lemmas 4.7 and 4.8 are satisfied can be done
in polynomial time. This is because the exact structure of connected components ofGc

can be found in polynomial time and because the (nearly) equipartition conditions can
be checked in time polynomial in n =

∑ |Vi| (this is essentially a knapsack problem
that can be solved in pseudopolynomial time [13]). Thus, in light of Theorem 4.12,
we have the following.

Corollary 4.14. Let G be a graph with δ(G) ≥ n − 3. Then determining
whether G is an m.c.c. can be done in polynomial time.

5. Generalizations and relaxations. A simple generalization of the local ma-
jority process would allow vertex v to have some resistivity towards color switch.
Formally, for a nonnegative integer k(v), we define a k(v)-local majority rule for ver-
tex v:

ct+1
v =

{
ctv if |{w ∈ Nv : ctw = ctv}| ≥ |N(v)|/2− k(v),

1− ctv if |{w ∈ Nv : ctw 	= ctv}| > |N(v)|/2 + k(v).
(5.1)

The value k(v) is called the resistivity value of vertex v and we call the graph G =
(V,E), together with the set of vertex resistivities {k(v) : v ∈ V }, a varied-resistivity
graph. Similarly, the process defined by (5.1) is called the local majority process with
resistivities. Dreyer [7] studies such processes and discusses relevant literature. Note
that the local majority process with resistivities, where k(v) = 0, v ∈ V , is exactly
the local majority process.
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(a) (b)

v1

v2

G̃G

Fig. 5.1. (a) Graph G with k(v1) = 1, k(v2) = 2, and c0 as indicated. (b) G̃ with c̃0 as indicated.

As the following theorem shows, introducing vertex resistivities does not introduce
additional difficulties: For any coloring c0 and any graph G with resistivities {k(v) :
v ∈ V }, the local majority process with resistivities can be simulated by the (standard)
local majority process on a related graph G̃ containing

∏
v(k(v)+1) disjoint copies of

G that are interconnected through
∏
v �=vi(k(v) + 1) vertex-disjoint (k(vi) + 1)-cliques

on vertices corresponding to vi in each of these copies for every vi and with the initial
coloring c̃0 on G̃ coinciding with c0 on each of the copies of vi. (Figure 5.1 provides
an example.)

Theorem 5.1. Let G(V,E) be a varied-resistivity graph with vertex set V =
{v1, . . . , vn} and corresponding resistivities {k(v1), . . . , k(vn)}. The local majority
process with resistivities on the varied-resistivity graph G can be simulated by the local
majority process on some graph G̃(Ṽ , Ẽ).

Proof. Denoting p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn), define G̃ = (Ṽ , Ẽ)
as follows:

Ṽ = {vpi : vi ∈ V, 0 ≤ pl ≤ k(vl), i = 1, . . . , n, l = 1, . . . , n},
Ẽ = {{vpi , vpj } : {vi, vj} ∈ E, 0 ≤ pl ≤ k(vl), l = 1, . . . , n}

∪ {{vpi , vqi } : pl = ql ⇔ l 	= i, i = 1, . . . , n}.

Note that, for any p = (p1, . . . , pi, . . . , pn), the subgraph of G̃ induced by {vpi :
vi ∈ V } is isomorphic to G, and that, for any i, the subgraph of G̃ induced by
{vpi : 0 ≤ pi ≤ k(vi)} is a (k(vi) + 1)-clique. Furthermore, the edge sets of these∏
i(k(vi) + 1) +

∑
i

∏
j �=i(k(vj) + 1) subgraphs partition Ẽ. Thus,

N(vpi ) = {vpj : vj ∈ N(vi)} ∪ {vqi : pl = ql ⇔ l 	= i};

that is, N(vpi ) consists of the set of vertices isomorphic to N(vi) and k(vi) additional
vertices.

In order to simulate the local majority process with resistivities on G by the local
majority process (without resistivities) on G̃, for any coloring ct of G, define c̃t by

c̃t(vpi ) = ct(vi).
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Since c̃t(vpi ) = c̃t(vqi ) for all p,q, c̃t+1(vpi ) = 1− c̃t(vpi ) if and only if |{vpj : vj ∈ N(vi),

c̃t(vpj ) = 1 − c̃t(vpi )}| > |{vpj : vj ∈ N(vi)}|/2 + k(vi) = |N(vi)|/2 + k(vi). Thus,
using (5.1),

c̃t+1(vpi ) = ct+1(vi),

that is, ct
′

on G and c̃t
′

on any subgraph of G̃ induced by {vpi : vi ∈ V } coincide for
any t′ ≥ t.

Another natural generalization of our model would be to associate weights to the
edges of G. The weight auv associated to the edge {u, v} could be interpreted as the
strength of the relationship between u and v and used as the relative importance of
the information provided by u ∈ N(v) at time t for v’s decision on its color ct+1

v at
time t+ 1. In other words, the weighted local majority process is defined by

ct+1
v = 1− ctv ⇔

⎛
⎝ ∑
u∈N(v):ctu=1−ctv

auv

⎞
⎠ >

1

2

∑
u∈N(v)

auv.

Note that we may assume that all auv are rational numbers because G is finite.6

Furthermore, we may assume that all weights auv are integer valued.7 If all weights
happen to be nonnegative, the weighted local majority process can be simulated by the
local majority process on the corresponding multigraph GM = (V,EM ), where EM is
the multiset of edges of G with multiplicity of an edge {u, v} given by auv. In order to
properly apply (2.1) in this case, several definitions have to be adjusted: N(v) is the
multiset of the vertices adjacent to v, where a vertex u appears with multiplicity auv.
A degree of a vertex v, deg(v) is the cardinality (taking into account multiplicities)
of N(v). Most of our results readily generalize in the multigraph framework.

Combining both generalizations yields the local weighted majority process with
resistivities which is defined by

ct+1
v = 1− ctv ⇔

⎛
⎝ ∑
u∈N(v):ctu=1−ctv

auv

⎞
⎠ > kv +

⎛
⎝ ∑
u∈N(v):ctu=ctv

auv

⎞
⎠ .(5.2)

In other words, v changes its color at time t + 1 if and only if at least kv more than
the weighted majority of its neighbors are colored by 1 − ctv at time t. As already
noted, it is safe to assume that edge weights auv are integral, and thus, without loss of
generality, we may assume that resistivities kv are integral also.8 If kv is nonnegative,
this process can be simulated by the local majority process on the multigraph GM

defined as in the previous paragraph with addition of kv loops to each vertex v. Note
that v belongs to N(v) with multiplicity kv in such a multigraph.

Hence, because of the multigraph simulation, it is straightforward to general-
ize most of the presented results in the framework that allows for nonnegative edge
weights auv and nonnegative vertex weights kv. Note that the weighted local majority
process with resistivities can be described in terms of the process from Theorem 2.2
with b = 1

2A(1, . . . , 1)T , where nondiagonal entries of the integer valued A are auv if

6There exists ε > 0 such that replacing each weight auv with a∗uv , auv − ε < a∗uv ≤ auv yields
the same process for any initial coloring c0.

7Multiplying all weights by a scalar λ yields the same process. Set λ to the common denominator
of all weights.

8Any kv can be replaced with an integral k∗v resulting in no change in the coloring process.
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{u, v} is an edge and auv = 0 if {u, v} is not an edge, and where the diagonal entries
of A are avv = kv + 1 if there exists ct which would turn the right-hand side of (5.2)
into equality, and avv = kv otherwise. Conversely, if A is a nonnegative matrix and b
such that, for every i = 1, . . . , n, the interval (bi − aii, bi) contains no elements from

S =

⎧⎨
⎩
∑
j∈J

aij : J ⊆ {1, 2 . . . , n} \ {i}
⎫⎬
⎭

and bi ≥ (maxS)/2, then it is straightforward to define G and nonnegative edge
and vertex weights such that the weighted local majority process with resistivities
on G is equivalent to the dynamic process in the symmetric neural network model
(i.e., the process described in Theorem 2.2). Finally, note that there are instances of
the general symmetric neural network process, e.g., a weighted local majority process
with resistivities, where any of the edge weights or vertex resistivities are negative,
that cannot be simulated by the multigraph simulation approach to the local majority
process. (Allowing negative weights and resistivities could be viewed as a technical
generalization but not necessarily a natural one. If at least one of these parameters is
negative, there exists v and a coloring c0 such that v switches its color at time t = 1
from c0v, which is the majority color of its neighborhood at time t = 0, to c1v = 1− c0v,
which is the minority color of its neighborhood at time t = 0. A rule that allows for a
switch from the local majority to the local minority hardly qualifies as an acceptable
majority computation rule.)

In the next section we further discuss some basic assumptions of our model and
try to illustrate why our model is a natural one to analyze. In the rest of this section
we present an approach towards relaxing the notion of m.c.c.

In view of our results showing that m.c.c.’s are nowhere truly local, one might
want to know how likely is a network of agents G to admit a majority consensus.
Here we single out and then combine two possible ways to measure this. On the one
hand, one might be interested only in the colorings, where the difference between
majority and minority is substantial; i.e., we may only require that G admit majority
consensus only for a coloring c0 such that sum(c0) ≥ k (where an integer k ≥ n/2 is a
numerical expression of “substantial majority”). On the other hand, one might allow
for occasional failures requiring that G admit majority consensus for a substantial
proportion p of initial colorings c0 that are of interest. These two approaches motivate
the following definition of the (p, k)-weak m.c.c. defined for 0 ≤ p ≤ 1 and integer
k > n/2. G is a (p, k)-weak m.c.c. if G admits a majority consensus for at least p|C(k)|
colorings c0 ∈ C(k) = {c0 : sum(c0) ≥ k}. Note that, for odd n, m.c.c. is equivalent
to a (1, (n + 1)/2)-weak m.c.c. Also note that, if G is a (p, k)-weak m.c.c. and a
(p′, k′)-weak m.c.c., then k ≤ k′ ⇒ p ≤ p′. (This follows from Lemma 2.4.) Further
note that, by Proposition 2.6, any G with δ(G) ≥ 2(n− k) is a (1, k)-weak m.c.c. In
fact, we believe that the following generalization of the master conjecture holds.

Generalized master conjecture. Every (1, k)-weak m.c.c. contains a (2k−
n− 1)-master.

6. Discussion of model assumptions. As already noted, one might think
that our model is neither a realistic one nor a natural one to study because of several
assumptions that we have made. In this section we discuss model assumptions and
hopefully illustrate why our model is a natural one to study.

Choice of the neighborhood and the tie-breaking rule. One might consider our
choice of the tie-breaking rule and the definition of the neighborhood somewhat arbi-
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trary. For example, why not redefine N(v) by including v itself in N(v) and/or modify
the tie-breaking rule so that ct+1

v = 1−ctv whenever |{w ∈ N(v) : ctw = 1}| = |N(v)|/2
(i.e., require that v switch color in the case of a tie in the neighborhood). Note that
adopting both changes simultaneously in our model does not change the process. Also
note that the proposed modification of the tie-breaking rule (without redefining N(v))
allows no m.c.c.’s.9 Other modifications can be found in the literature (e.g., several
variants are studied in [35]).

Since it is impossible to discuss all possible creative proposals for the modifications
of our model, let’s discuss some properties that a reasonable model should have, and
then show that our model is the only one satisfying these properties.

The least one should expect from a local majority process is that every vertex v
should be able to update its color ctv so that ct+1

v is the majority color among the colors
it is aware of; i.e., ct+1

v should be the majority color on N(v) ∪ {v} at time t. In the
case where the majority is not defined, the update should reflect that ambivalence; i.e.,
if there is a tie among colors that v is aware of at time t, then ct+1

v = 1− ctv. In other
words, ct+1

v should be computed to reflect the majority situation in N(v)∪{v} at time
t (majority is 0 or 1 or ambivalent) because v has no information about the possible
existence of vertices not in N(v)∪v. Thus, if v happens to be a master, thereby having
no reasons for faulty computations of global majority, ct+1

v will correctly signal the
global majority.10 Note that the stated properties uniquely define

ct+1
v = f({ct+1

w : w ∈ N(v) ∪ {v}}),

and (2.1) is a way to represent ct+1. Therefore, if the goal is to define a local update
step satisfying outlined properties, the only choice is the local update used in our
model.

Bidirectional communication. The bidirectional nature of the relationship among
the agents played a crucial rule in our analysis. For example, even the basic “period
is one or two” property does not hold when G is allowed to be a directed graph.
For example, if �Cn is a directed cycle on n vertices and c0 is the coloring assigning 1
to only one vertex and 0 to the remaining n − 1 vertices, c0, c1, c2, . . . is periodic
with period n. Thus, allowing for nonsymmetric relationships yields to periods of any
possible length. In order to generalize presented results, one would have to take into
account the possibility of periods longer than two.

Memoryless property. The memoryless property of the local majority process
might seem unreasonable in many applications. In this paper we investigated itera-
tive use of the local majority rule as the simplest local approach to the problem of
determining global majority. Limited computational power of the agents due to the
memoryless property of the process and the agent’s ability to calculate and commu-
nicate the local majority in the form of one-bit information is of central importance
in our analysis. Empowering agents with memory would bring the problem closer
to the standard distributed computing framework. Design and analysis of possibly
more successful and more complicated protocols of the distributive computing flavor
is beyond the scope of this paper. Here we only note that the problem of determining
majority becomes trivial if all agents are aware of the network structure. (If G is
disconnected, there is no way to communicate between two connected components.

9Let c0v = 1 if and only if v ∈ S, where (S, Sc) is a max-cut in G. If the tie-breaking rule is
redefined as described, then c1 = 1 − c0 (because degSc (v) ≥ degS(v) for every v ∈ S).

10If, for a master v, ct+1
v = 1−ctv , one has to check ct+2

v to determine if the color switch indicated
ambivalence or the choice of the global majority color.
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If G is connected, the information about c0v can be propagated through the network.
This could be repeated for all n vertices which would allow all agents to learn c0 and
thus maj(c0)). Thus, the interesting protocols would be those defined for agents that
have no unique identifications and have no information about the network.

Static network structure. The static nature of the network of agents is another
critical property of the local majority process. It is possible that allowing for net-
work dynamics in the form of protocols that simultaneously control changes in ct

and the structure of the network at time t (e.g., changing the weight of an edge;
adding/deleting an edge) might yield efficient protocols. This seems to be a funda-
mentally different model than the one studied here.

Synchronous versus asynchronous updates. Synchronous updates make the local
majority process less restrictive than it would be with possible asynchronous update
protocols. If the local majority process is modified in a way that an infinite sequence
v1, v2, . . . of vertices from G is given and that the only update of ct at time t occurs
at vertex vt according to the local majority rule (2.1) while ct+1

v = ctv for all v 	= vt,
then no G except the complete graph on an odd number of vertices can be an m.c.c.
(First, note that v1 must be a master with deg(v) = n − 1 even to ensure that
maj(c0) = maj(c1) for all colorings c0. Thus, by induction, all vertices appearing in
the sequence must be masters with even degree. If a vertex v does not appear in the
sequence, then G cannot be an m.c.c. because an update at v will never occur.)

Deterministic versus stochastic model. The presented model is purely determin-
istic and there are several aspects of the model that call for stochastic modification.
For example, it would be interesting to see the effect of replacing the local update
(2.1) by the stochastic update rule

P(ct+1
v = i) =

1

deg(v)
|{w ∈ N(v) : ctw = i}|

on the conclusions drawn from the model. (The same rule is used in [21, 22, 32, 33].)
Also, allowing for asynchronous updates where the next vertex to be updated is

selected at random could yield interesting results. However, one has to be aware that
stochastic rules allow for a nonzero probability of not admitting a majority consensus.

Number of colors. One might consider generalizing the model by allowing k
possible colors, i.e., allowing ct : V → {0, 1, . . . , k − 1}. Properly defining the tie-
breaking rule is an inherent problem of this generalization. If k > 2, it is possible
that ctv is a minority color in N(v) ∪ {v} and that there is more than one majority
color in N(v). Then any tie-breaking choice for ct+1

v would have to favor one of the
majority colors arbitrarily. Regardless of the definition of the tie-breaking rule that
would hopefully generalize the one used in our model, understanding the case k = 2
is a prerequisite for understanding models allowing k > 2 colors. (Clearly, if G is an
m.c.c. when k colors are possibly present, G is also an m.c.c. when k′ < k are possibly
present.)

A generalization that would be more along the lines of our approach would be to
allow ct : V → R, define the dynamic process by

ct+1
v =

∑
w∈N(v)

ctw,

and state that G admits a majority consensus for coloring c0 if there exists a t such
that sign(ctv) = sign(sum(c0)) for every v ∈ V . A minimalistic version of this gener-
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alization would be to allow ct : V → {−1, 0, 1}, define the dynamic process by

ct+1
v = sign

⎛
⎝ ∑
w∈N(v)

ctw

⎞
⎠ ,

and state that G admits a majority consensus for c0 if there exists a t such that
ct is a consensus with (ctv) = sign(sum(c0)) for every v ∈ V . (Note that the local
majority process differs from this generalization only in the tie-breaking rule: If initial
colorings are restricted to c0 : V → {−1, 1}, then c1v = 0 if and only if the number
of 1’s and −1’s is equal in N(v).) For both generalizations it is straightforward to
generate results that show that G cannot be an m.c.c. if there exists a partition of G
similar to that described in Theorem 3.2(b). For example, no bipartite graph can be
an m.c.c. in either of the two generalizations.

7. Conclusions and directions. The main result of this paper is that failure-
free computation of majority consensus by iterative applications of the local majority
rule is possible only in the networks that are nowhere truly local (Theorem 3.5). In
other words, the idea of solving a truly global task (reaching consensus on majority)
by means of truly local computation only (local majority rule) is doomed for failure.

However, even well connected networks of agents that are nowhere truly local
might fail to reach majority consensus when iteratively applying the local majority
rule. We have investigated the properties of m.c.c.’s, i.e., the networks in which
iterative application of the local majority rule always yields consensus in the initial
majority state.

There are several directions that might be of potential interest. One direction
that was not of our interest involves computational issues, such as determining the
computational complexity of the decision problem:

DMCC (Deciding an M.C.C.). Input is a finite graph G. Is G an m.c.c.?

Clearly, DMCC is in co-NP because of Theorem 3.2, and it is very likely that
DMCC is co-NP complete. However, subclasses of DMCC are in P; cf. Corollary 4.14.
Another possible direction could be extremal properties of m.c.c.’s. For example, it
would be interesting to determine what is the minimal number of edges in an m.c.c. on
n vertices. Our results provide only an obvious lower bound of n (Corollary 3.3) and

an upper bound of
(
n
2

)− ((n−1)/2
2

)
edges (Proposition 3.1(a)).

The direction that would be more along the lines of our work would be a quest
for the full characterization of m.c.c.’s. We have made a first step towards a possi-
ble characterization theorem by characterizing m.c.c.’s for networks that are almost
complete in the sense that every agent does not communicate with at most two other
agents (Theorem 4.12). A simpler task would be to determine interesting properties
of m.c.c.’s that fall short of characterization. For example, we have shown, by an ex-
haustive computer aided search, that in every m.c.c. on at most 13 agents there exists
an agent that communicates with all other agents. In fact, we conjecture that every
m.c.c. G contains a master; i.e., there exists v ∈ V (G) such that d(v) = |V (G)| − 1
(see the master conjecture in section 3). We have shown that this conjecture holds
for almost complete networks, i.e., networks that are in a way natural candidates for
a counterexample to the conjecture (Theorem 4.10). However, the master conjecture
remains open.
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Abstract. Given a graph with nonnegative capacities on its edges, it is well known that the
capacity of a minimum T -cut is equal to the value of a maximum fractional packing of T -joins. The
Padberg–Rao algorithm finds a minimum capacity T -cut, but it does not produce a T -join packing.
We present a polynomial combinatorial algorithm for finding an optimal T -join packing.
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1. Introduction. We present a polynomial combinatorial algorithm for packing
T -joins in a capacitated graph. Given a graph G = (V,E) and S ⊆ V , the set of all
edges with exactly one endnode in S is called a cut and is denoted by δG(S). We say
that S defines the cut δG(S). If the graph G is clear from the context, we use δ(S).
Given a set T ⊆ V of even cardinality, we say that a cut δ(S) is a T -cut if |S ∩ T |
is odd. A set of edges J is called a T -join if, in the subgraph G′ = (V, J), the nodes
in T have odd degree and the nodes in V \ T have even degree. T -joins appear in
the solution to the Chinese postman problem of Edmonds and Johnson [5]. Here the
nodes in T are the nodes of odd degree, and a T -join is a set of edges that have to be
duplicated to obtain an Eulerian graph.

Edmonds and Johnson [5] proved that ifA is a matrix whose rows are the incidence
vectors of all T -cuts, then for any nonnegative objective function w the linear program
below has an optimal integer solution that is the incidence vector of a T -join.

minwx,(1)

Ax ≥ 1,(2)

x ≥ 0.(3)

Edmonds and Johnson gave a combinatorial polynomial algorithm to solve the linear
program above and its dual

max y1,(4)

yA ≤ w,(5)

y ≥ 0.(6)

This gives a packing of T -cuts. Seymour [15] proved that if the coefficients of w
are integer, and their sum over every cycle is an even number, then (4)–(6) have an
optimal integer solution. The algorithm of Edmonds and Johnson can be modified to
produce this integer dual optimal solution; see [2].

It follows from the theory of blocking polyhedra [6] that if B is a matrix whose
rows are all incidence vectors of T -joins, then for any nonnegative objective function
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c the linear program below also has an optimal integer solution that is the incidence
vector of a T -cut:

min cx,(7)

Bx ≥ 1,(8)

x ≥ 0.(9)

The dual problem is

max y1,(10)

yB ≤ c,(11)

y ≥ 0.(12)

A solution of (10)–(12) is a maximum packing of T -joins. So from linear pro-
gramming duality, we have that the value of a maximum packing of T -joins is equal
to the value of a minimum T -cut. Padberg and Rao [13] gave a polynomial combina-
torial algorithm that finds a minimum T -cut. However, this algorithm does not give
a maximum packing of T -joins, which has remained unsolved. Due to the equivalence
between separation and optimization, one could solve this in polynomial time with
the ellipsoid method; see [10]. The purpose of this paper is to give a polynomial com-
binatorial algorithm for finding a maximum (fractional) packing. To the best of our
knowledge, the only case that is well solved is when |T | = 2; this is the well-known
maximum flow problem. Our algorithm has many similarities with an algorithm for
packing arborescences given by Gabow and Manu [8].

There are several conjectures and questions related to the case when the linear
program (10)–(12) has an integer solution. We discuss them below.

A graph is called r-regular if all its vertices have degree r. A graph is called an
r-graph if it is r-regular and every V -cut has cardinality greater than or equal to r. A
perfect matching is a set of nonadjacent edges that covers every vertex of the graph.
Fulkerson made the following conjecture.

Conjecture 1. Every 3-graph has 6 perfect matchings that include each edge
at most twice.

Notice that for a 3-graph, when T = V every vertex defines a minimum T -
cut. Also every T -join with positive weight in a maximum packing should intersect
a minimum T -cut in exactly one edge, so the T -join should be a perfect matching.
Thus in our terminology the conjecture above is equivalent to saying that for a 3-
graph when T = V and c is a vector of all 2’s, then (10)–(12) has an optimal solution
that is integer.

Seymour [14] generalized Fulkerson’s conjecture as follows.
Conjecture 2. Every r-graph has 2r perfect matchings that include each edge

at most twice.
Seymour [14] also made the following two conjectures and proved that they are

implied by Conjecture 2. A family of T -joins is called k-disjoint if every edge is
included in at most k of them.

Conjecture 3. If every vertex has an even degree, then the size of a maximum
2-disjoint family of T -joins equals twice the size of a minimum T -cut.

Conjecture 4. The size of a 4-disjoint family of T -joins equals four times the
size of a minimum T -cut.

Cohen and Lucchesi [3] made the conjecture below and proved that it is equivalent
to Conjecture 2.
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Conjecture 5. If all T -cuts have the same parity, then the size of a maximum
2-disjoint family of T -joins equals twice the size of a minimum T -cut.

They also proved the following.
Theorem 1. If |T | ≤ 8 and every T -cut has the same parity, then the size of a

maximum disjoint family of T -joins equals the size of a minimum T -cut.
Conforti and Johnson [4] made the following conjecture. They proved their con-

jecture for graphs without a 4-wheel minor.
Conjecture 6. If T is the set of nodes of odd degree, and the graph is not

contractible to the Petersen graph, then the size of a maximum disjoint family of
T -joins equals the size of a minimum T -cut.

Holyer [11] proved that deciding whether a 3-regular simple graph has 3 disjoint
perfect matchings is NP-complete. So finding an optimal integer solution of (10)–(12)
is NP-hard. Tait [16] proved that the 4-color theorem is equivalent to the statement
that every 2-connected planar 3-regular graph has 3 disjoint perfect matchings. This
is equivalent to saying that for every 2-connected planar 3-regular graph, when T = V
and c is the vector of all 1’s, the linear program (10)–(12) has an optimal solution
that is integer.

Now we give some extra notation and definitions. Let n = |V | and m = |E|. We
assume that every edge e has a nonnegative capacity c(e). If c(e) is zero, then the
edge e is removed from the graph. For S ⊆ V we use θ(S) to denote

θ(S) =
∑
{c(e) : e ∈ δ(S)};

this is the capacity of the cut δ(S). Given A,B ⊆ V , we say that they cross if the
sets A\B, B \A, and A∩B are nonempty. A family of sets such that no two of them
cross is called laminar. A laminar family of subsets of V can have at most 2n − 1
nonempty sets. It is well known that θ is a submodular function; i.e., for any two sets
A,B ⊆ V ,

θ(A ∪B) + θ(A ∩B) + 2β(A,B) = θ(A) + θ(B),

where β(A,B) is the sum of the capacities of the edges with one endnode in A \ B
and the other in B \ A. We use λ(G) to denote the capacity of a minimum T -cut in
G, i.e.,

λ(G) = min{θ(S) : S ⊂ V, |S ∩ T | is odd}.
For U ⊆ E we use µ(U) to denote

µ(U) = min{c(e) : e ∈ U};
this is called the bottleneck capacity of U . If J is a T -join and δ(S) is a cut, then
|J ∩ δ(S)| is odd if and only if δ(S) is a T -cut. If U ⊆ E and 0 ≤ α ≤ µ(U), we
denote by G − αU the graph obtained by replacing the capacity c(e) of every edge
e ∈ U with c(e) − α. If U ⊆ E the incidence vector of U , denoted by xU , is defined
as xU (e) = 1 if e ∈ U , and xU (e) = 0 otherwise. A minimum cut separating nodes s
and t is called a minimum st-cut. The nodes in the set T are called T -nodes.

This paper is organized as follows. In section 2 we give a short description of
the Padberg–Rao algorithm for finding a minimum T -cut. In section 3 we present an
initial description of the algorithm for packing T -joins. Sections 4 and 5 are devoted to
more technical aspects required to complete the description of our algorithm. Section 6
contains a final analysis of our algorithm.
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2. The Padberg–Rao algorithm. For the sake of completeness, we give a
short description of the Padberg–Rao algorithm for finding a minimum T -cut. It is
based on the following lemma.

Lemma 1. Let S define a minimum cut separating at least two nodes in T . If
|S ∩ T | is odd, then S defines a minimum T -cut. Otherwise, there is a set S′ ⊆ S or
S′ ⊆ V \ S that defines a minimum T -cut.

Proof. Assume that |S ∩ T | is even and consider a set A that defines a minimum
T -cut. Suppose that A and S cross.

Case 1. |A ∩ S ∩ T | is odd. If A ∪ S separates at least two nodes in T , we have

θ(A ∩ S) + θ(A ∪ S) ≤ θ(A) + θ(S).

Therefore θ(A ∩ S) = θ(A) and θ(A ∪ S) = θ(S). Thus A ∩ S defines a minimum
T -cut.

If T ⊆ A ∪ S, let Ā = V \A; then

θ(Ā ∩ S) + θ(Ā ∪ S) ≤ θ(Ā) + θ(S).

Thus θ(Ā ∩ S) = θ(Ā), θ(Ā ∪ S) = θ(S), and Ā ∩ S defines a minimum T -cut.
Case 2. |A ∩ S ∩ T | is even. Let S̄ = V \ S. Then |A ∩ S̄ ∩ T | is odd and this

reduces to Case 1.
This lemma suggests a very simple algorithm, namely if S defines a minimum cut

separating at least two nodes in T , then either S defines a minimum T -cut or one
should continue working recursively with the graph G1, obtained by contracting S,
and with the graph G2, obtained by contracting V \ S.

Padberg and Rao also pointed out that one should first compute a Gomory–Hu
(GH) tree [9] and then carry out the algorithm above on the GH-tree. This is because
any minimum st-cut in the graph is given by a minimum st-cut in the GH-tree.
Because of the tree structure, the algorithm becomes extremely simple: among all
edges in the tree that are T -cuts, we should choose one of minimum capacity.

Thus the complexity of this procedure is the complexity of computing a GH-tree,
i.e., computing (n− 1) minimum st-cuts.

3. The algorithm. We start this section with an initial description of the algo-
rithm. Clearly, the capacity of any T -cut is an upper bound for the value of a T -join
packing. As mentioned in the introduction, there is a fractional packing of T -joins
whose value is equal to the capacity of a minimum T -cut. For this bound to be tight,
any T -join with a positive weight in an optimal packing must intersect any minimum
T -cut in exactly one edge. Also, given an optimal packing, every edge e in a minimum
T -cut, with c(e) > 0, must appear in a T -join with positive weight. The algorithm
works based on this.

Using λ(G) as the target value, the problem is solved recursively in a greedy way as
follows. For a T -join U , let αU be the largest value of α such that λ(G−αU) = λ(G)−α
and 0 ≤ α ≤ µ(U). Then the weight αU is assigned to U . If λ(G − αUU) > 0, one
should continue working recursively with G − αUU . In the remainder of this paper
we show that a refinement of this algorithm runs in polynomial time. We need first a
simple lemma.

Lemma 2. If U is a T -join and αU = 0, then there is a minimum T -cut δ(S)
such that |δ(S) ∩ U | > 1.

Proof. First notice that λ(G−αU) ≤ λ(G)−α for 0 ≤ α ≤ µ(U). This is because
in G− αU the capacity of a T -cut δ(S) is θ(S)− kα, where k = |δG(S) ∩ U |.
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So if |δ(S)∩U | = 1 for every minimum T -cut δ(S), then there is a small value of
α > 0 such that λ(G− αU) = λ(G)− α and α ≤ µ(U).

From the lemma above we can see that one should concentrate on T -joins that
intersect every minimum T -cut in exactly one edge. When we impose this condition
for a minimum T -cut δ(S), we say that it is tight ; we also say that S is a tight set.
The two lemmas below show that we only need to impose this for a laminar family of
tight sets.

Lemma 3. Assume that A and B define minimum T -cuts, they cross, and
|A ∩ B ∩ T | is odd. Then the tightness of A ∩ B and A ∪ B implies the tightness
of A and B.

Proof. We have that

θ(A ∩B) + θ(A ∪B) ≤ θ(A) + θ(B).

Since A and B define minimum T -cuts, then A ∩ B and A ∪ B also define minimum
T -cuts. Therefore this inequality must hold as an equation. This implies that there
is no edge between A \B and B \ A. Moreover, for a T -join U and any cut δ(S) the
cardinality of δ(S) ∩ U is odd if S defines a T -cut and even otherwise. Then by a
counting argument it is easy to see that any T -join that has exactly one edge entering
A ∩ B and exactly one edge entering A ∪ B must have exactly one edge entering A
and exactly one edge entering B. Figure 1 displays all possible configurations.
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Fig. 1. The labels e (even) and o (odd) refer to the parity of |(A \ B) ∩ T |, |A ∩ B ∩ T |, and
|(B \A) ∩ T |.

Lemma 4. Assume that A and B define minimum T -cuts, they cross, and
|A ∩ B ∩ T | is even. Then the tightness of A \ B and B \ A implies the tightness
of A and B.

Proof. Apply Lemma 3 to A and B̄ = V \B.
So when we keep a family of tight sets, we can apply the last two lemmas to

convert it into a laminar family. Denote this family by Φ; it can contain at most
2n− 1 tight sets. We are going to find a T -join that intersects every T -cut given by
Φ in exactly one edge. Let U be this T -join. There are two possible cases as follows:

1. If αU = µ(U), then the number of edges in G− αUU is at least one less than
the number of edges in G.

2. If αU < µ(U), then in G − αUU there is a minimum T -cut δ(S), S /∈ Φ, such
that |U ∩ δ(S)| > 1. In this case we should add S to Φ and uncross it using Lemmas
3 and 4 as in the procedure below.
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Uncross (Φ, S, U)
Input: The family Φ, a set S /∈ Φ, a T -join U .
While there is a set A ∈ Φ such that A and S cross
do

if |A ∩ S ∩ T | is odd
if |δ(A ∪ S) ∩ U | > 1, set S ← A ∪ S
if |δ(A ∪ S) ∩ U | = 1, set S ← A ∩ S

if |A ∩ S ∩ T | is even
if |δ(A \ S) ∩ U | > 1, set S ← A \ S
if |δ(A \ S) ∩ U | = 1, set S ← S \A

end
Add S to Φ.

It is easy to see that at each uncrossing step the number of crossing pairs decreases
by at least one. Also, at the end of this procedure the cardinality of Φ increases by
one.

Now we can give a formal description of the algorithm.

Pack T -joins
Step 0. Set Φ← ∅.
Step 1. Find a T -join U such that |U ∩ δ(S)| = 1 for all S ∈ Φ.
Step 2. Compute αU as the maximum of α such that
λ(G− αU) = λ(G)− α and 0 ≤ α ≤ µ(U).
Step 3. If αU < µ(U), a new tight T -cut δ(S) has been found.
Apply Uncross(Φ, S, U).
Step 4. Set G← G− αUU . If λ(G) = 0, stop; otherwise go to Step 1.

Since at each iteration either the cardinality of Φ increases or one edge is deleted,
the total number of iterations is at most 2n − 1 +m. It remains to describe how to
perform Steps 1 and 2. This is the subject of the next two sections.

4. Finding a T -join in Step 1. As it was said in the introduction, it follows
from linear programming duality that there is a fractional packing of T -joins whose
value is λ(G). The purpose of this section is to find one T -join that is a candidate
for having positive weight in the optimal packing. We start with some properties of
these T -joins.

Lemma 5. Let δ(S) be a minimum T -cut; then every T -join with positive weight
in an optimal packing intersects δ(S) in exactly one edge.

Lemma 6. Let δ(S) be a minimum T -cut and e ∈ δ(S) with c(e) > 0. Let {Ui}
be the set of T -joins in an optimal packing with weights y(Ui) > 0 for all i. Then
there is at least one T -join Ui such that Ui ∩ δ(S) = {e}. Moreover,

c(e) =
∑

Ui : e∈Ui

y(Ui).

Lemma 7. Let δ(S) be a minimum T -cut. Let G′ be the graph obtained by
shrinking S to a single node and giving it the label T . Let G′′ be the graph obtained
by shrinking V \ S to a single node and giving it the label T . An optimal packing of
T -joins in G can be obtained by combining the elements of an optimal packing in G′

with the elements of an optimal packing in G′′.
Proof of Lemma 7. Clearly λ(G′) = λ(G′′) = λ(G). Let {U ′

i} be the family in an
optimal packing in G′ with weights y′(U ′

i) > 0 for all i. Let {U ′′
j } be the family in
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an optimal packing in G′′ with weights y′′(U ′′
j ) > 0 for all j. Consider e ∈ δ(S) with

c(e) > 0. We have

c(e) =
∑

U ′
i : e∈U ′

i

y′(U ′
i) =

∑
U ′′

j : e∈U ′′
j

y′′(U ′′
j ).

Thus if U ′
i and U ′′

j contain the edge e, then their union gives a T -join U . We give
it the weight y(U) = min{y′(U ′

i), y
′′(U ′′

j )}; then the value y(U) is subtracted from
y′(U ′

i) and y′′(U ′′
j ) and, if any of these weights becomes 0, the corresponding T -join

is removed. This is repeated for any pair with positive weights containing the edge e.
Then this procedure is applied for every edge e ∈ δ(S).
Given the family Φ of tight sets, we need to find a T -join U such that |U∩δ(S)| = 1

for all S ∈ Φ. Lemma 7 suggests that the graph should be decomposed using minimum
T -cuts, and it shows how to combine T -joins from the pieces. The procedure is
described below.

First, we start with S = V and define GS as the subgraph induced by S, with
every maximal set of Φ that is properly contained in S contracted, labeled as a T -
node, and marked as tight. Let TS be the set of T -nodes in GS . We define an auxiliary
graph whose node set is TS ; this is a complete graph. For any two nodes in TS we find
a path in GS between them of minimum cardinality. Tight nodes can be the beginning
or the end of a path, but cannot be intermediate nodes. This is to ensure that the
resulting T -join intersects every tight T -cut exactly once. The cardinality of this path
becomes the weight of the corresponding edge in the auxiliary graph. We give infinite
weight if the path does not exist. We find a minimum weight perfect matching in the
auxiliary graph. This is to ensure that the resulting T -join is minimal. In GS we take
the union of all paths whose corresponding edges are in the matching. This gives a
T -join U ′ in GS . Every tight node has exactly one edge of U ′ incident to it. Lemmas
5 and 6 show that a matching of finite weight exists; any T -join with positive weight
in an optimal packing produces a matching of finite weight in the auxiliary graph.

Then we have to deal with each set W that has been contracted. In the T -join
above, there is exactly one edge e = {i, j} with j ∈W . This time GS is the subgraph
induced by W plus the edge e, and the node i is labeled as a T -node. The idea is to
find a T -join U ′′ in this new graph and combine U ′ and U ′′ as in Lemma 7. Again
every maximal set of Φ that is properly contained in S = W ∪ {i} is contracted, and
we proceed as above. The algorithm continues recursively. This produces a T -join U
that is a candidate for appearing in an optimal packing; its weight αU is obtained as
in the next section.

The complexity of finding a minimum weight perfect matching in a complete
graph with t nodes is O(t3); see [7, 12]. Also, the complexity of finding all shortest
paths in GS is O(t3). Therefore the complexity of Step 1 is O(n3).

5. Finding αU in Step 2. Given a T -join U , we compute the maximum value
of α such that

λ(G− αU) = λ(G)− α and 0 ≤ α ≤ µ(U).

Let us define f(α) = λ(G − αU). The function f is the minimum of a set of
affine linear functions, and so it is concave and piecewise linear. We have to find its
first breakpoint. For this we start with a tentative value αU = µ(U). We compute
f(αU ). If f(αU ) = λ(G) − αU , we are done; otherwise let δ(S) be a minimum T -
cut in G − αUU . Let k = |U ∩ δG(S)|. Notice that here we use δG(S) because in
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αUᾱ

λ(G)− α

α

f

Fig. 2. Finding αU .

G − αUU we might have deleted some edges with capacity 0. Let ᾱ be the solution
of λ(G)− α = θ(S)− kα. We set αU ← ᾱ and continue. See Figure 2.

A formal description of this algorithm follows.

Find αU

Step 0. Set αU ← µ(U).
Step 1. Find a minimum T -cut δ(S) in G−αUU . If λ(G−αUU) = λ(G)−αU ,
stop. Otherwise continue.
Step 2. Compute ᾱ as the solution of λ(G)− α = θ(S)− kα,
where k = |U ∩ δG(S)|.
Step 3. Set αU ← ᾱ and go to Step 1.

The complexity of this algorithm is given below.
Lemma 8. If αU = µ(U), this algorithm requires O(n) minimum st-cut compu-

tations; otherwise it requires O(n2) minimum st-cut computations.
Proof. If αU = µ(U), only one iteration is performed. Otherwise at each iteration

the value of k = |U ∩ δG(S)| decreases. Since |U | ≤ n− 1, the above algorithm takes
at most n− 1 iterations. At each iteration one has to find a minimum T -cut with the
Padberg–Rao algorithm; this requires n− 1 minimum st-cut computations. Then the
result follows.

6. Final analysis. Clearly, the running time of the algorithm in section 3 is
dominated by the running time of Steps 1 and 2. Also notice that at most 2n− 1+m
iterations are performed. Thus the total running time of Step 1 is O((n+m)n3). For
Step 2 there are at most m iterations, where we have αU = µ(U) that require n − 1
minimum st-cuts and have at most 2n − 1 iterations that require at most (n − 1)2

minimum st-cuts. The complexity of finding a minimum st-cut is O(n3); see [1]. Thus
the total running time of Step 2 is O((mn+ n3)n3). Therefore the complexity of this
algorithm is O(n6).

Since at each iteration one new T -join is produced, we have the following.
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Theorem 2. There exists an optimal packing with at most 2n − 1 +m T -joins
having a positive weight.

A vector x̄ satisfying (2) and (3) can be decomposed into x̄ = g + h, where g is
a convex combination of incidence vectors of T -joins and h is a nonnegative vector.
This convex combination can be obtained as follows. Use the values x̄(e) as capacities,
find an optimal packing of T -joins. Let {Ui} be the family of T -joins with weights
y(Ui) > 0. Let α =

∑
y(Ui). Set y′(Ui) = y(Ui)/α for all i; then the vector g is

g =
∑

y′(Ui)xUi .
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Abstract. The Lovász theta function has attracted much attention for its connection with
diverse issues such as communicating without errors and computing large cliques in graphs. Indeed,
this function enjoys the remarkable property of being computable in polynomial time despite being
sandwiched between clique and chromatic numbers, two well-known, hard to compute quantities.

In this paper I provide a closed formula for the Lovász function of all the circulant graphs of
degree 4 with even displacement, thus generalizing Lovász results on cycle graphs (circulant graphs
of degree 2).

Key words. Lovász theta function, circulant graph, linear programming
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1. Introduction. Consider a graph G whose vertices represent letters from a
given alphabet, and where adjacency indicates that two letters can be “confused.” The
zero-error capacity of G is the number Θ(G) of messages that can be communicated
without any error. This notion was introduced in 1956 by Shannon [6] and has
generated much interest over the years. It was understood quite early that the exact
determination of the Shannon capacity is a very difficult problem, even for small
and simple graphs. In 1979 Lovász [5] introduced a related function, which soon
thereafter became known as the Lovász theta function, or Lovász number, with the
aim of estimating the Shannon capacity.

The Lovász theta function (denoted by ϑ(G)) is computable in polynomial time,
although it is “sandwiched” between the clique number ω(G) and the chromatic num-
ber k(G), whose computation is NP-hard. Because of this remarkable property, and
also because of its relevance to communication issues, the Lovász number is widely
studied (see the survey by Knuth [4]).

Despite much work in the field, very little is known about classes of graphs whose
theta function can be expressed with formulae involving a constant “low” number
of simple operations (e.g., arithmetic, logarithmic, and/or trigonometric). A rare
example of such a result is Lovász’s formula for n-cycles with n odd [5]:

ϑ(Cn) =
n cos πn

1 + cos πn
.

Recently Brimkov et al. [2, 3] obtained formulae for the more general cases of circulant
graphs with chord lengths 2 and 3.

In this paper I use a geometric approach to establish and prove a closed formula
for the theta function of circulant graphs of degree 4 when the displacement j is even.
The formula itself was already suggested in [3] but was not fully proved.
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Here I close the issue establishing that, for j even and n > 2(j+1)j, the following
holds:

ϑ(Cn,j) =
n

1 +
cos
(

2π(i+1)j
n

)
−cos

(
2π(i+1)

n

)
+cos( 2πi

n )−cos( 2πij
n )

cos
(

2π(i+1)
n

)
·cos( 2πij

n )−cos( 2πi
n )·cos

(
2π(i+1)j

n

)(1)

with i = � nj
2(j+1)�.

This paper, together with the results appearing in [3] for the complementary case
j odd, provides a full analysis of the theta function of all the circulant graphs of degree
4.

2. Preliminaries.

2.1. Some graph-theoretical notions and facts. Let us recall some well-
known definitions from graph theory. Given a graph G(V,E), its complement graph is
the graph Ḡ(V, Ē), where Ē is the complement of E to the set of edges of the complete
graph on V . An automorphism of the graph G is a permutation p of its vertices such
that two vertices u, v ∈ V are adjacent if and only if p(u) and p(v) are adjacent. G
is vertex symmetric if its automorphism group is vertex transitive; i.e., for any given
u, v ∈ V there is an automorphism p such that p(u) = v.

A graph G′ = (V ′, E′) is an induced subgraph of G(V,E) if E′ contains all edges
from E that join vertices from V ′ ⊆ V . G is called perfect if ω(GV ′) = k(GV ′) for all
V ′ ⊆ V , where GV ′ is the induced subgraph of G on the vertex set V ′.

An n×n matrix A = (ai,j)
n−1
i,j=0 is called circulant if its entries satisfy ai,j = a0,j−i,

where the subscripts belong to the set {0, 1, . . . , n− 1} and are calculated modulo n.
In other words, any row of a circulant matrix can be obtained from the first one by a
number of consecutive cyclic shifts, and thus the matrix is fully determined by its first
row. A circulant graph is a graph with a circulant adjacency matrix. The expression
Cn,j will denote a circulant graph of degree 4, with vertex set {0, 1, . . . , n − 1} and
edge set {(i, i+ 1 mod n), (i, i+ j mod n), i = 0, 1, . . . , n− 1}, where 1 < j ≤ �n2 � is
the chord length.

Several equivalent definitions of the Lovász number are available [4]. Presented
here is one which requires only little technical machinery.

Definition 2.1. Given a graph G, let A be the family of matrices A such that
aij = 0 if vi and vj are adjacent in G. Let λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be the

eigenvalues of A. Then ϑ(G) = maxA∈A{1− λ1(A)
λn(A)}.

An important property to recall is the following.

Proposition 2.2 (see [5]). For every graph G with n vertices, ϑ(G) · ϑ(Ḡ) ≥ n.
If G is vertex symmetric, then ϑ(G) · ϑ(Ḡ) = n.

2.2. Linear programming (LP) formulation. Taking advantage of the par-
ticular properties of circulant matrices, whose eigenvalues can be expressed in closed
formulae, and so generalizing the approach in [5], we can easily derive the validity of
the following minmax formulation of the theta function of circulant graphs of degree
4.

Lemma 2.3 (see [2]). Let f0(x, y) = n+ 2x+ 2y and, for some fixed value of j,
fi(x, y) = 2x cos 2πi

n + 2y cos 2πij
n , i = 1, 2, . . . , n− 1. Then

ϑ(Cn,j) = min
x,y

max
i

{
fi(x, y), i = 0, 1, . . . ,

⌊n
2

⌋}
.(2)
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This in turn is equivalent to the following LP problem:

ϑ(Cn,j) = min
{
z : fi(x, y)− z ≤ 0, i = 0, 1, . . . ,

⌊n
2

⌋
, z ≥ 0

}
.(3)

Through a nontrivial analysis of the structure of the admissible region defined by the
linear constraints, it was possible for us to obtain closed formulae for some special
cases of circulant graphs of degree 4 [2]. For example, I report the least complex
formula for the simplest case j = 2:

ϑ(Cn,2) = n

(
1−

1
2 − cos( 2π

n �n3 �)− cos( 2π
n (�n3 �+ 1))

(cos( 2π
n �n3 �)− 1)(cos( 2π

n (�n3 �+ 1))− 1)

)
.(4)

3. Proof of the formula for ϑ(Cn,j). The general idea is to identify the
indices of the constraints in LP problem (3) that determine the optimal vertex as
functions of n and j only. The result was originally obtained through a direct study
of the geometric regularities of the admissible region of the primal problem [1]. This
led to a rather complex and long proof. A simpler and more concise way to derive
the formula, as suggested by one of the referees, is to analyze the dual of the LP
problem (3) as explained below.

Theorem 3.1. Let n and j be integer numbers. Assume that j is even and
n > 2(1 + j)j. Then ϑ(Cn,j) = z0, where (x0, y0, z0) is the only solution to the
following 3× 3 linear system:⎧⎪⎨

⎪⎩
n+ 2x+ 2y = z,

2x cos( 2πk
n ) + 2y cos( 2πkj

n ) = z,

2x cos( 2π(k+1)
n ) + 2y cos( 2π(k+1)j

n ) = z

for k = � nj
2(j+1)�. By Cramer’s rule this gives formula (1).

Proof. The dual of the LP problem (3) is

maximize nu0

subject to

u0, u1, . . . , n�n/2� ≥ 0,(5)

�n/2�∑
i=0

ui ≤ 1,(6)

�n/2�∑
i=0

ui · 2 cos
2πi

n
= 0,(7)

�n/2�∑
i=0

ui · 2 cos
2πij

n
= 0.(8)

Constraint (6) can be replaced with
∑�n/2�
i=0 ui = 1 because any admissible solution

(u′0, u
′
1, . . . , u

′
�n/2�) for which

∑
i u

′
i < 1 could be improved by setting u′′i = u′i/

∑
k u

′
k.

Constraints (7) and (8) can be rewritten in vector notation as

�n/2�∑
i=1

ui

[
cos 2πi

n

cos 2πij
n

]
= −u0

[
1
1

]
,
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Fig. 1. Function f(x) = cos(j arccosx), j = 2, 4. The segment joining p and q identifies the
solution s(u∗

0) on the bisectrix line.

and, after substituting u0 = 1−∑�n/2�
k=1 uk, the result becomes

�n/2�∑
i=1

ui∑�n/2�
k=1 uk

[
cos 2πi

n

cos 2πij
n

]
= − u0

1− u0

[
1
1

]
.

This equation says that point s(u0) = (− u0

1−u0
,− u0

1−u0
) is a convex combination of the

points

X :=

{(
cos

2πi

n
, cos

2πij

n

)
: i = 1, . . . ,

⌊n
2

⌋}
.

So, if we denote by CH(X) the convex hull of X, then ϑ(Cn,j) = nu∗0, where

u∗0 = max
0≤u0≤1

{u0 | s(u0) ∈ CH(X)} .

To determine this value, consider the curve

C := {(cos(α), cos(jα)) | 0 ≤ α ≤ π}
and its subcurve

C ′ :=

{
(cos(α), cos(jα))

∣∣∣∣ j − 1

j
π ≤ α ≤ π

}
.

Curve C is the graph of the function f : [−1, 1] → [−1, 1] defined by f(x) :=
cos(j arccosx). This function is convex on [−1, cos( j−1

j π)] and has its minimum value

in x0 = cos( j−1
j π). This implies that, for any two points p and q on C ′, the line

through p and q separates the segment of C ′ connecting p and q from the rest of C
(see Figure 1). Point s(u0) lies on line l : y = x and, as we increase u0 from 0 to 1,
s(u0) slides from the origin (0, 0) to (−∞,−∞). Line l intersects curve C ′ in point
r = (cosα, cos jα) with α = j

j+1π. This can be seen by solving the equation

cos(jα)− cos(α) = −2 sin
α(j + 1)

2
· sin α(j − 1)

2
= 0
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for α ∈ [ j−1
j π, π]. So, setting k = � nj

2(j+1)�, points p := (cos 2πk
n , cos 2πkj

n ) and q :=

(cos 2π(k+1)
n , cos 2π(k+1)j

n ) are the points in X closest (along C) to r (in both direc-
tions). Since n > 2(1+j)j, both p and q belong to C ′. The segment of C connecting p
and q contains no other points in X, so s(u∗0) must be a convex combination of p and
q. This implies that the optimal solution U∗ = (u∗i )0≤i≤�n/2� verifies u∗0, u

∗
k, u

∗
k+1 > 0

and u∗i = 0 for i 	= 0, i 	= k, and i 	= k + 1, and so by the complementary slackness
theorem the three corresponding inequalities in the primal problem are tight, giving
the 3× 3 linear system in the theorem statement.

Notes. The condition n > 2(1 + j)j, given in Theorem 3.1 for the validity of the
formula is only sufficient but not necessary. This means that, for some j, it can be
weakened.
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Abstract. Let α be a string over Zp with p prime. The jth elementary symmetric function
evaluated at α is denoted Tj(α). We study the cardinalities Sp(n; τ1, τ2, . . . , τt) of the set of length n
strings for which Ti(α) = τi. The profile 〈k0, k1, . . . , kp−1〉 of a string α is the sequence of fre-
quencies with which each letter occurs. The profile of α determines Tj(α), and hence Sp. Let

fn : Z
p−1
pn �→ Z

pn−1
p be the map that takes 〈k0, k1, . . . , kp−1〉 mod pn to (T1, T2, . . . , Tpn−1) mod p.

We show that fn is well defined and injective and show how to efficiently determine its range. These
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1. Introduction. The theory of symmetric functions has long been a basic tool
of combinatorial enumeration. Indeed, Cameron [1] states that “one can appreciate
the view held by some people, that if it isn’t related to symmetric polynomials, then
it isn’t combinatorics!”. However, the enumeration of the number of variable assign-
ments to symmetric functions so that the functions achieve given values seems to be
new and interesting.

In order for the problem to make sense, we must choose the variables to come
from some finite algebraic structure and choose a particular class of symmetric func-
tions. Here we choose the variables to come from the ring of integers mod a prime p
and choose the class of elementary symmetric functions. The elementary symmetric
functions are important because they give the coefficients of polynomials in terms of
their roots.

The main purpose of this paper, and its companion paper [6], is to count certain
strings over the ring of integers mod pn and over the finite field Fpn , where p is prime.
We take the point of view espoused by Wilf [7] that the intrinsic worth of an expression
is determined by the amount of computation that it takes to evaluate it. We will state
our running times in terms of the number of ring and arithmetic operations that it
takes to evaluate the expression using the obvious algorithm. The word size of the
computer is assumed to be O(log n) since the largest numbers we deal with have size
O(rn) where r, the cardinality of the ring, is regarded as a constant.

This work is a continuation of [2], where the number of monic irreducible poly-
nomials over F2 of degree n with given trace and “subtrace” are enumerated. The
trace is the coefficient of xn−1 and the subtrace the coefficient of xn−2. If such a
polynomial is factored in a splitting field, the trace and subtrace can be viewed as the
first and second elementary symmetric functions evaluated at the string of coefficients
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appearing in the factorization. The techniques in [2] are elementary in nature and in-
volve the relationship of Lyndon words to irreducible polynomials. It therefore seems
a natural extension of these ideas to count higher order “traces” on strings with values
in various rings.

2. Preliminaries. Consider a string α = a1a2 · · · an, where each ai ∈ Zp. Define
the j-trace of α, Tj(α), to be the sum

Tj(α) =
∑

1≤i1<i2<···<ij≤n
ai1ai2 · · · aij (mod p).

These are the elementary symmetric functions evaluated at a1, a2, . . . , an. Clearly,
(−1)jTj(α) is the negation of the coefficient of zn−j in the polynomial

(z − a1)(z − a2) · · · (z − an).

By Sp(n; τ1, τ2, . . . , τj) we denote the number of strings α over R of length n for
which Ti(α) = τi for i = 1, 2, . . . , j. Obviously if j = 0, then Sp(n) = rn. It is also
true that Sp(n; t) = pn−1 for any t ∈ R since T1(αx) takes on distinct values for each
x ∈ R.

In what follows, the notation [[P ]] for proposition P has the value 1 if P is true
and the value 0 if P is false. This is “Iverson’s convention” as used in [4].

The numbers Sp(n; τ1, τ2, . . . , τt) satisfy the following recurrence relation. If
n = 1, then Sp(n; τ1, τ2, . . . , τj) = [[τ2 = · · · = τj = 0]], and for n > 0,

Sp(n; τ1, τ2, . . . , τj) =
∑
x∈Zp

Sp(n− 1; ρ1, ρ2, . . . , ρj),(2.1)

where ρ0 = 1, and for i = 1, 2, . . . , j,

ρi = τi − ρi−1x.

Iterating yields (with τ0 = 1)

ρi =

i∑
�=0

(−1)�τi−�x�.

Recurrence relation (2.1) implies that the power series
∑
n≥0 Sp(n; τ1, τ2, . . . , τj)z

n

is rational. We can evaluate Sp(n; τ1, τ2, . . . , τj) by creating a table of size npj con-
sisting of Sp for all strings of length at most n and over all j-traces. Each table
entry requires Θ(pj) ring operations and Θ(p) arithmetic operations for a total of
Θ(njpj+1) ring operations and Θ(npj+1) arithmetic operations. An aim of this paper
is to reduce the number of ring and arithmetic operations required to evaluate Sp.
We begin in the next subsection by classifying the strings according to the frequency
with which particular characters occur.

2.1. Profiles. Suppose that the string α has kx occurrences of the symbol x for
x ∈ Zp. We refer to the (p− 1)-tuple of natural numbers k = 〈k1, k2, . . . , kp−1〉 as the
profile of the string. Note that k0 is omitted since it doesn’t affect Tj . Subsequently,
a bold letter will only denote a profile. We add profiles componentwise and define
rk = 〈rk1, rk2, . . . , rkn〉 for r ∈ Zp.
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The j-trace Tj depends only on the profile, and we have

Tj(α) =
∑

ν1+ν2+···+νr−1=j

0≤νi≤ki

r−1∏
i=1

iνi
(
ki
νi

)
(mod p).(2.2)

For k = 〈k1, k2, . . . , kp−1〉 ∈ Z
p−1, define in Zp[[z]] the formal power series

Ak(z) =

p−1∏
j=1

(1 + jz)kj .(2.3)

We make no assumption here that the ki’s are positive.
Observe that

Tj(α) = [zj ]Ak(z),(2.4)

where the notation [zj ]A(z) indicates the coefficient of zj in the generating function
A(z).

Lemma 2.1.

Aa+b(z) = Aa(z)Ab(z).(2.5)

Proof. The proof is clear.
Throughout the rest of the paper, we assume that p is prime and set Zp = Z/pZ

and Zpn = Z/pnZ. We note that the characteristic of both of these rings is p.
Theorem 2.2. For all n > 0,

Apnk(z) = Ak(zp
n

).

Proof. Since p is prime and arithmetic is mod p, we have (1+jz)p
n

= 1+jp
n

zp
n

=
1 + jzp

n

. Thus,

Apnk(z) =

p−1∏
j=1

(1 + jz)p
nkj =

p−1∏
j=1

(1 + jzp
n

)kj = Ak(zp
n

).

Corollary 2.3. For all n > 0,

Aa+pnb(z) = Aa(z) mod zp
n

.

Proof. The proof follows from Lemma 2.1, since Aa+pnb(z) = Aa(z)Apnb(z) =
Aa(z)Ab(zp

n

) = Aa(z) (mod zp
n

).
Notice that this corollary implies that, if we are considering only traces Tj with

j < pn, then we need only consider values of the profiles taken mod pn.
We also denote the sum in (2.2) by Tj(k) or Tj(〈k1, k2, . . . , kp−1〉) when we wish

to emphasize the role of profiles. Let α and β be strings over Zp. The j-trace satisfies
a natural convolution.

Tj(αβ) =
∑

0≤i≤j
Ti(α)Tj−i(β).(2.6)

In terms of profiles, this becomes

Tj(k + k′) =
∑

0≤i≤j
Ti(k)Tj−i(k′).(2.7)
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The evaluation of Sp in terms of profiles is given below:

Sp(n; τ1, τ2, . . . , τt) =
∑

k0+k1+···+kp−1=n

k:=〈k1,...,kp−1〉

(
n

k0, k1, . . . , kp−1

) t∏
i=1

[[Ti(k) = τi)]].(2.8)

In order to evaluate (2.8) efficiently, we need to be able to determine efficiently
those profiles k for which Ti(k) = ρi for i = 1, 2, . . . , t. We will do this in the sections
to follow.

3. The rings Zp and Zpn .

3.1. The fundamental correspondence. We first show that the map f that
sends the (p−1)-tuple k = 〈k1, k2, . . . , kp−1〉 to 〈τ1, τ2, . . . , τp−1〉, where τj = Tj(k) =∑∏

ivi
(
ki
νi

)
, is a bijection on Z

p−1
p .

Lemma 3.1. Let p be a prime and V be the (p−1)× (p−1) Vandermonde matrix
defined by vi,j = ji (mod p). Then V −1 = W is the (p− 1)× (p− 1) matrix defined
by wi,j = −i−j (mod p).

Proof. Let ci,j be the i, j entry of the matrix product VW :

ci,j = −
∑

1≤k<p
ki−j =

{
0 if i �= j,
−(p− 1) if i = j.

Thus ci,j = [[i = j mod p]]. The second equality follows from the proof of the first the-
orem about characters on finite Abelian groups as applied to the map χ : x �→ xi−j

on Zp
∗ = Zp \ {0}. That is,

∑
g∈G χ(g) = |G| · [[χ is trivial]] (see, e.g., [5, Theo-

rem 5.4]).
Clearly f is a function; we will prove that it has an inverse f−1. We refer to the

result of the following theorem as the “fundamental correspondence.”
Theorem 3.2. The map f : Z

p−1
p �→ Z

p−1
p defined by f(k) = 〈τ1, τ2, . . . , τp−1〉,

where τi = Ti(k), is a bijection. Both f and f−1 can be computed in O(p2) arithmetic
operations.

Proof. The jth power symmetric function in variables x1, x2, . . . , xt, denoted
Pj(x1, . . . , xt), is defined as

Pj(x1, x2, . . . , xt) =

t∑
i=1

xji .

The Newton–Girard formula,

mTm(x1, x2, . . . , xt) +
∑

1≤j≤m
(−1)jPj(x1, x2, . . . , xt)Tm−j(x1, x2, . . . , xt) = 0,(3.1)

allows us to express a power symmetric function as a (unique) polynomial of elemen-
tary symmetric functions. Given fixed values of the variables, Pm = Pm(x1, x2, . . . , xt)
and Tm = Tm(x1, x2, . . . , xt) are values, and we can use (3.1) to compute unique val-
ues P1, P2, . . . , Pr from T1, T2, . . . , Tr by iterating the following equation for m =
1, 2, . . . , r (in that order). The successive computation of P1, P2, . . . , Pr will clearly
take a total of Θ(p2) arithmetic steps:

Pm = (−1)m+1

⎛
⎝mTm +

∑
1≤j≤m−1

(−1)jPjTm−j

⎞
⎠ .
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Note that, as a function of the profile, Pj = Pj(〈k1, k2, . . . , kp−1〉) =
∑p−1
i=1 kii

j .
We therefore have the system of linear equations 〈P1, P2, . . . , Pp−1〉T = Vp〈k1, k2, . . . ,
kp−1〉T , where Vp is the (p−1)×(p−1) Vandermonde matrix with Vp[i, j] = ji mod p.
Since the Vandermonde matrix is nonsingular, this system has a unique solution
〈k1, k2, . . . , kp−1〉, thereby showing that f−1 is a function, as claimed. Further, the
explicit expression for V −1

p given in Lemma 3.1 allows us to compute the profile in
Θ(p2) arithmetic operations in Zp.

The corollary below follows at once from Theorem 3.2 and the observation that
Ti(0, 0, . . . , 0) = 0 for any i > 0.

Corollary 3.3. If Ti(k mod p) = 0 for i = 1, 2, . . . , p− 1, then k1 = k2 = · · · =
kp−1 = 0.

Example 1. Let us determine, in Z7, the profile that corresponds to the trace val-
ues (T1, T2, . . . , Tp−1) = (1, 1, 1, 1, 1, 1). The Newton–Girard formula can be written
as ⎡

⎢⎢⎢⎢⎢⎢⎣

P1

P2

P3

P4

P5

P6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
P1 −2
P2 −P1 3
P3 −P2 P1 −4
P4 −P3 P2 −P1 5
P5 −P4 P3 −P2 P1 −6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Solving by back substitution, we get (P1, P2, P3, P4, P5, P6)
T = (1, 6, 1, 6, 1, 6)T .

We now solve (1, 6, 1, 6, 1, 6)T = V7〈k1, k2, . . . , kp−1〉,⎡
⎢⎢⎢⎢⎢⎢⎣

1
6
1
6
1
6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6
1 4 2 2 4 1
1 1 6 1 6 6
1 2 4 4 2 1
1 4 5 2 3 6
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

k1

k2

k3

k4

k5

k6

⎤
⎥⎥⎥⎥⎥⎥⎦
,

by using the inverse V −1
7 computed from Lemma 3.1,

⎡
⎢⎢⎢⎢⎢⎢⎣

k1

k2

k3

k4

k5

k6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

6 6 6 6 6 6
3 5 6 3 5 6
2 3 1 5 4 6
5 3 6 5 3 6
4 5 1 3 2 6
1 6 1 6 1 6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
6
1
6
1
6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
6

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Thus the number of strings α of length n over Z7 with Tj(α) = 1 for j =
1, 2, 3, 4, 5, 6 is

SZ7(n; 1, 1, 1, 1, 1, 1) =
∑

k0+k1+···+k6=n
k1≡···≡k5≡0∧k6≡6 (mod 7)

(
n

k0, k1, . . . , k6

)
.(3.2)

The actual values for n = 1, 2, . . . , 20 are 0, 0, 0, 0, 0, 1, 7, 28, 84, 210,
462, 924, 10,297, 123,137, 906,010, 4,813,368, 20,435,156, 73,540,572, 232,846,824,
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1,996,062,481. This computation takes a couple of seconds in Maple, after rearrang-
ing (3.2) into the form

�(n−6)/7�∑
m=0

(
n

7m+ 6

) ∑
ν1+···+ν6=m

νi≥0

(
7m+ 6

7ν1, . . . , 7ν5, 7ν6 + 6

)
.

Note that the number of terms in the above sum is about
(
(n/7)+6

7

)
.

Using classical results about primitive roots of unity (see the appendix) we can
express (3.2) as a sum of 76 terms, each term of which raises a complex number to
the power n. Equation (3.2) can be written as

1

76

6∑
ν1=0

· · ·
6∑

ν6=0

ων6(1 + ων1 + · · ·+ ων6)n,(3.3)

where ω is a primitive 7th root of unity. In infinite precision complex arithmetic,
we can evaluate sums such as (3.3) in time Θ(pp−1 log n) by using binary powering.
However, in Maple the computation using (3.3) is much slower for realistic values of n.

3.2. Extending the fundamental correspondence. In this subsection we
will prove that the map fn : Z

p−1
pn �→ Z

pn−1
p that sends k = 〈k1, k2, . . . kp−1〉 mod pn to

〈τ1, τ2, . . . , τpn−1〉 mod p, where τj = Tj(k), is one-to-one and determine its range for
all n ≥ 2. Let Pj = {pj , 2pj , . . . , (p−1)pj}. We call the union Rm = P0∪P1∪· · ·∪Pm
the critical set for the sequence T1, T2, . . . , Tpm−1; the elements of Rm are called
critical indices. In extending the fundamental correspondence, we will prove that the
map fm, restricted to the values Tj where j ∈ Rm, is a bijection. The values of Tj
where j is not critical are determined by the values of Ti on the critical indices i < j.
In the previous subsection we showed that f1 is a bijection on Z

p−1
p :

P1, taken mod p︷ ︸︸ ︷
1, 2, . . . , p− 1︸ ︷︷ ︸

f1

,

P2, taken mod p2︷ ︸︸ ︷
p, . . . , 2p, . . . , (p− 1)p

︸ ︷︷ ︸
f2

, . . . ,

Pm, taken mod pm︷ ︸︸ ︷
pm−1, . . . , 2pm−1, . . . , (p− 1)pm−1, . . .

︸ ︷︷ ︸
fm

, pm.

Lemma 3.4. Aa(z) = Ab(z) mod zp
n

if and only if a ≡ b mod pn.
Proof. If a ≡ b mod pn, then by Corollary 2.3, Aa(z) = Ab(z) (mod zp

n

).
Conversely, assume that Aa(z) = Ab(z) mod zp

n

. Then by (2.5), Aa−b(z) =
1 mod zp

n

. We proceed by induction on n. If n = 1, then by the fundamental
correspondence, a ≡ b mod p. If n > 1, then we may assume inductively that a ≡
b mod pn−1. Thus there is some k ∈ Z

p−1
p such that a = b + pn−1k, and thus

1 = Aa−b(z) = Apn−1k(z) = Ak(zp
n−1

) (mod zp
n

).

Since the condition 1 = Ak(zp
n−1

) mod zp
n

is equivalent to 1 = Ak(z) mod zp, by
applying the fundamental correspondence, we obtain k = 0 mod p.

Theorem 3.5. The function fn is one-to-one.
Proof. We now assume that k ∈ Z

p−1
pn . Lemma 3.4 shows that fn (i.e., Ak(z) mod

zp
n

regarded as a function of k) is an injection.
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3.3. The range of fn.

Theorem 3.6. The range of fn : Z
p−1
pn �→ Z

pn−1
p consists of all vectors

〈a1, . . . , apn−1−1, apn−1 , . . . , a2pn−1 , . . . , a(p−1)pn−1 , . . . , apn−1〉,

where

(i) the vector 〈a1, . . . , apn−1−1〉 ∈ Range(fn−1).
(ii) the values of ampn−1 can be assigned arbitrarily from Zp for m = 1, 2, . . . , p−1.

(iii) for such an assignment, there are unique vectors a ∈ Z
p−1
p and b ∈ Z

p−1
pn−1

such that Tj(b) = aj for j = 1, 2, . . . , pn−1 − 1 and Tmpn−1(pn−1a + b) =
ampn−1 for m = 1, 2, . . . , p− 1.

(iv) the aj for (m−1)pn−1 < j < mpn−1, 1 < m ≤ p, are determined uniquely as
aj = Tj(p

n−1a + b).

Proof. Our proof is by induction on n. Given (a1, . . . , apn−1−1) ∈ Range(fn−1),

there is a unique vector b ∈ Z
p−1
pn−1 such that [z�]Ab(z) = T�(b) = a� for � =

1, 2, . . . , pn−1 − 1. Write k = pn−1a + b. If 1 ≤ � < pn−1, then [z�]Ak(z) =
[z�](Apn−1a+b(z) mod pn−1) = [z�]Ab(z). We also have

[zmp
n−1

]Ak(z) = [zmp
n−1

]Apn−1a+b(z)

= [zmp
n−1

]Aa(z
pn−1

)Ab(z)

=
∑

0≤j≤m
Tpn−1j(b)Tm−j(a).

Thus we are led to consider the equations

ampn−1 =
∑

0≤j≤m
Tpn−1j(b)xm−j ,

where xj = Tj(a). With x0 = 1, we can uniquely determine the values x1, x2, . . . , xp−1

successively by substitution in

xm = ampn−1 −
∑

1≤j≤m
Tpn−1j(b)xm−j .

By the fundamental correspondence, the equations xj = Tj(a) for j = 1, 2, . . . , p− 1
have a unique solution a. Thus k = pn−1a + b is a profile for which ai = Ti(k)
for all i ∈ Rn = P1 ∪ P2 ∪ · · · ∪ Pn. There are exactly pn(p−1) profiles of the form
pn−1a + b and exactly pn(p−1) tuples ai for i ∈ Rn. Therefore, fn is a bijection
when restricted to Rn. Furthermore, the values aj for j ∈ {1, 2, . . . , pn − 1} \ Rn are
uniquely determined as aj = Tj(p

n−1a + b).

We showed above that the trace values are determined by the values of traces
whose indices are in the critical set. We refine this below by showing that the value
of Tt for t noncritical depends only on the values of Tj , where j < t and j is critical.

Theorem 3.7. The value of Tt(α), where mpn−1 < t < (m + 1)pn−1, is deter-
mined by the values of τj = Tj(α) for j ∈ Rn−1 ∪ {pn−1, 2pn−1, . . . ,mpn−1}.

Proof. By our previous results on the range of fn, we know that there are exactly
pp−1−m profiles k such that Tj(k) = τj for j ∈ Rn−1 ∪ {pn−1, 2pn−1, . . . ,mpn−1}.
Such a profile k can be written as pn−1a + b, where a ∈ Z

p−1
p and b ∈ Z

p−1
pn−1 .
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Consider profiles k = pn−1a + b and k′ = pn−1a′ + b′, where Tj = τj for j ∈
Rn−1∪{pn−1, 2pn−1, . . . ,mpn−1}. Since the profiles agree on Rn−1, we have Ak(z) =

Ak′(z) mod zp
n−1

, and hence b = b′. Since, for j = 1, 2, . . . ,m,

[zjp
n−1

]Ak(z) = [zjp
n−1

]Ak′(z),

we have, for j = 1, 2, . . . ,m,

[zjp
n−1

]Aa(z
pn−1

)Ab(z) = [zjp
n−1

]Aa′(zp
n−1

)Ab(z),

which implies that

Aa(z) = Aa′(z) (mod zm+1).

Now note that

[zt]Ak(z)− [zt]Ak(z) = [zt](Aa(z
pn−1

)−Aa′(zp
n−1

))Ab(z)

= [zt](Aa(z
pn−1

)−Aa′(zp
n−1

))Ab(z) (mod z(m+1)pn−1

)

= 0.

3.4. A computational method and examples. In this subsection we give
an explicit algorithm in the form of pseudocode to determine if τ1, τ2, . . . , τpn−1 ∈
Range(fn), and, if so, how to find the profile p ∈ Z

p−1
pn such that Tj(p) = τj for

j = 1, 2, . . . , pn − 1. In particular, we will determine a sequence a0,a1, . . . ,an−1,
where each ai ∈ Z

p−1
p , such that

p = a0 + pa1 + · · ·+ pn−1an−1.

The principles underlying the algorithm have already been laid out in Theorems
3.2 and 3.6.

Algorithm.

(A1) a := 0; x0 := 1;
(A2) for i := 0 to n− 1 do
(A3) for j := 1 to p− 1 do

(A4) xj := τjpi −
∑j
i=1 Tjpi(a)xj−i;

(A5) for m := 1 to p− 1 do { Newton–Girard }
(A6) Pm := (−1)m+1

(
mxm +

∑
1≤j≤m−1(−1)jPjxm−j

)
;

(A7) for j := 1 to p− 1 do { inverse of Vandermonde }
(A8) aj :=

∑
1≤i≤p−1(−1)j+1(p− i)p−j−1Pi;

(A9) ai := a;
(A10) p := a0 + pa1 + · · ·+ pn−1an−1;
(A11) for i := 1 to pn − 1 do
(A12) if i /∈ Rn and Ti(p) �= τi then return( “no profile exists” );
(A13) return( p );

Example 2. Let us determine, in Zp2 , the profile p, if any, that corresponds to
the trace values (T1, T2, . . . , Tp2−1) = (1, 1, . . . , 1), with p = 7.

The i = 0 iteration of the algorithm was done in Example 1; a = a0 = (0, 0, 0,
0, 0, 6). For i = 1, the repeated substitution of lines (A3)–(A4) yields (with b = a1)

(T1(b), T2(b), T3(b), T4(b), T5(b), T6(b)) = (x1, x2, x3, x4, x5, x6) = (1, 1, 1, 1, 1, 1),
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which is solved (lines (A5)–(A8)) as in the previous example to give (b1, b2, b3, b4, b5, b6)
= (0, 0, 0, 0, 0, 6). Thus p = 7b+a = (0, 0, 0, 0, 0, 48), where 48 = 7 · b6 +a6 = 7·6+6.
We now need to check, at lines (A11)–(A12), whether Tj(p) = 1 for 7(m−1) < j < 7m
for m = 2, 3, 4, 5, 6, 7. Consider a string of 48 6’s. Clearly,

Tj(p) = 6j
(

48

j

)
= (−1)j(−1)j = 1 (mod 7),

as long as j ≤ 48. (To see that
(
48
j

) ≡ (−1)j , argue by induction using the recurrence

relation 0 ≡ (72

j

)
=
(
48
j

)
+
(

48
j−1

)
.) In terms of generating functions we have (1−z)48 =

1 + z + · · · + z48 mod 7. Thus the Tj values are indeed all 1, and we can therefore
determine that the number of strings of length n whose first 48 traces are all 1’s is

SZ7(n; 1, 1, . . . , 1︸ ︷︷ ︸
48

) =
∑

k0+k1+···+k6=n

k1≡···≡k5≡0∧k6≡48 (mod 72)

(
n

k0, k1, . . . , k6

)
.(3.4)

Note that 748 > 3× 1040, so there is no hope of using the recurrence relation (2.1) for
the computation.

Example 3. Going in the other direction, specifying fewer traces to be 1, we
show how to determine SZ7

(n; 1, 1, 1). Since we don’t have the complete set P1, we
do not have a one-to-one correspondence. However, we can sum SZ7(n; 1, 1, 1, x, y, z)
over all x, y, z ∈ Z7 to determine our answer. Feeding (1, 1, 1, x, y, z) through the
Newton–Girard and Vandermonde formulae gives us

k1 ≡ 3 + 2x+ 3y + 6z (mod 7),

k2 ≡ 5 + 5x+ 5y + 6z (mod 7),

k3 ≡ 6 + 2x+ 6z (mod 7),

k4 ≡ 6 + 2y + 6z (mod 7),

k5 ≡ 5 + 6x+ 4y + 6z (mod 7),

k6 ≡ 2 + 6x+ 6y + 6z (mod 7).

These equations can in turn be used to eliminate x, y, z, obtaining

k4 ≡ k1 + 4k2 + 3k3 (mod 7),

k5 ≡ 3k1 + 6k2 + 6k3 (mod 7),

k6 ≡ 6 + 6k1 + 6k2 + 3k3 (mod 7).

This gives us the equation

SZ7(n; 1, 1, 1) =
∑

k0+k1+···+k6=n
k4≡k1+4k2+3k3 (mod 7)
k5≡3k1+6k2+6k3 (mod 7)

k6≡6+6k1+6k2+3k3 (mod 7)

(
n

k0, k1, . . . , k6

)
.

Example 4. As another example, we will determine a formula for the number of
binary strings of length n whose first 2m traces are all 0’s; i.e., we will determine the
number

A(n,m) := SZ2(n; 0, 0, . . . , 0︸ ︷︷ ︸
2m

).
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According to Theorem 3.6, the relevant trace values are Tj for j = 1, 2, . . . , 2m. From
(A.1) of the appendix,

A(n,m) =
∑
j≥0

j≡0 (mod 2m)

(
n

j

)
=

1

2m

2m−1∑
j=0

(1 + ωj)n =
1

2m

2m−1∑
j=0

(
2 cos

πj

2m

)n
cos

πjn

2m
,

where ω is a primitive 2mth root of unity. The last equality follows from the obser-
vation that (1 + ωj) = ωj/2(ω−j/2 + ωj/2).

Appendix.

A.1. Roots of unity. For fixed n, it is well known that the sum of every other
binomial coefficient is 2n−1. But what about sums of every kth binomial coefficient?
What about similar sums of multinomial coefficients? It turns out that we can derive
formulae for these, whose computation is more efficient than directly summing the
coefficients. We start with binomial coefficients and then proceed to the multinomial
coefficients.

Let ω be a primitive qth root of unity, say ω = e2πi/q. Consider the geometric
sum below for q � n:

q−1∑
k=0

ωnk =
1− ωqn
1− ωn = 0.

On the other hand if q | n, then ωnk = 1. Thus

1

q

q−1∑
k=0

ωnk = [[q | n]].

Let A(z) =
∑
n≥0 f(n)zn. We wish to find an expression for the related generating

function that picks off every qth element, starting with the rth element (0 ≤ r < q):

Aq;r(z) =
∑
n≥0

f(nq + r)znq+r.

Set m = nq + r. Note that

Aq;r(z) =
∑
m≥0

[[q | (m− r)]]f(m)zm

=
∑
m≥0

1

q

q−1∑
k=0

ω(m−r)kf(m)zm

=
1

q

q−1∑
k=0

∑
m≥0

f(m)zmωmkω−rk

=
1

q

q−1∑
k=0

ω−rkA(zωk).

An entirely analogous argument in the multidimensional case gives us the follow-
ing lemma.
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Lemma A.1. Let A(z1, z2, . . . , zm) be the ordinary generating function of f(n1, n2,
. . . , nm). Define

Aq;r1,...,rm(z1, z2, . . . , zm) =
∑
n1≥0

· · ·
∑
nm≥0

f(n1q+r1, . . . , nmq+rm)zn1q+r1
1 · · · znmq+rm

m ,

where each ri ∈ Zq. Then

Aq;r1,...,rm(z1, z2, . . . , zm) =
1

qm

q−1∑
ν1=0

· · ·
q−1∑
νm=0

ω−(ν1r1+···+νmrm)A(ωz1ν1 , . . . , ωzmνm).

Recall that

B(z) = (1 + z)n =

n∑
r=0

(
n

r

)
zr.

Substituting z = 1 into Bq;r(z) we obtain

∑
j≡r(q)

(
n

r

)
=

1

q

q−1∑
j=0

ω−rj(1 + ωj)n.(A.1)

Introduce the notation

Mq(n; r1, r2, . . . , rm) =
∑

ν0+ν1+···+νm=n
ν1≡r1(q),...,νt≡rm(q)

(
n

ν0, ν1, . . . , νm

)
.

Plugging z1 = z2 = · · · = zm = 1 into the ordinary generating function (1 +
z1 + · · ·+ zm)n for the multinomial coefficients, we obtain the following lemma, which
generalizes (A.1).

Lemma A.2. For all q ≥ 2, n ≥ 0, and ri ∈ Zq,

Mq(n; r1, r2, . . . , rm) =
1

qm

q−1∑
ν1=0

· · ·
q−1∑
νm=0

ω−(ν1r1+···+νmrm)(1 + ων1 + · · ·+ ωνm)n.

(Note: For the binomial case, see [3, vol. 1, ex. 38, p. 70]. Knuth attributes the
roots of unity formula to C. Ramus, 1834.)
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